Chapter 1: Number System

	MULTIPLE-CHOICE QUESTIONS				
Cho	oose the correct answer from the giver	n fo	ur options in th	e foll	owing questions:
1.	Every rational number is				
	(a) a natural number	(b)	an integer		
	(c) a real number	(<i>d</i>)	a whole numb	er	[CBSE SP 2011]
2.	Decimal representation of a rational	nun	nber cannot be		
	(a) terminating	(b)	non-terminatir	ng	
	(c) non-terminating repeating	(<i>d</i>)	non-terminatir	ng no	on-repeating [CBSE SP 2010]
3.	$\boldsymbol{\pi}$ is an irrational number because its	dec	imal expansion	is	
	(a) terminating	(b)	non-terminatir	ng	
	(<i>c</i>) non-terminating repeating	(<i>d</i>)	non-terminatir	ng no	n-repeating
4.	Every point on a number line represe	ents	i		
	(a) a unique real number	(b)	a natural num	ber	
	(c) a rational number	(<i>d</i>)	an irrational n	umbe	er
5.	Which of the following is a rational 1	num	iber?		_
	(a) $\frac{-2}{3}$ (b) $\frac{-1}{\sqrt{5}}$	(c)	$\frac{13}{\sqrt{5}}$	(<i>d</i>)	$\frac{\sqrt{2}}{3}$ [CBSE SP 2011]
6.	Which of the following is irrational?				
	(a) 0.15 (b) $0.15\overline{16}$	(C)	$0.\overline{1516}$	(d)	0.5015001500015
7.	A rational number equivalent to $\frac{3}{17}$	is			
	(a) $\frac{6}{17}$ (b) $\frac{6}{34}$	(c)	$\frac{17}{3}$	(<i>d</i>)	$\frac{3}{34}$
8.	A rational number between 2 and 3 i	is			
	(<i>a</i>) 2.010010001	(b)	$\sqrt{6}$		
	(c) $\frac{5}{2}$	(<i>d</i>)	$4 - \sqrt{2}$		[CBSE SP 2013]
9.	Four rational numbers between 3 and	d 4	are		
	(<i>a</i>) 3.1, 3.2, 3.8, 3.9	(b)	$\frac{3}{5}, \frac{4}{5}, 1, \frac{6}{5}$		
	(c) 3.1, 3.2, 4.1, 4.2	(<i>d</i>)	$\frac{13}{5}, \frac{14}{5}, \frac{16}{5}, \frac{17}{5}$		
10.	The smallest irrational number to be is	add	ed to $3 + \sqrt{2}$ to	get a	a rational number

is (a) $-\sqrt{2}$ (b) $3 - \sqrt{2}$ (c) $\sqrt{2} - 3$ (d) $\sqrt{3} + 2$ **11.** The value of $0.\overline{3}$ in the form $\frac{p}{q}$, where *p* and *q* are integers and $q \neq 0$ is (d) $\frac{3}{100}$ [CBSE SP 2011] (a) $\frac{33}{100}$ (b) $\frac{3}{10}$ (c) $\frac{1}{2}$ **12.** $0.3\overline{2}$ expressed in the form $\frac{p}{q}$, where *p* and *q* are integers and $q \neq 0$, is (a) $\frac{8}{25}$ (b) $\frac{29}{90}$ (c) $\frac{32}{90}$ (d) $\frac{32}{100}$ **13.** $0.\overline{437}$ expressed in the form $\frac{p}{q}$, where *p* and *q* are integers and $q \neq 0$, is (a) $\frac{437}{0000}$ (b) $\frac{394}{000}$ (c) $\frac{434}{99}$ (d) $\frac{437}{000}$ 14. Simplest rationalisation factor of $\sqrt[3]{40}$ is *(a)* ∛25 *(b)* ∛5 (c) $\sqrt{40}$ (d) $\sqrt{5}$ 15. $2\sqrt{5} + \sqrt{5}$ is equal to (a) $2\sqrt{10}$ (c) $3\sqrt{5}$ (*d*) $3\sqrt{10}$ (b) 10 16. The perimeter of the given figure is (a) $60\sqrt{5}$ 5√5 (b) $12\sqrt{5}$ $3\sqrt{5}$ (c) $27\sqrt{5}$ (*d*) $32\sqrt{5}$ 4√5 17. On simplification of $\left(\frac{2}{3}\sqrt{5} - \frac{1}{2}\sqrt{2} + 6\sqrt{11}\right) + \left(\frac{1}{3}\sqrt{5} + \frac{3}{2}\sqrt{2} - \sqrt{11}\right)$, we get (b) $\frac{\sqrt{5}}{2} + 2\sqrt{2} + \sqrt{11}$ (a) $\sqrt{5} + \sqrt{2} + 5\sqrt{11}$ (d) $\sqrt{5} + 2\sqrt{2} + 5\sqrt{11}$ (c) $\sqrt{5} + \sqrt{2} + 6\sqrt{11}$ **18.** The product of $\sqrt[3]{7}$ and $\sqrt{5}$ is (b) $\sqrt[6]{35}$ (c) $\sqrt[6]{6125}$ (a) $\sqrt[3]{35}$ (*d*) ∜1225 19. The product of $\frac{1}{6}\sqrt{18}$ and $\frac{1}{3}\sqrt{18}$ is (b) $\frac{1}{12}$ (c) $\frac{1}{2}$ (d) $\sqrt{2}$ (a) 1 **20.** $\sqrt{5} \times \sqrt{7} \times \sqrt{15} \times \sqrt{21}$ in simplified form is (a) $\sqrt{105}$ (b) $\sqrt{210}$ (c) 105 (*d*) 210 21. $(3 + \sqrt{3})(3 - \sqrt{3})$ on simplification becomes equal to

