Mathematics

10

Sample Question Paper

Basic (Code 241)

ANSWERS

Section A

1. (c) 2. (a) 3. (c) 4. *(b)* 5. (b) 6. (b) 7. (c) 9. (b) 8. (*d*) 10. *(b)* 11. (d)12. (d)13. (a)14. (c) 15. *(a)* 16. *(b)* 17. (a) 18. (c) 19. (d) 20. (c) Section B 21. Since PA = PB $PA^2 = PB^2$ *.*.. $(k-1-3)^2 + (2-k)^2 = (k-1-k)^2 + (2-5)^2$ \Rightarrow $(k-4)^2 + (2-k)^2 = 1+9$ \Rightarrow $k^2 - 8k + 16 + 4 + k^2 - 4k - 10 = 0$ \Rightarrow $2k^2 - 12k + 10 = 0$ \Rightarrow $k^2 - 6k + 5 = 0$ \Rightarrow $k^2 - 5k - k + 5 = 0$ \Rightarrow k(k-5) - 1(k-5) = 0 \Rightarrow (k-5)(k-1) = 0 \Rightarrow Either $k - 5 = 0 \implies k = 5$ *.*.. $k-1=0 \implies k=1$ or

 \therefore The required values of *k* are **5** and **1**.

or

In right triangle ABC, we have

 $AB^{2} + BC^{2} = AC^{2}$ [By Pythagoras' Theorem] $\Rightarrow (2 - a)^{2} + (9 - 5)^{2} + (a - 5)^{2} + (5 - 5)^{2} = (2 - 5)^{2} + (9 - 5)^{2}$ $\Rightarrow 4 - 4a + a^{2} + 16 + a^{2} - 10a + 25 = 9 + 16$

$$\Rightarrow 2a^2 - 14a + 20 = 0$$

$$\Rightarrow a^2 - 7a + 10 = 0$$

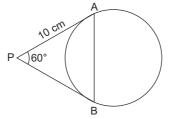
$$\Rightarrow a^2 - 5a - 2a + 10 = 0$$

$$\Rightarrow a(a - 5) - 2(a - 5) = 0$$

$$\Rightarrow (a - 5) (a - 2) = 0$$
Either
$$(a - 5) = 0 \text{ or } (a - 2) = 0$$

$$\Rightarrow a = 5 \text{ or } a = 2$$

22. Given that PA and PB are tangents to a circle from an outside point P such that PA = 10 cm and $\angle APB = 60^{\circ}$. To find the length of the chord AB.



We know that

 \therefore In \triangle PAB,

÷.

$$\angle PAB = \angle PBA = \frac{180^\circ - 60^\circ}{2} = 60^\circ$$

 $\therefore \Delta PAB$ is an equilateral triangle.

 \therefore AB = PB = PA = 10 cm which is the required length of AB.

23. Let the first term and common difference of the AP be 'a' and 'd' respectively.

$$a_9 = a + 8d \implies a + 8d = -2.6 \qquad \dots(1)$$

$$a_{23} = a + 22d \implies a + 22d = -5.4 \qquad \dots(2)$$

PB = PA = 10 cm

Subtracting (1) from (2), we have

Thus 2nd term is -1.2. $a_k = a + (k - 1) d$ Again, $= -1 + (k - 1) \times (-0.2)$ = -1 + (-0.2k) + 0.2 = -0.8 - 0.2kThus, *k*th term is (–0.8 – 0.2*k*). or Here, first term = a = 6Let common difference = d $S_n =$ Sum of first *n* terms $= \frac{n}{2} [2a + (n-1)d]$ •:• $S_3 = Sum of first three terms$ *.*... $=\frac{3}{2}[(2 \times 6) + (3 - 1)d]$ $=\frac{3}{2}[12+2d]=18+3d$...(1) $S_6 = Sum of first six terms$ $=\frac{6}{2}[(2 \times 6) + (6 - 1)d]$ = 3[12 + 5d] = 36 + 15d...(2) $S_3 = \frac{1}{2} (S_6 - S_3) \implies 2S_3 = S_6 - S_3$ Now, $2S_3 + S_3 = S_6$ or $3S_3 = S_6$ \Rightarrow ...(3) From (1), (2) and (3), we get 3[18 + 3d] = 36 + 15d54 + 9d = 36 + 15d or 9d - 15d = 36 - 54 \Rightarrow -6d = -18 : $d = \frac{-18}{-6} = 3$ \Rightarrow $\tan (A + B) = \sqrt{3}$ 24. [:: tan $60^\circ = \sqrt{3}$] $\tan(A + B) = \tan 60^{\circ}$ \Rightarrow $A + B = 60^{\circ}$ \Rightarrow ...(1) $\tan(A - B) = \frac{1}{\sqrt{2}}$ Also [:: tan 30° = $\frac{1}{\sqrt{3}}$] $\tan (A - B) = \tan 30^{\circ}$ \Rightarrow $A - B = 30^{\circ}$ \Rightarrow ...(2) Adding (1) and (2), we get $2A = 90^{\circ}$ $A = 45^{\circ}$ \Rightarrow Substituting $A = 45^{\circ}$ in (1), we get $45^{\circ} + B = 60^{\circ}$ $B = 60^{\circ} - 45^{\circ} = 15^{\circ}$ *.*..

