ICSE Living Science CHEMISTRY

Chemistry

Class 10

Multiple-Choice Questions

CF	HAPTER 5: MOLE CONC	EPT AND STOICHI	OM	IETRY			
1.	The statement "Equal volumes of all gases at the same temperature and pressure contain the same number of molecules" is termed as the						
	(a) Boyle's law.(c) Charle's law.Ans: b			Avogadro's law. Gay-Lussac's law.			
2	2. The value of Avogadro number is						
	(a) 6.022×10^{23} (b) Ans: a) 6.022 × 10 ⁻²³	(c)	1.66 × 10 ⁻²⁴	(d) 1.99 × 10 ⁻²³		
3	. The number of atoms presen	t in one molecule of an	elem	ent is called its			
	(a) Molecular number.		(b)	Atomic number.			
	(c) Atomicity. Ans: c		(d)	Avogadro's number.			
4	. Match the Columns.						
	Column A	Column B					
	(i) Boyle's law	(A) $V_1/T_1 = V_2/T_2$					
	(ii) Charle's law	(B) $P_1V_1/T_1 = P_2V_2/T_2$					
	(iii) Gas equation	(C) The volume relatio	nshi	ps of reacting gases			
	(iv) Gay-Lussac's law	(D) $P_1V_1 = P_2V_2$					
	Choose the correct option.						
	(a) (i)–(B), (ii)–(C), (iii)–(A), (iv)–(D)		(b)	(i)–(A), (ii)–(D), (iii)–(C), (i	(iv)-(B)		
	(c) (i)–(D), (ii)–(A), (iii)–(B), (iv)–(Ans: b	(C)	(d)	(i)–(C), (ii)–(A), (iii)–(D), (i	(iv)–(B)		
5	. If empirical formula of an org	ganic compound is CH ₂ O,	the	n its actual formula is			
	(a) $C_2H_2O_2$ (b) Ans: c) C ₂ H ₅ O	(c)	$C_6H_{12}O_6$	(d) $C_3H_6O_3$		
6	. The number of moles presen	t in 64 g of oxygen is					
	(a) 2.0 moles (b	3.0 moles	(c)	4.0 moles	(d) 5.0 moles		
	Ans: a						
	[Hint: Molar mass of oxyg	en = 32 g mol ⁻¹					
	Therefore, number of mol	es of oxygen = 64 g / 32	g m	nol ⁻¹ = 2.0 moles]			

IAP I
EX 5
. MC
NCE
AN
CH
TOME
7
2
_

/.	One atomic mass unit is e	•		4.66 40=23 1	(D	2.66 40-27			
	(a) $1.66 \times 10^{-26} \text{ kg}$ Ans: b	(b) $1.66 \times 10^{-27} \text{ kg}$	(c)	1.66 × 10 ⁻²³ kg	(d)	3.66 × 10 ⁻²⁷ kg			
8.	The volume occupied by 1 mole of any gas at S.T.P. (i.e. at 273 K and 10 ⁵ Pa) is equal to								
	(a) 27.4 L Ans: c	(b) 29.4 L	(c)	22.4 L	(d)	32.4 L			
9.	How many atoms are ther	ow many atoms are there in 24 g of carbon?							
	•	(b) 6.022 × 10 ²³ atoms	(c)	1.204×10^{23} atoms	(d)	$1.204 \times 10^{24} \text{ atoms}$			
	[Hint: 24 g of carbon = 24 / 12 moles = 2 moles 1 mole of atoms = 6.022×10^{23}								
	2 moles of carbon conf	tains 2 × 6.022 × 10 ²³ atoms	5 = 1	.204 × 1024 atoms]					
10. The mass of 6.022×10^{23} molecule of Calcium carbonate (CaCO ₃) is									
	(a) 10 g Ans: b	(b) 100 g	(c)	0.1 g	(d)	1.5 g			
	[Hint: Molar mass of Ca	aCO ₃ = 40 + 12 + 3 × 16 = 1	00 8	5					
	No. of moles of CaCO ₃	= No. of molecules/Avogadr	o ni	umber = 6.022 × 10 ²³ / 6	.022	$\times 10^{23} = 1 \text{ mole}$			
	Mass of $CaCO_3$ = No. o	of moles \times molar mass = 1 \times	100) g = 100 g]					
11.	Which one will have maxir	mum numbers of water mole	ecul	es?					
	(a) 18 molecules of water		(b)	1.8 grams of water					
	(c) 18 grams of water		(d)	18 moles of water					
	Ans: d								
12.	The number of atoms pres	sent in 0.1 moles of a triator	mic	gas is					
	(a) 1.806×10^{23}	(b) 1.806×10^{22}	(c)	3.600×10^{23}	(d)	6.026×10^{22}			
	Ans: a								
13.	The volume of hydrogen gas liberated by heating 6 g of magnesium with excess hydrochloric acid is equal to $[Mg = 24, H = 1, Cl = 35.5]$								
	(a) 22.4 L	(b) 5.6 L	(c)	11.2 L	(d)	56 L			
	Ans: b								
	[Hint: 24 g of magnesium on heating with HCl produces 22.4 L of H_2 gas. 6 g of magnesium on heating with HCl will produce = (22.4 × 6) / 24 = 5.6 L of H_2]								
14.	Which of the following info	ormations a chemical equation	ons	does not give?					
	(a) Number of molecules or atoms of reactants and products								
	(b) Number of moles of reactants and products								
	(c) The temperature at which reaction takes place								
	(d) Volumes of gaseous re Ans: c	actants and products measu	ıred	at S.T.P.					
15.	The vapour density of nitre	ogen dioxide is [N = 14,O =	16]						
	(a) 46	(b) 23	(c)	4.6	(d)	2.3			
	Ans: b								
		of $NO_2 = 14 + 2 (16) = 46$							
	V.D. = ½ × molecular w	$eight = \frac{1}{2} \times 46 = 23$							

- 16. Which of the following statements about a compound is incorrect?
 - (a) A molecule of a compound has atoms of different elements.
 - (b) The ratio of atoms of different elements in a compound is fixed.
 - (c) A compound retains the physical properties of its constituent elements.
 - (d) A compound cannot be separated into its constituent elements by physical methods of separation. Ans: c
- 17. The elements X, Y combine to form two compounds as XY and X_2Y . Find the atomic weight of X and Y, when the weight of 0.1 moles of XY is 10 g and 0.05 moles of X_2Y is 9 g.
 - (a) 60, 40
- **(b)** 80, 20
- (c) 30, 20
- (d) 20, 30

Ans: b

- 18. Which of the following reactions is not correct?
 - (a) $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

- (b) $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
- (c) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
- (d) $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$

Ans: b

- 19. Which of the following pairs have the same number of atoms?
 - (i) 16 g of $O_2(g)$ and 4 g of $H_2(g)$

(ii) 16 g of $O_2(g)$ and 44 g of CO_2

(iii) 28 g of $N_2(g)$ and 32 g of $O_2(g)$

(iv) 12 g of C(s) and 23 g of Na(s)

- (a) (i) and (ii)
- (b) (ii) and (iii)
- (c) (iii) and (iv)
- (d) (ii) and (iv)

Ans: c

20. A statement of assertion followed by a statement of reason is given below. Mark the correct choice.

Assertion: One atomic mass unit is defined one twelfth of the mass of one carbon-12 atom.

Reason: Carbon-12 isotope is the most abundant isotope of carbon and has been chosen as standard.

- (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) Assertion is true but reason is false.
- (d) Both assertion and reason are false.

Ans: b