	(<i>a</i>) 18	(<i>b</i>) $2\sqrt{3}$	(<i>c</i>) 6	(<i>d</i>) 9
22.	The value of $(3 +$	$\sqrt{5}$) ² (3 – $\sqrt{5}$) ² is		
	(<i>a</i>) 15	(<i>b</i>) 16	(c) 4	(<i>d</i>) 14
23.	$\sqrt[3]{250} \div \sqrt[3]{10}$ in sin	nplified form is equ	ual to	
	(a) $\sqrt[3]{25}$	(<i>b</i>) 5	(c) $\sqrt{5}$	(<i>d</i>) $\sqrt[3]{2500}$
24.	$\frac{30}{\sqrt{20} + \sqrt{5}}$ is equa	l to		
	(a) $\frac{10}{3\sqrt{5}}$	(b) $\frac{30}{\sqrt{5}}$	(c) $\frac{10}{\sqrt{5}}$	(<i>d</i>) $12\sqrt{5}$
				[CBSE SP 2011]
25.	$\frac{6}{\sqrt{12}-\sqrt{3}}$ is equa	l to		
	(<i>a</i>) $\frac{1}{\sqrt{3}}$	(b) $\frac{2}{\sqrt{3}}$	(c) $2\sqrt{3}$	(<i>d</i>) $6\sqrt{3}$
				[CBSE SP 2011]
26.	The value of $\frac{2^0 + 5^0}{5^0}$	$\frac{7^{0}}{2}$ is		
	(<i>a</i>) 2	(<i>b</i>) 0	(c) $\frac{9}{5}$	(<i>d</i>) $\frac{1}{5}$
27.	On simplifying $\frac{2}{2}$	$\frac{30}{31} + 2^{29}$, we get		
	(<i>a</i>) 1	(<i>b</i>) 2	(c) $\frac{2}{3}$	(<i>d</i>) $\frac{3}{2}$
28.	The value of $\sqrt{(3^{-1})}$	⁻²) is		
	(a) $\frac{1}{9}$	(<i>b</i>) 9	(c) - 3	(d) $\frac{1}{3}$
29.	$\left(\frac{256}{625}\right)^{-\frac{3}{4}}$ in its sin	nplified form is equ	ial to	
	(a) $\frac{25}{64}$	(b) $\frac{64}{125}$	(c) $\frac{125}{64}$	(<i>d</i>) $\frac{64}{25}$
30.	$(32)^{\frac{1}{5}} \times (125)^{-\frac{1}{3}}$ in	its simplified form	is equal to	
	(a) $\frac{16}{25}$	(b) $\frac{4}{5}$	(c) $\frac{2}{5}$	(d) $\frac{2}{25}$
31.	$\frac{5^{n+2} - 6.5^{n+1}}{13.5^n - 2.5^{n+1}} $ eq	uals		
	(a) $\frac{5}{3}$	$(b) - \frac{5}{3}$	(c) $\frac{3}{5}$	$(d) -\frac{3}{5}$

32. The value of $\left[8^{-4/3} \div 2^{-2}\right]^{1/2}$ is (a) $\frac{1}{2}$ (b) 2 (c) $\frac{1}{4}$ (*d*) 4 **33.** If *x* is a positive real number, then $\sqrt[4]{\sqrt[3]{x^2}}$ is (a) $x^{1/24}$ (b) $x^{1/6}$ (d) $x^{1/20}$ (c) $x^{1/12}$ **34.** If x = 2 and y = 3, then the value of $x^y + y^x$ is (b) 17 (*a*) 15 (c) 19 (*d*) 21 **35.** If $x = 9 - 4\sqrt{5}$, then $x + \frac{1}{x}$ is equal to (a) $8\sqrt{5}$ (b) $-8\sqrt{5}$ (c) 18 (d) 81 **36.** Which of the following is equal to *a*? (a) $a^{\frac{13}{7}-\frac{5}{7}}$ (b) $\sqrt[12]{\left(a^4\right)^{\frac{1}{3}}}$ (c) $\left(\sqrt{a^5}\right)^{\frac{2}{5}}$ (d) $a^{\frac{13}{7}} \times a^{\frac{7}{13}}$ **37.** Decimal representation of $-\frac{17}{8}$ is (d) - 1.175(a) - 2.125(b) - 2.225 (c) 2.125 **38.** If $\frac{3}{7} = 0.\overline{428571}$, then $\frac{5}{7}$ is equal to (a) 0.704125 (*b*) 0.714285 (c) 0.77132 (d) 0.714381 **39.** If $\sqrt{3} = 1.732$, then the value of $\frac{1}{\sqrt{3}}$ approximately is (*a*) 0.866 (c) 0.288 (b) 0.433 (*d*) 0.577 **40.** If $\sqrt{2} = 1.414$, then the value of $\sqrt{3} \div \sqrt{6}$ up to three places of decimal is (a) 0.235 (*b*) 0.707 (c) 1.414 (d) 0.471

Chapter 2: Polynomials

10. A polynomial of degree 5 in *x* has at most (a) 5 terms (*b*) 10 terms (*c*) 6 terms (d) 4 terms **11.** Zero of the polynomial p(x), where p(x) = ax + 1, $a \neq 0$ is (a) 1 (b) - a $(d) -\frac{1}{2}$ (c) 0 [CBSE SP 2010] **12.** Zeroes of the polynomial p(x) = (x + 2) (x + 5) are $(d) - \frac{1}{2}, -\frac{1}{5}$ (b) - 2, -5(c) $\frac{1}{2}, \frac{1}{5}$ (a) 2, 5 **13.** Zeroes of the polynomial p(x) = x (x - 1) (x - 2) are (b) 0, -1, -2 (c) 0, 1, -2(*a*) 0, − 1, 2 (*d*) 0, 1, 2 **14.** Which of the following is a zero of the polynomial $x^3 + 3x^2 - 3x - 1$? (c) 1 (*d*) 2 [CBSE SP 2011] (*b*) -2 (a) -1**15.** The number to be added to the polynomial $x^2 - 5x + 4$, so that 3 becomes its zero, is (b) - 4(c) - 2(a) 4 (d) 2 **16.** The number to be subtracted from the polynomial $x^2 - 16x + 30$, so that 15 becomes its zero, is (a) 15 (b) 16 (c) 30 (d) 017. A polynomial whose zeroes are $\sqrt{2}$ and $-\sqrt{2}$ is (a) $x^2 + 2$ (c) $x^2 - 2$ (b) x - 2(*d*) x + 2**18.** If x = 2 is a zero of the polynomial $x^2 - 2k + 2$, then the value of *k* is (a) 1 (*b*) 2 (c) 3 (d) 4 **19.** The value of *k* for which the polynomial $x^3 + 3x^2 - 3x + k$ has -3 as its zero, is (b) - 3(*d*) 12 [CBSE SP 2011] (a) - 9(c) 9 **20.** The remainder when $p(x) = x^3 + 1$ is divided by x + 1, is (a) - 6(b) 0 (c) 1 (d) 6**21.** The remainder when $x^{51} + 51$ is divided by x + 1, is (a) 51 (b) 50 (c) - 1(d) 0**22.** The remainder when $x^2 + 2x + 1$ is divided by x + 1, is (a) 4 (b) 0 (c) 1 (*d*) -2 [CBSE SP 2011] **23.** The remainder when $f(x) = x^3 + 4x^2 - 3x + 1$ is divided by x - 2, is (b) 12 (c) 17 (*d*) 19 (a) 16 **24.** If x + 1 is a factor of the polynomial $2x^2 + kx$, then the value of k is (a) - 2(b) - 3(c) 4 (*d*) 2 **25.** If x + a is a factor of $x^4 - a^2x^2 + 3x - 6a$, then the value of *a* is (a) 0 (b) 1 (c) - 1(d) 2**26.** (x + 1) is a factor of the polynomial (a) $x^3 + x^2 - x + 1$ (b) $x^3 + x^2 + x + 1$ (c) $x^4 + x^3 + x^2 + 1$ (d) $x^4 + 3x^3 + 3x^2 + x + 1$