© Ratna Sagar P. Ltd., 2025

25. Class size = Difference between any two consecutive mid values = 25 - 15 = 10. Mid values 15 corresponds to class (15 - 5) - (15 + 5), *i.e.* 10 - 20, and so on. Thus, cumulative frequency table for the given data is:

Class Interval	Frequency (f _i)	Cumulative Frequency (cf)
10 – 20	4	4
20 - 30	28	32
30 - 40	15	47
40 - 50	20	67
50 - 60	17	84
60 - 70	16	100
Total	$n = \Sigma f_i = 100$	

$$n = \Sigma f_i = 100 \quad \Rightarrow \quad \frac{n}{2} = \frac{100}{2} = 50.$$

The cumulative frequency just greater than 50 is 67 and the corresponding class is 40 - 50. So, the median class is 40 - 50.

Here,

$$l = 40, cf = 47, f = 20 \text{ and } h = 10$$

Median = $l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$
= $40 + \left(\frac{50 - 47}{20}\right) \times 10 = 40 + \frac{3}{20} \times 10$
= $40 + 1.5$
= 41.5

Hence, the median is 41.5.

Section C

26. Let us assume on the contrary that $\sqrt{3}$ is a rational number and its simplest form is $\frac{a}{b}$, where *a* and *b* are integers having no common factor other than 1 and $b \neq 0$.

$$\therefore \qquad \sqrt{3} = \frac{a}{b}$$

$$\Rightarrow \qquad 3 = \frac{a^2}{b^2} \qquad [Squaring both sides]$$

$$\Rightarrow \qquad 3b^2 = a^2 \qquad \dots(1)$$

$$\therefore a^2 \text{ is divisible by 3} \qquad [\because 3b^2 \text{ is divisible by 3}]$$

$$\Rightarrow a \text{ is divisible by 3} \qquad [\because 3 \text{ is prime and divides } a^2 \Rightarrow 3 \text{ divides } a]$$

Let a = 3c for some integer c.

Substituting a = 3c in (1), we get $\Rightarrow 3b^2 = (3c)^2 \Rightarrow 3b^2 = 9c^2 \Rightarrow b^2 = 3c^2$ $\Rightarrow b^2$ is divisible by 3 [$\because 3$ is prime and divides $b^2 \Rightarrow 3$ divides b] Since, a and b are both divisible by 3, $\therefore 3$ is a common factor of a and b. But this contradicts the fact a and b have no common factor other than 1. This contradiction has arisen because of our incorrect assumption that $\sqrt{3}$ is rational.

Hence, $\sqrt{3}$ is an irrational number.

27. Coordinates of C which is the mid-point of A(0, 4) and B(6, 0) are $\left(\frac{0+6}{2}, \frac{4+0}{2}\right)$, i.e. C(3, 2).

Let the coordinates of P be (x, y).

So, coordinates of P are (12, 8).

Also, coordinates of the origin O are (0, 0).

 $3 = \frac{x+0}{4} \qquad \Rightarrow x = 12$ $2 = \frac{y+0}{4} \qquad \Rightarrow y = 8$

and

Now,
and
$$BP = \sqrt{(12-6)^2 + (8-0)^2}$$
$$= \sqrt{36+64}$$

and $= \sqrt{100} = 10$ units.

or

Let the given line divides the line segment joining the points (2, -2) and (3, 7) in the ratio k : 1.

Then, the coordinates of the point to divide the line segment are $\frac{3k+2}{k+1}$ and $\frac{7k-2}{k+1}$.

Since, this point lies on the given line, so

$$2\left(\frac{3k+2}{k+1}\right) + \frac{7k-2}{k+1} - 4 = 0$$

$$\Rightarrow \quad 6k+4+7k-2-4k-4 = 0$$

$$\Rightarrow \quad 9k-2 = 0$$

$$\Rightarrow \quad k = \frac{2}{9}$$

Thus, the given line divides the line segment joining the given point in the ratio **2**:**9**.

LHS =
$$\frac{(\sin\theta + \cos\theta)^2 - 1}{\tan\theta - \sin\theta \cos\theta}$$

=
$$\frac{\sin^2\theta + \cos^2\theta + 2\sin\theta \cos\theta - 1}{\frac{\sin\theta}{\cos\theta} - \sin\theta \cos\theta}$$

=
$$\frac{1 + 2\sin\theta \cos\theta - 1}{\sin\theta(\frac{1}{\cos\theta} - \cos\theta)} \qquad [\because \sin^2\theta + \cos^2\theta = 1]$$

=
$$\frac{2\sin\theta \cos\theta}{\sin\theta(\frac{1 - \cos^2\theta}{\cos\theta})}$$

=
$$\left(\frac{2\cos\theta}{1 - \cos^2\theta}\right)(\cos\theta)$$

=
$$\frac{2\cos^2\theta}{\sin^2\theta}$$

[$\because \sin^2\theta + \cos^2\theta = 1 \Rightarrow 1 - \cos^2\theta = \sin^2\theta$]
=
$$2 \cot^2\theta$$

= RHS

29. Here, we apply the step derivation method to calculate the mean. Here, the assumed mean, a = 70 (in %) and the length of each class interval, h = 10.

Literacy rate (in %)	Class marks x _i (in %)	Frequency f _i	$u_i = \frac{x_i - 70}{10}$	u _i f _i
45-55	50	4	-2	-8
55-65	60	11	-1	-11
65-75	70	12	0	0
75-85	80	9	1	9
85-95	90	4	2	8
		$\Sigma f_i = 40$		$\sum u_i f_i = -2$

...

28.

Required mean $= \overline{x} = a + h \frac{\sum u_i f_i}{\sum f_i}$ $= \left(70 - 10 \times \frac{2}{40}\right)\%$ = (70 - 0.5)%= 69.5%.

- 30. (*a*) Since the perpendicular drawn from the centre of a circle to a chord bisects the chord.
 - : ON bisects AB \Rightarrow BN = AN ...(1) $PA \cdot PB = (PN - AN) (PN + BN)$ Now = (PN - AN) (PN + AN)[Using (1)] $= PN^2 - AN^2$ $PA \cdot PB = PN^2 - AN^2$ Hence, (*b*) In right triangle ONP, we have $ON^2 + PN^2 = OP^2$ [By Pythagoras' Theorem] ...(2) $PN^2 = OP^2 - ON^2$ \Rightarrow $PN^2 - AN^2 = OP^2 - ON^2 - AN^2$ \Rightarrow [Subtracting AN² from both sides] $= OP^2 - (ON^2 + AN^2)$ $= OP^2 - OA^2$ [Using Pythagoras' Theorem in right Δ ONA]

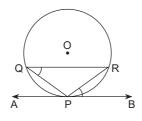
 $= OP^2 - OT^2$ [:: OA = OT, radii of a circle]

Hence, $PN^2 - AN^2 = OP^2 - OT^2$

or

Given that P is the mid-point of arc QR of a circle with centre at O and AB is a tangent to the circle at P.

To prove that $QR \parallel PB$.



Since

 $\operatorname{arc} PQ = \operatorname{arc} PR$

 \therefore chord PQ = chord PR

 $\therefore \text{ In } \Delta PQR, \qquad PQ = PR$

 \therefore $\angle PQR = \angle PRQ$

But $\angle PQR = \angle RPB$

$$\therefore \qquad \angle RPB = \angle PRQ$$

But these two angles are alternate angles between the line AB and chord QR. Hence, QR \parallel PB.

31. Let the required two digit number be 10x + y.

Then, \Rightarrow

$$\begin{aligned} x \times y &= 20\\ y &= \frac{20}{x} \end{aligned} \qquad \dots (1)$$

Given, number -9 = number with interchanged digits

 $\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \end{array}$

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

10x + y - 9 = 10y + x 10x - x + y - 10y - 9 = 0 9x - 9y - 9 = 0 x - y - 1 = 0 $x - \frac{20}{x} - 1 = 0$ $x^{2} - x - 20 = 0$ $x^{2} - 5x + 4x - 20 = 0$ x(x - 5) + 4(x - 5) = 0Either (x - 5) = 0 or (x + 4) = 0 x = 5 or x = -4 (rejected)

Substituting x = 5 in equation (1), we get

$$y = \frac{20}{5} = 4$$
 we get

Required number = 10x + y = 10(5) + 4 = 54Hence, the required number is **54**.