27. The common factor in $x^2 - 1$, $x^4 - 1$ and $(x - 1)^2$ is (b) x + 1(c) $x^2 - 1$ (d) $x^2 + 1$ (a) x - 1**28.** The factorisation of $-x^2 + 5x - 6$ yields (a) - (x-2)(3-x)(b) - (2 - x)(3 - x)(d) (2 + x)(3 - x)(c) (x-2)(x-3)[CBSE SP 2011] **29.** The value of $(348)^2 - (347)^2$ is (a) $(1)^2$ (b) 685 (c) 695 (d) 705 **30.** The expansion of $(x + y + z)^2$ is (a) $x^2 + y^2 + z^2 - 2xy - 2yz - 2zx$ (b) $x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$ (d) $x^2 + y^2 + z^2 + xy + yz + zx$ (c) $x^2 + y^2 + z^2 - xy - yz - zx$ **31.** The expansion of $(x - y)^3$ is (a) $x^3 + y^3 + 3x^2y + 3xy^2$ (b) $x^3 + y^3 - 3x^2y + 3xy^2$ (c) $x^3 - y^3 - 3x^2y + 3xy^2$ (d) $x^3 - y^3 + 3x^2y - 3xy^2$ 32. The product $\left(\frac{x}{2} - 3y\right)\left(3y + \frac{x}{2}\right)\left(\frac{x^2}{4} + 9y^2\right)$ is equal to (a) $\frac{x^4}{16} + 81y^4$ (b) $\frac{x^4}{81} + 16y^4$ (c) $\frac{x^4}{81} - 16y^4$ (d) $\frac{x^4}{16} - 81y^4$ 33. $75 \times 75 + 2 \times 75 \times 25 + 25 \times 25$ in simplified form is equal to (b) 6250 (c) 7500 (*a*) 10000 (d) 3750 34. $\frac{8.83 \times 8.83 - 2.17 \times 2.17}{6.66}$ in its simplified form is equal to (a) 9 (b) 10 (c) 11 (*d*) 12 **35.** If x + y + z = 0, then $x^3 + y^3 + z^3$ is equal to (a) $x^2 + y^2 + z^2 + 3xyz$ (b) 3xyz(d) $x^2 + y^2 + z^2 - xy - yz - zx$ (c) $3x^2y^2z^2$ **36.** If $49x^2 - y = \left(7x + \frac{1}{2}\right)\left(7x - \frac{1}{2}\right)$, then the value of *y* is (b) $\frac{1}{4}$ (d) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{2}}$ (a) 0 **37.** If the area of a rectangle is $4x^2 + 4x - 3$, then its possible dimensions are (b) 2x - 1, 2x + 3(a) 2x - 3, 2x + 1(c) 3x + 1, 2x - 3(d) 3x - 1, 2x + 3**38.** The factors of $12y^2 - y - 6$ are (a) (12y - 1)(y + 6)(b) (12y + 1)(y - 6)(d) (3y + 2) (4y - 3)(c) (3y-2)(4y+3)**39.** The factors of $\frac{1}{2} - \frac{x^2}{50}$ are (a) $\frac{1}{2}\left(1-\frac{x}{5}\right)\left(1-\frac{x}{5}\right)$ (b) $\frac{1}{2}\left(\frac{1}{5}+x\right)\left(\frac{1}{5}-x\right)$

Mathematics - Class 9

(c)
$$\frac{1}{2} \left(1 + \frac{x}{5}\right) \left(1 - \frac{x}{5}\right)$$
 (d) $\frac{1}{2} \left(1 + \frac{x}{5}\right) \left(1 + \frac{x}{5}\right)$
40. The factors of $a^3 + 27$ are
(a) $(a + 3) (a^2 + 3a + 9)$ (b) $(a + 3) (a^2 - 3a + 9)$
(c) $(a - 3) (a^2 - 3a + 9)$ (d) $(a - 3) (a^2 + 3a + 9)$
41. $\sqrt{2a^2 + 2\sqrt{6}} ab + 3b^2$ in its simplified form is equal to
(a) $\left(\sqrt{2a} - \sqrt{3b}\right)$ (b) $\left(\sqrt{2a} + \sqrt{3b}\right)$
(c) $\left(\sqrt{3a} + \sqrt{2b}\right)$ (d) $\left(\sqrt{3a} - \sqrt{2b}\right)$
42. For the polynomial $(x + 2) (x - 2)$, the values of $p(0)$, $p(1)$, $p(-2)$ respectively are
(a) $0, 3, -4$ (b) $-1, 0, 3$
(c) $-4, -3, 0$ (d) $1, 4, -3$
43. If $p(x) = x^2 - 4x + 3$, then the value of $p(2) - p(-1) + p\left(\frac{1}{2}\right)$ is
(a) $\frac{31}{4}$ (b) $-\frac{31}{4}$ (c) $\frac{21}{4}$ (d) $-\frac{21}{4}$
44. If polynomial $x^3 - 2mx^2 + 16$ is divisible by $x + 2$, then the value of m is
(a) -2 (b) 2 (c) 1 (d) -1
45. If $2x - 1$ is a factor of $8x^4 + 4x^3 - 16x^2 + 10x + a$, then the value of a is
(a) -2 (b) 2 (c) 1 (d) -1
46. $\left(2x + \frac{1}{3}\right)^2 - \left(x - \frac{1}{2}\right)^2$ in its factorised form is equal to
(a) $\left(x - \frac{1}{6}\right) \left(3x + \frac{5}{6}\right)$ (b) $\left(3x + \frac{1}{6}\right) \left(x - \frac{5}{6}\right)$
(c) $\left(x + \frac{1}{6}\right) \left(3x - \frac{5}{6}\right)$ (d) $\left(3x - \frac{1}{6}\right) \left(x + \frac{5}{6}\right)$
47. The expanded form of $(3a - 5b - c)^2$ is
(a) $9a^2 + 25b^2 + c^2 - 30ab + 10bc - 6ac$
(b) $9a^2 + 25b^2 + c^2 - 30ab - 10bc + 6ac$
(c) $9a^2 + 25b^2 + c^2 + 30ab - 10bc + 6ac$
(d) $9a^2 + 25b^2 + c^2 + 30ab - 10bc - 6ac$
48. The product of $\left(\frac{x}{2} + 2y\right) \left(\frac{x^2}{4} - xy + 4y^2\right)$ is equal to
(a) $\frac{x^3}{6} + 6y^3$ (b) $\frac{x^3}{8} + 8y^3$ (c) $\frac{x^3}{8} - 8y^3$ (d) $\frac{x^3}{6} - 6y^3$
49. Factors of $a^3 - 2\sqrt{2}$ b^3 are
(a) $\left(a - \sqrt{2b}\right) \left(a^2 + \sqrt{2ab} + 2b^2\right)$ (b) $\left(a - 2\sqrt{2b}\right) \left(a^2 - \sqrt{2ab} + 2b^2\right)$

	(c) $\left(a+\sqrt{2}b\right)\left(a^2-a^2\right)$	$-\sqrt{2}ab+2b^2\Big)$	$(d) \ \Big(a+\sqrt{2}b\Big)\Big(a^2+$	$\sqrt{2}ab + 2b^2$
50.	The expanded for	m of $\left(x+\frac{1}{3}\right)^3$ is		
	(a) $x^3 + \frac{1}{27} + 3x^2$	$+\frac{1}{3}x$	(b) $x^3 + \frac{1}{27} + x^2 + $	$\frac{1}{3}x$
	(c) $x^3 + \frac{1}{9} + 3x^2 + \frac{1}{9} + 3x^2 + \frac{1}{9} + $	- 3 <i>x</i>	(d) $x^3 + \frac{1}{27} + 3x^2 + $	$+\frac{1}{3}x$
51.	The value of 10^3 –	$(5)^3 - (5)^3$ is		
	(<i>a</i>) 750	(<i>b</i>) 1000	(c) 250	(<i>d</i>) 500
52.	If $x + \frac{1}{x} = 8$, then	the value of $x^2 + \frac{1}{x}$	$\frac{1}{2}$ is	
	(<i>a</i>) 62	(<i>b</i>) 64	(c) 66	(<i>d</i>) 60
53.	The value of $p^3 - b^3$	q^3 if $p - q = -8$, $pq =$	= – 12 is	
	(a) - 244	(b) - 240	(c) - 224	(d) - 260
54.	If $9x^2 - 30x + k$ is a	a perfect square the	on the value of k is	
	(<i>a</i>) 25	(<i>b</i>) 5	(<i>c</i>) 36	(<i>d</i>) 81
55.	The value of $a^2 + b^2$	$b^2 + c^2$, if $a + b + c =$	13 and ab + bc + ca	= 27 is
	(<i>a</i>) 250	(<i>b</i>) 223	(c) 115	(<i>d</i>) 81

Chapter 3: Coordinate Geometry

MULTIPLE-CHOICE QUESTIONS					
Choos	e the correct and	swer from the giver	n foi	ur options in th	e following questions:
1. Tl	he measure of a	ngle between the tw	vo c	oordinate axes	is
(a) 180°	(<i>b</i>) 0°	(C)	90°	(<i>d</i>) 360°
2. Po	oints (0, 3) and (0, – 7) lie			
(a) on the <i>x</i> -axis		(b)	in the first qua	adrant
(C) on the <i>y</i> -axis		(d)	in the second	quadrant
3. Po	oint (- 3, 0) lies				
(a) in the third qu	ıadrant	(b)	on the negativ	ve direction of <i>y</i> -axis
(C) in the fourth o	quadrant	(d)	on the negativ	ve direction of <i>x</i> -axis
4. If	<i>y</i> -coordinate of	a point is zero, the	n th	is point always	lies
(a) in the second	quadrant	(b)	on the <i>x</i> -axis	
(C) in the first qua	adrant	(d)	on the <i>y</i> -axis	
5. Si	gns of the abs	cissa and ordinate	e of	a point in th	ne third quadrant are
re	espectively				
(a) -, -	(b) +, +	(C)	+,-	(<i>d</i>) -, +
6. A	point both of w	hose coordinates a	re p	ositive will lie	in the
(a) first quadrant		(b)	second quadra	ant
(C) third quadran	t	(<i>d</i>)	fourth quadra	nt
7. Tl	he points (2, –3)	and (–3, 2) lie in th	e		
(a) first and secon	nd quadrants respec	ctiv€	ely	
(b) fourth and see	cond quadrants resp	pect	ively	
(C) second and th	ird quadrants respe	ectiv	vely	
(a) second and fo	urth quadrants resp	pect	ively	
8. If	P(-2, 2), Q(3, raph paper there	-5), K (2, -2), S (-	- 3, fou	-4), and T (-6	5, 3) are plotted on the
81 (a) P and R	(h) only T	(c)	O and R	(d) P and T
^س	rdinate of a poi	(<i>b</i>) only 1	(0)	Q unit it	(<i>a</i>) 1 dife 1
). (a) first and second	nd auadrants	(b)	first and third	quadrants
(c) second and th	ird quadrants	(d)	third and four	th quadrants
10. A	point with abso	rissa – 3 and ordina	te 5	lies in the	1
(a) first quadrant		(b)	second quadra	ant
(c) third quadran	t	(<i>d</i>)	fourth quadra	nt
11. T	he abscissa and	ordinate of the orig	in a	re	

Mathematics - Class 9

	(a) (0, 0)	(<i>b</i>) (1, 1)	(c) $(-1, -1)$	(d) (2, 2)
12.	Coordinates of a negative direction	point which is 8 un of the <i>y-</i> axis are	nits away from the	<i>x</i> -axis and lies on the
	(<i>a</i>) (- 8, 0)	(<i>b</i>) (8, 0)	(c) $(0, -8)$	(d) (0, 8)
13.	The perpendicula	r distance of the po	int P $(3, 4)$ from the	e <i>x</i> -axis is
	(a) 3 units	(b) 4 units	(c) 1 unit	(<i>d</i>) 7 units
14.	If two points have them is parallel to	the same abscissa b	ut different ordinate	es, then the line joining
	(<i>a</i>) both <i>x</i>-axis an(<i>c</i>) <i>y</i>-axis	d y-axis	(<i>b</i>) neither <i>x</i>-axis a(<i>d</i>) <i>x</i>-axis	nor <i>y</i> -axis
15.	The points having	same signs of abso	cissa and ordinate l	ie in
	(a) first or second	quadrants	(<i>b</i>) first or third qu	uadrants
	(c) second or four	rth quadrants	(<i>d</i>) second or third	d quadrants
16.	A point lies on the <i>y</i> -axis. It is made t direction of <i>x</i> -axis position. Then, th (<i>a</i>) (3, 3)	e positive direction o slide along the <i>x-a</i> , at the same distance coordinates of its (b) (-3, 3)	of <i>x</i> -axis at a distant the distant of <i>x</i> -axis and its new pos- ce from the <i>y</i> -axis, a new position are (c) (- 3, 0)	the of 3 units from the ition is on the negative as it was in the original (<i>d</i>) (3, 0)
17	Coordinates of for	ur points lying on t	he coordinate axes	at a distance of 5 units
1/.	from the origin ar	e points lying on t	the coordinate axes	at a distance of 5 diffes
	(<i>a</i>) (5, 0), (0, 5), (- (<i>c</i>) (5, 0), (5, 5), (-	5, 0), (0, – 5) 5, 0), (– 5, – 5)	(b) (5, 5), (-5, -5) (d) (0, 5), (0, -5), (, (5, – 5), (– 5, 5) (5, – 5), (– 5, – 5)
18.	The verbal senten	ce 'The difference o	of the ordinate and a	abscissa of a point is 1'
	is represented by	the equation		
	(a) x - y = 0	(b) $x - y = 1$	(c) $x + y = 1$	(<i>d</i>) $y - x = 1$
19.	Coordinates of $2x - 5y = 10$ are	the point lying o	on the <i>y</i> -axis sat	isfying the equation
	(a) (2, 0)	(b) (0, 2)	(c) $(0, -2)$	(d) (-2, 0)
20.	Coordinates of the	e point at which the	$e \lim 5x + 3y = 15 \lim$	ntersects the <i>x</i> -axis are
	(<i>a</i>) (0, 3)	(b) (3, 0)	(c) (-3, 0)	(d) $(0, -3)$