Section D

32. Let the usual speed of the bus be x km/hReduced speed of the bus = (x - 5) km/h

Measurement	Bus moving at the usual speed	Bus moving at the reduced speed
Distance between A and B	550 km	550 km
Speed	x km/h	(x – 5) km/h
Time	$\frac{550}{x}$ h	$\frac{550}{(x-5)} h$

Given,	Time taken by the bus moving at the reduced speed $-\begin{bmatrix} \text{Time taken by the} \\ \text{bus moving at the} \\ \text{usual speed} \end{bmatrix} = 1 \text{ hour }$	
\Rightarrow	$\frac{550}{x-5} - \frac{550}{x} = 1$	
⇒	$\frac{550(x-x+5)}{x(x-5)} = 1$	

 $\Rightarrow 2750 = x^2 - 5x$ $\Rightarrow x^2 - 5x - 2750 = 0$ $\Rightarrow x^2 - 55x + 50x - 2750 = 0$ $\Rightarrow x(x - 55) + 50(x - 55) = 0$ $\Rightarrow (x - 55) (x + 50) = 0$ $\Rightarrow \text{Either } (x - 55) = 0 \text{ or } (x + 50) = 0$ $\Rightarrow x = 55 \text{ or } x = -50 \text{ (rejected)}$

Time taken by the bus to cover the distance between A and B when its raining

$$= \frac{550}{x-5} \text{ hours} = \frac{550}{55-5} \text{ hours}$$
$$= \frac{550}{50} \text{ hours} = 11 \text{ hours}$$

Hence, the time taken is **11 hours**.

or

Let the number of books bought = x

Amount	₹ 80	₹ 80
No. of books	x	x + 4
Cost of each book	$\neq \frac{80}{x}$	$ earrow \frac{80}{x+4} $

If 4 more books are bought for ₹ 80, the cost of each book reduces by ₹ 1.

$$\therefore \qquad \frac{80}{x} - \frac{80}{x+4} = 1$$

$$\Rightarrow \qquad 80\left[\frac{x+4-x}{x(x+4)}\right] = 1$$

$$\Rightarrow \qquad 80 \times 4 = x^2 + 4x$$

$$\Rightarrow \qquad x^2 + 4x - 320 = 0$$

$$\Rightarrow \qquad x^2 + 20x - 16x - 320 = 0$$

$$\Rightarrow \qquad x(x+20) - 16(x+20) = 0$$

$$\Rightarrow \qquad (x+20) - 16(x+20) = 0$$

$$\Rightarrow \qquad (x+20) (x-16) = 0$$

$$\Rightarrow \qquad \text{Either } (x+20) = 0 \qquad \text{or } (x-16) = 0$$

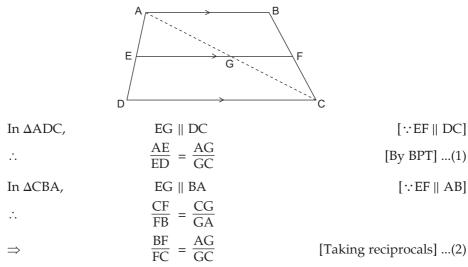
$$\Rightarrow \qquad x = -20 \text{ (rejected)} \qquad \text{or } x = 16$$

Hence, the number of books bought = 16.

The initial price of the book = $\stackrel{\textbf{R}}{\textbf{R}} \frac{80}{16}$

9

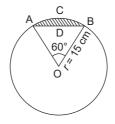
33. Join AC and let it intersect EF at G.



From (1) and (2), we have

$$\frac{AE}{ED} = \frac{BF}{FC} \qquad [Each is equal to \frac{AG}{GC}]$$

34. Let *r* cm be the radius of the circle with centre at O, so that r = 15. The chord AB subtends an angle, $\theta = 60^{\circ}$ at the centre O.



: Area of the sector OACB of the circle

$$= \pi r^{2} \times \frac{\theta}{360}$$

= 3.14 × 15² × $\frac{60^{\circ}}{360^{\circ}}$ cm²
= 3.14 × 225 × $\frac{1}{6}$ cm²
= 117.75 cm²

Now, area of the equilateral ΔAOB

$$= \frac{\sqrt{3}}{4} \times 15 \times 15 \text{ cm}^{2}$$
$$= \frac{225 \times 1.73}{4} \text{ cm}^{2}$$
$$= 97.32 \text{ cm}^{2}$$

10

© Ratna Sagar P. Ltd., 2025

:. Required area of the minor segment of the circle, ACBD (the shaded region)

$$= (117.75 - 97.32) \text{ cm}^2$$

= 20.43 cm² ...(1)

Now, area of the whole circle

$$= \pi r^{2}$$

= 3.14 × 225 cm²
= 706.50 cm² ...(2)

:. Required area of the major circle = Area of the whole circle – Area of the minor circle

$$= (706.50 - 20.43) \text{ cm}^2$$
 [From (1) and (2)]
= 686.07 cm².