Chapter 4: Linear Equations in Two Variables

- MULTIPLE-CHOICE QUESTIONS ——

Choose the correct answer from the given four options in the following questions:

- **1.** 'Twice the ordinate of a point decreased by three times the abscissa is 6.' The given sentence expressed in the form of an equation is
 - (a) 2x 3y = 6 (b) 2y 3x = 6
 - (c) 3x 2y = 6 (d) 3y 2x = 6
- **2.** The condition that the equation ax + by + c = 0 represents the linear equation in two variables is
 - (a) $a \neq 0, b = 0$ (b) $b \neq 0, a = 0$ (c) a = 0, b = 0(d) $a \neq 0, b \neq 0$ [CBSE SP 2011]
- **3.** The linear equation of the type y = mx, $m \neq 0$ has
 - (*a*) infinitely many solutions. (*b*) a unique solution.
 - (c) only solution x = 0, y = 0. (d) solution m = 0. [CBSE SP 2011]

4. $x - 4 = \sqrt{3} y$ expressed in the form ax + by + c = 0 is

(a)
$$x - \sqrt{3} y - 4 = 0$$

(b) $x + \sqrt{3} y + 4 = 0$
(c) $x - \sqrt{3} y + 4 = 0$
(d) $x + \sqrt{3} y - 4 = 0$

5. $\frac{y}{5} = 1$, expressed as an equation in two variables in standard form is

- (a) x + y + 5 = 0(b) x - y - 5 = 0(c) $0 \cdot x + 1 \cdot y - 5 = 0$ (d) x - y + 5 = 0
- **6.** The coefficients of *x* and *y* respectively in the equation 5x y = 10 are
 - (a) 5, 1 (b) 1, $\frac{1}{5}$ (c) 1, 5 (d) 5, -1

7. The equation x = 9, in two variables, can be written as (a) $1 \cdot x + 1 \cdot y = 9$ (b) $1 \cdot x + 0 \cdot y = 9$ (c) $0 \cdot x + 1 \cdot y = 9$ (d) $0 \cdot x + 0 \cdot y = 9$

8. If (4, 19) is a solution of the equation y = px + 3, then the value of p is
(a) 3
(b) 4
(c) 5
(d) 6

9. If (0, y) is a solution of the equation 6x - y = 0, then the graph of this equation

- (*a*) passes through the origin
- (*b*) is parallel to the *x*-axis
- (c) is parallel to the *y*-axis

(*d*) is neither parallel to any of the coordinate axes nor passes through the origin
10. If (2, 0) is a solution of the linear equation 2x + 3y - k = 0, then the value of k is
(*a*) 6
(*b*) 4
(*c*) 2
(*d*) 5

Mathematics - Class 9

11. Any point on the line y = x is of the form

(a)
$$(a, a)$$
 (b) $(0, a)$ (c) $(a, 0)$ (d) $(a, -a)$

12. Any solution of the linear equation $3x + 0 \cdot y + 7 = 0$ in two variables is of the form

(a)
$$\left(n, \frac{-7}{3}\right)$$
 (b) $\left(\frac{-7}{3}, m\right)$ (c) $\left(0, \frac{-7}{3}\right)$ (d) $(-7, 0)$

where n and m are real numbers.

- **13.** The equation of *x*-axis is of the form
 - (a) x = 0 (b) x + y = 0
 - $(c) \quad y = 0 \qquad (d) \quad x = y$
- 14. Which statement is true about the graph y = 5?
 - (*a*) It goes through the origin (*b*) It is parallel to *x*-axis
 - (*c*) It is parallel to *y*-axis (*d*) It has an *x*-intercept
- **15.** The graph of x = 5 is a line
 - (a) parallel to x-axis at a distance of 5 units from the origin
 - (b) parallel to y-axis at a distance of 5 units from the origin
 - (c) making an intercept of 5 on the *y*-axis
 - (*d*) making an intercept of 5 on both the axes

16. The measure of angle between the graph lines of the equations y = 3 and x = 7 is (*a*) 0° (*b*) 45° (*c*) 90° (*d*) 75°

17. If a linear equation has solutions (0, 0), (-3, 3) and (3, -3), then it is of the form

- (a) y 2x = 0(b) x + y = 0(c) y - x = 0(d) x - y = 0
- (c) y x = 0 (u) x y = 0

18. The negative solutions of the equation ax + by + c = 0 always lie in the

- (a) 1st quadrant (b) 2nd quadrant
- (c) 3rd quadrant (d) 4th quadrant
- **19.** The point of the form (a, a) always lies on the
 - (a) x-axis (b) y-axis
 - (c) line y = x (d) line x + y = 0

20. Which of the following is a solution of the equation x + 2y = 7?

(a) x = 3, y = -5(b) x = 3, y = 5(c) x = 0, y = 7(d) x = 3, y = 2

[CBSE SP 2011]

- **21.** If we multiply or divide both sides of a linear equation with a non-zero number, then the solution of the linear equation
 - (a) changes
 - (b) remains the same
 - (c) changes in case of multiplication only
 - (d) changes in case of division only

[CBSE SP 2010]

22. How many linear equations in *x* and *y* can be satisfied by x = 3 and y = 1?

- (a) Only one(b) Two(c) Three(d) Infini
 - (*d*) Infinitely many
- **23.** The graph of 2x = 1 is parallel to the
 - (*a*) *x*-axis at a distance of 1 unit (*b*) *y*-axis at a distance of 1 unit (*c*) *x*-axis at a distance of $\frac{1}{2}$ unit (*d*) *y*-axis at a distance of $\frac{1}{2}$ unit

24. The graph of the linear equation 3x - y = 2 cuts the *y*-axis at the point (a) (0, 2) (b) (0, -2)

(c) (-2, 0) (d) (2, 0)

25. The graph of the linear equation x - 2y = 3 is a line which meets the *x*-axis at the point

(a) (3,0) (b) (0,3) (c) (-3,0) (d) (0,-3)

26. The distance between the graph lines of the equations x = 5 and x = -7 is

(*a*) 2 units
(*b*) 5 units
(*c*) 7 units
(*d*) 12 units
27. The *y*-intercept of the line *y* = *x* + 5 is

- (a) 0 (b) 5 (c) 2 (d) 3
- **28.** The linear equation 2x + cy = 8 has equal values of *x* and *y* for its solution when *c* is equal to

(a)
$$\frac{8+2x}{y}$$
, $y \neq 0$
(b) $\frac{8-2x}{y}$, $y \neq 0$
(c) $\frac{2-8x}{y}$, $y \neq 0$
(d) $\frac{2+8x}{y}$, $y \neq 0$

- **29.** The number of solution(s) of the equation 2x + 1 = x 3 on the number line and cartesian plane respectively are
 - (*a*) infinitely many solutions, one
 - (b) one, two
 - (c) two, one
 - (*d*) one, infinitely many solutions
- **30.** Linear equation such that each point on its graph has its ordinate equal to twice its abscissa is
 - (a) x + y = 2 (b) y = 2x (c) x = 2y (d) x y = 2
- **31.** Coordinates of the point on the graph of the linear equation 2x + 5y = 19, whose ordinate is $1\frac{1}{2}$ times its abscissa is
 - (a) (3, 2) (b) (2, 3) (c) $\left(2, \frac{5}{2}\right)$ (d) $\left(\frac{5}{2}, 2\right)$
- **32.** The ratio of the *x* and *y* intercepts made by the graph of the linear equation 2x + 3y = 9 on the *x*-axis and *y*-axis respectively is
 - $(a) \ 2:3 \qquad (b) \ 1:3 \qquad (c) \ 3:2 \qquad (d) \ 3:1$

- **33.** In the given figure, if OABC is a rectangle whose diagonals BO and CA intersect at M (2, 1), then the equations of the diagonals BO and CA respectively are
 - (a) x = 2y, x + 2y = 4
 - (b) x = y, x + y = 0
 - (c) 2x = y, 2x + y = 0
 - (d) x = 3y, x + 3y = 0
- 34. In the given figure, if ABCD is a square whose diagonals AC and BD intersect at M(3, 1) then the equations of the diagonals AC and BD respectively are
 - (a) x + y = 2, x y = 4
 - (b) x = 2y, x + y = 3
 - (c) 2x = y, x y = 3
 - (d) x y = 2, x + y = 4
- **35.** In the given figure, if ABCD is a square, then the diagonal AC divides it into two congruent triangles each of area
 - (a) 2 sq units
 - (b) 3 sq units
 - (c) 4 sq units
 - (d) 5 sq units

Chapter 5: Introduction to Euclid's Geometry

	MULTIPLE-CHOICE QUESTIONS				
Cho	ose the correct and	swer from the giver	n foi	ar options in the	e following questions:
1.	A pyramid is a so	lid figure, the base	of v	vhich is	
	(<i>a</i>) only a square		(b)	only a triangle	
	(c) only a rectang	le	(d)	any polygon	
2.	The side faces of a	a pyramid are			
	(a) squares	(b) triangles	(C)	polygons	(d) trapeziums
3.	In ancient India, t	he shapes of altars	use	d for household	rituals were
	(<i>a</i>) square and red	ctangular	(b)	square and circ	cular
	(c) triangular and	l rectangular	(d)	square and tria	ingular
4.	In ancient India, th	ne shapes of altars u	sed	for public worsl	nip were combinations
	of				
	(<i>a</i>) circles, square	s and rectangles	(b)	triangles, circle	es and rectangles
	(c) circles, trapezi	iums and squares	(<i>d</i>)	rectangles, tria	ngles and trapeziums
5.	The number of in	terwoven isosceles	tria	ngles in <i>sriyanti</i>	ra (in the Atharvaveda)
	15	(1) (1)			
	(<i>a</i>) seven	(<i>b</i>) eight	(C)	nine	(<i>a</i>) ten
6.	In Indus Valley C	ivilisation, the bric	ks t	used for constru	ictions were kiln fired
	$(a) 4 \cdot 3 \cdot 2$	$(h) 4 \cdot 4 \cdot 1$	(c)	$4 \cdot 2 \cdot 1$	$(d) 1 \cdot 2 \cdot 3$
7	Euclid divided bi	(b) 1.1.1	(с) Гha I	Flomente" into	(<i>u</i>) 1.2.0
7.	(a) 9 chapters	(h) 11 chapters	(c)	12 chapters	(d) 13 chapters
Q	Which of the follo	wing are known as	the	boundaries of	colide?
0.	(a) curves	(h) lines	(c)	points	(d) surfaces
0	The three stops fr	(b) mics	(C)		(a) surfaces
9.	(a) Solids-surface	oni sonus to points ps_lines_points	(h)	Solids_lines_st	urfaces-noints
	(c) Lines-points-	surfaces-solids	(d)	Lines-surfaces	-points-solids
10	The number of div	mensions a solid h	(n) as:	Lines surfaces	pointe conde
10.	(<i>a</i>) 0	(<i>b</i>) 1	(c)	2	(d) 3
11	The number of div	mensions a surface	has	-	
11.	(<i>a</i>) 1	(<i>b</i>) 2	(c)	3	(d) 0
12.	The number of di	mensions, a point h	nas:	-	
	(<i>a</i>) none	(b) 1	(c)	2	(<i>d</i>) 3
 8. 9. 10. 11. 12. 	 Which of the follo (<i>a</i>) curves The three steps from (<i>a</i>) Solids-surface (<i>c</i>) Lines-points-surface (<i>c</i>) Lines-points - surface (<i>a</i>) 0 The number of distribution (<i>a</i>) 1 The number of distribution (<i>a</i>) 1 The number of distribution (<i>a</i>) none 	wing are known as (b) lines om solids to points es-lines-points surfaces-solids mensions, a solid h (b) 1 mensions, a surface (b) 2 mensions, a point h (b) 1	 c) are: (b) (d) as: (c) as: (c) nas: (c) 	e boundaries of points Solids–lines–su Lines–surfaces 2 s: 3 2	solids? (<i>d</i>) surfaces urfaces–points –points–solids (<i>d</i>) 3 (<i>d</i>) 0 (<i>d</i>) 3