35. Let AB (= h metres) be the hill. Let C be the point on the deck CD of the ship, from where the man is observing the hill. Then, CD, the height of the deck = 10 m Draw CE \perp AB. Then, \angle AEC = \angle BEC = 90° It is given that the angle of elevation of the top A of the hill AB at C is 60° and the angle of depression *h*[']m of the base B of the hill AB at C is 30°, $\angle ACE = 60^{\circ} \text{ and}$ 60° i.e. Е 230° $\angle BCE = 30^{\circ}$ 10 m -Ε EB = CD = 10 m... (1) 0 In right $\triangle AEC$, we have 30 $\tan 60^\circ = \frac{AE}{CE}$ D $\sqrt{3} = \frac{AB - EB}{CE}$ \Rightarrow $CE = \frac{h-10}{\sqrt{3}} m$ [Using (1)] ... (2) \Rightarrow In right \triangle BEC, we have BE 100 200

$$\Rightarrow \qquad \frac{1}{\sqrt{3}} = \frac{10 \text{ m}}{\text{CE}}$$

$$\Rightarrow \qquad CE = 10 \sqrt{3} \text{ m} \qquad \dots (3)$$

$$\Rightarrow \qquad \frac{h-10}{\sqrt{3}} = 10 \sqrt{3} \qquad \text{[From (2) and (3)]}$$

$$\Rightarrow \qquad h-10 = 10 \times 3$$

$$\Rightarrow \qquad h = 40$$

Distance of the hill from the ship

= DB = CE =
$$10\sqrt{3}$$
 m [Using (3)]
= $10 (1.73)$ m = 17.3 m

Hence, the distance of the hill from the ship is 17.3 m and the height of the hill is 40 m.

or

Let AB be the height of the lighthouse. The angle of depression of a ship as observed from the top of the lighthouse at the point D and C are respectively 30° and 60°. Then, CD is the distance travelled by the ship during the period of observation.

 \angle EAD = 30° and \angle EAC = 60°. Then, Now, AE || BC. Thus, $\angle EAD = \angle ADB$ $\angle ADB = 30^{\circ}$ \Rightarrow $\angle EAC = \angle ACB$ and E <-----30° (60° 100 m 60° 30 d х R $\angle ACB = 60^{\circ}$ \Rightarrow Then, AB = 100 m, CD = d, CB = x. $\angle ABC = \angle ABD = 90^{\circ}$ DB = d + xIn right \triangle ABC, we have $\tan 60^\circ = \frac{AB}{CB}$ $\sqrt{3} = \frac{100 \text{ m}}{x}$ \Rightarrow $x = \frac{100 \text{ m}}{\sqrt{3}}$... (1) \Rightarrow In right \triangle ABD, we have $\tan 30^\circ = \frac{AB}{DB}$ $\frac{1}{\sqrt{3}} = \frac{100 \text{ m}}{d-x}$ \Rightarrow $d + x = 100\sqrt{3}$ \Rightarrow $d = 100\sqrt{3} - x$ [Using equation (1)] \Rightarrow 12

$$= 100 \sqrt{3} - \frac{100}{\sqrt{3}}$$
$$= \frac{100 \times 2}{\sqrt{3}} = \frac{200}{\sqrt{3}}$$
$$= \frac{200}{1.732}$$
$$= 115.47 \text{ (approx.)}$$

Hence, the distance travelled by the ship is 115.47 m (approx.).

Section E

- 36. (a) Parabola
 - (b) Linear
 - (c) (i) 1
 - or
 - (ii) 2ft
- 37. (a) Percentage of people with white hair

$$= (100 - 65 - 25) = 10\%$$

P(white) = $\frac{10}{100} = \frac{1}{10}$

(b) Percentage of people with brown or black hair

$$= (65 + 25) = 90\%$$
P(brown or black) = $\frac{90}{100} = \frac{9}{10}$

(c) (i) Percentage of people with white or black hair

$$= (10 + 65) = 75\%$$

P(white or black) = $\frac{75}{100} = \frac{3}{4}$

or

(*ii*) Percentage of people with neither brown nor white hair = 65%

P(neither brown nor white) =
$$\frac{65}{100} = \frac{13}{20}$$

38. (*a*) 25 m

(c) (i)
$$4400 \text{ m}^2$$

or

(*ii*) ₹ 83600 (approx.)