13.	The number of di	mensions, a line ha	s:	
	(<i>a</i>) 3	<i>(b)</i> 2	(c) 1	(<i>d</i>) 0
14.	Axioms are assum	ned		
	(a) definitions			
	(b) theorems			
	(c) universal trut	hs in all branches o	f mathematics	
	(<i>d</i>) universal trut	hs specific to geom	etry	
15.	Which of the follo	owing needs a proo	f?	
	(a) Axiom		(b) Theorem	
	(c) Definition		(d) Postulate	[CBSE SP 2010]
16.	Euclid stated that	if equals are subtrac	ted from equals, the	e remainders are equals
	in the form of			
	(<i>a</i>) an axiom	(<i>b</i>) a postulate	(c) a definition	(<i>d</i>) a proof
17.	Euclid stated that	all right angles are	e equal to each othe	r in the form of
	(<i>a</i>) an axiom	(b) a definition	(c) a postulate	(<i>d</i>) a proof
18.	'Lines are parallel	l if they do not inte	rsect' is stated in th	e form of
	(<i>a</i>) a definition	(b) an axiom	(c) a postulate	(<i>d</i>) a proof
19.	X is of the same ag	ge as Y. Z is also of t	he same age as Y. T	hen the Euclid's axiom
	that illustrates the	e relative ages of X	and Z is the	
	(a) first Axiom		(b) second Axiom	
	(c) third Axiom		(<i>d</i>) fourth Axiom	
20.	The interwoven is	sosceles triangles in	a <i>sriyantra</i> are arran	ged in such a way that
	the number of sul	bsidiary triangles tł	ney produce are	

(a) 40 (b) 43 (c) 45 (d) 50

Chapter 6: Lines and Angles

- **11.** In the given figure, $\angle AOC = 50^\circ$, then $\angle AOD + \angle COB$ is equal to
 - (a) 100°
 - (*b*) 140°
 - (c) 260°
 - (*d*) 130°
- **12.** In the given figure AB \parallel CD. Transversal PQ intersects AB at E and CD at F. Given, \angle CFQ = 47°, the measure of *x* and *y* respectively are

(a)	30°, 150°	(<i>b</i>) 37°, 143°
(C)	47°, 133°	(<i>d</i>) 39°, 141°

- **13.** In the given figure, $l \parallel m \parallel n$. If x : y = 5 : 4, then the measure of angle *z* is
 - (a) 40° (b) 50°
 - (c) 90° (d) 80°

14. In the given figure, AB || CD || EF and GH || KL. The measure of angle HKL is

(a)	95°	(b)	145°
(C)	130°	(<i>d</i>)	135°

- **15.** The measure of *x* in the given figure is
 - (a) 125° (b) 70° (c) 105° (d) 100°
 - (c) 105 (u) 100

16. In the given figure, if $l \parallel m$, then the value of *x* is

- (*a*) 18° (*b*) 72°
- (c) 54° (d) 100°

17. In the given figure, AB || CD and EF || BD. If $\angle ABD = 65^\circ$, then the measure of $\angle CFE$ is (*a*) 120° (*b*) 115°

(c) 65° (d) 165°

18. In the given figure, if $l \parallel m$, then the measure of *x* is

- (a) 70° (b) 100°
- (c) 40° (d) 30°

B

19. In the adjoining figure, if $l \parallel m$ and $n \perp m$, then the ► 1 measure of angle P is Р 138° (a) 48° (b) 42° **→** m (*d*) 38° (c) 90° **20.** In the given figure, if $l \parallel m$ then the measure of angle x is 1 58° (a) 65° (b) 40° (c) 25° (*d*) 90° 32 ►m 21. If two angles of a triangle are complementary, then it is (a) a right triangle (*b*) an obtuse angled triangle (*d*) an equilateral triangle (c) an acute angled triangle 22. An exterior angle of a triangle is 110° and its two opposite interior angles are equal. Each of these equal angles is (a) 70° (b) 55° (c) 35° (*d*) 110° [CBSE SP 2010] 23. The angles of a triangle are in the ratio 4 : 5 : 9. The triangle is (*a*) an isosceles triangle (*b*) an obtuse angled triangle (*c*) an acute angled triangle (*d*) a right triangle 24. An exterior angle is drawn to a triangle. If this exterior angle is acute, then the triangle must be (*a*) an acute angled triangle (*b*) a right triangle (*c*) an obtuse angled triangle (*d*) an equilateral triangle 25. If the measure of each base angle of an isosceles triangle is seven times the measure of the vertex angle, then the measure of the vertex angle is (b) 48° (a) 84° (c) 12° (*d*) 24° 26. If the vertex angle of an isosceles triangle is 80°, then the measure of an exterior angle to one of the base angles of this triangle is (a) 100°. (b) 120° (c) 110° (d) 130° Ρ Q A 50° **27.** In the given figure, if PQ || RS and $\angle ACS = 127^\circ$, then $\angle BAC$ is equal to (a) 53° (b) 77° 127 (c) 50° (*d*) 107° R B [CBSE SP 2010] **28.** The value of *x* in the given figure is 150° (a) 100° (b) 70° (c) 110° (d) 150° 110°

Mathematics - Class 9

29. The base BC of triangle ABC is produced both ways and the measures of exterior angles formed are 94° and 126°. Then, the measure of \angle BAC is (a) 94° (b) 54° 126 94° (c) 40° $(d) 44^{\circ}$ В **30.** The value of *x* in the given figure is (a) 65° (b) 95° (c) 80° (d) 120° 55 40 R **31.** If one of the angles of an isosceles triangle is 125° , then the angle between the bisectors of the other two angles is (a) 125.5° (b) 152.5° (c) 152° (*d*) 125° 32. $\triangle ABC$ is a right triangle in which $\angle A$ is a right angle. AL is drawn perpendicular to BC. If \angle BAL is 35°, then the measure of \angle ACB is (a) 70° (b) 17.5° (c) 35° (d) 105° 33. ABC is an equilateral triangle and BDC is an isosceles triangle right angled at D. $\angle ABD$ is equal to (*a*) 45° (*b*) 60° B (c) 105° (*d*) 120° [CBSE SP 2011] 34. The side BC of \triangle ABC is produced to point D. The 68 E bisectors of $\angle ABC$ and $\angle ACD$ meet at a point E. If \angle BAC = 68°, then the measure of \angle BEC is (a) 30° (b) 32° Ē (c) 36° (d) 34°

150

. 110°

97°

FΕ

35. In the given figure, if AB || CD, then the values of *x* and *y* respectively are

(a)	25°, 65°	(b)	60°, 30°
(C)	65°, 25°	(d)	40°, 50°

36. In the given figure, ABCD is a quadrilateral in which $\angle ABC = 73^\circ$, $\angle C = 97^\circ$ and $\angle D = 110^\circ$. If AE || DC and BE || AD and AE intersects BC at F, then the measure of $\angle EBF$ is

(a) 23° (b) 70° (c) 10°

(d) 27°

interior angles form a

(b) rhombus

(c) rectangle

(*d*) trapezium

(a) kite

46. ABC is a triangle in which BE \perp AC and CD \perp AB. BE and CD intersect at O. If \angle BAC=75°, then the measure of \angle BOC is

(a)	100°	(b)	105°
(C)	75°	(<i>d</i>)	115°

47. ABC is a right triangle, right angled at B. BC = BA. D is a point on AC produced and a line DEF cuts CB at E, AB at F. If ∠D = 13° and ∠FAE = 29° , then the measure of ∠FEA is

(a)	31°	(b)	42°
(C)	29°	(<i>d</i>)	16°

- **48.** In Δ XYZ, XY = XZ. A straight line cuts XZ at P, YZ at Q and XY produced at R. If YQ = YR and QP = QZ, then the measure of ∠PQY is
 - (a) 100°
 - (*b*) 124°
 - (c) 144°
 - (*d*) 140°

49. ABCD is a square. If AP = PQ and \angle QRC = 35°, then the measure of \angle PAQ is

- (a) 40°
- (*b*) 35°
- (c) 30°
- (*d*) 25°

50. In the given figure, if AB divides \angle DAC in the ratio

- 1 : 3, then the measure of angle marked x is
 - (*a*) 108°
 - (c) 80°

(b) 100°(d) 90°

Chapter 7: **Triangles**

MULTIPLE-0	CHOICE QUESTIONS -	
Choose the correct answer from the	given four options in the	following questions:
1. In \triangle ABC, if BC = AB and \angle B =	80° then $\angle A$ will be equa	ll to
(<i>a</i>) 80°	(<i>b</i>) 40°	
(c) 50°	(<i>d</i>) 100°	[CBSE SP 2012]
2. Two angles measure $(30 - a)^\circ$ an other then the value of <i>a</i> is	d $(125 + 2a)^{\circ}$. If each one is	s a supplement of the
(<i>a</i>) 45°	<i>(b)</i> 25°	
(c) 35°	(<i>d</i>) 65°	[CBSE SP 2012]
3. Choose the correct option:		
(a) A triangle has two right ang	gles.	
(b) All angles of a triangle are r	nore than 60°.	
(c) An exterior angle of a tria angle.	ngle is always greater th	an opposite interior
(<i>d</i>) All the angles of a triangle a	are less than 60°.	[CBSE SP 2010]
4. Which of the following is not a	criterion for congruence of	of triangles?
(a) SAS	(b) SSA	
(c) ASA	(d) SSS	[CBSE SP 2010]
5. In triangles ABC and DEF, $\angle A$ triangles congruent? If yes, by t	= ∠D, ∠B = ∠E and AB = which congruency criterio	EF, then are the two n?
(a) yes by AAS	(b) no	
(c) yes by ASA	(d) yes by RHS	[CBSE SP 2010]
6. In \triangle ABC and \triangle PQR, AB = AC, The two triangles are	$\angle C = \angle P$ and $\angle B = \angle Q$.	
(a) isosceles but not necessarily	congruent.	
(b) neither congruent nor isosce	eles.	
(c) isosceles and congruent.		
(<i>d</i>) congruent but not isosceles.		
The sides of a triangle are of le side cannot be	ngth 7 cm and 3.5 cm. Th	ne length of the third
(<i>a</i>) 3.6 cm	(<i>b</i>) 4.1 cm	
(c) 3.4 cm	(<i>d</i>) 3.8 cm	[CBSE SP 2010]
8. In triangles ABC and DEF, AB congruent by SAS axiom if	= DF and $\angle A = \angle D$. The	two triangles will be
(a) $BC = DE$	(b) $AC = EF$	
(c) $BC = EF$	(d) $AC = DE$	[CBSE SP 2011]

Mathematics - Class 9

(*d*) 60°

BE

Ċ

17. ABC is a triangle in which AB = AC. D is any point on AB. Through D, a line parallel to AC intersects BC at E. If DB=1.5 cm, then DE is equal to

- (a) 3 cm
- (c) 2.5 cm
- **18.** ABCD is a square. P, Q and R are points on the sides AB, BC and CD such that AP = BQ = CR and $\angle PQR = 90^{\circ}$. Then, the measure of $\angle RPQ$ is

(a)	60°	(b)	30°
(C)	45°	(d)	75°

- **19.** In the given figure, $BD \perp AC$ and $CE \perp AB$. If BD=CE=3.5 cm and AB = 5 cm, then the measure of AC is
 - (a) 3.5 cm
 - (b) 4.5 cm
 - (c) 5 cm
 - (*d*) 5.5 cm
- **20.** ABCD is a square. P is the mid-point of AB and Q is the mid-point of BC. If PD and AQ intersect at O, then the measure of ∠POQ is
 - (a) 100°
 - (c) 75°

(b) 90°(d) 60°

(*b*) 2 cm

(*d*) 1.5 cm

Chapter 8: Quadrilaterals

10. If bisectors of $\angle P$ and $\angle Q$ of a quadrilateral PQRS intersect each other at A, of $\angle Q$ and $\angle R$ at B, of $\angle R$ and $\angle S$ at C and of $\angle S$ and $\angle P$ at D, then ABCD is a (a) rectangle (b) rhombus (c) parallelogram (d) quadrilateral whose opposite angles are supplementary **11.** ABCD is a rhombus in which \angle BCD = 100°, then (*x* + *y*) equals (a) 40° (*b*) 60° (*d*) 70° [CBSE SP 2011] (c) 80° 100 **12.** ABCD is a parallelogram. If $\angle A = (3x - 20)^\circ$ and $\angle C = (x + 40)^\circ$, then the value of x is (a) 30 (b) 40 (c) 50 (d) 60**13.** D and E are the mid-points of the sides AB and AC respectively of \triangle ABC. DE is produced to F. To prove that DA is equal and parallel to FC, we need an additional information, which is (a) $\angle DAE = \angle EFC$ (b) AE = EF(*d*) $\angle ADE = \angle ECF$ (c) DE = EF14. ABCD is a parallelogram. If its diagonals are equal, then the measure of \angle ABC is (a) 60° (b) 90° (c) 75° (*d*) 120° 15. Diagonals AC and BD of a parallelogram ABCD intersect each other at O. If OA = 5 cm and OD = 4 cm, then the lengths of AC and BD respectively are (a) 5 cm, 4 cm (*b*) 10 cm, 8 cm (c) 2.5 cm, 2 cm (*d*) 15 cm, 12 cm 16. If the angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°, then the angles of the parallelogram are (*a*) 105°, 75°, 105°, 75° (*b*) 115°, 65°, 115°, 65° (c) 120°, 60°, 120°, 60° (*d*) 110°, 70°, 110°, 70° 17. In a parallelogram, if $\angle A = 60^\circ$, then $\angle D$ is equal to (a) 110° (b) 140° (*d*) 130° (c) 120° [CBSE SP 2011] **18.** One angle of a quadrilateral is 114° and the remaining three angles are equal. Then, the measure of each of the three equal angles is (c) 86° (a) 82° (b) 84° (*d*) 92° **19.** Given a trapezium PQRS such that PQ = 12 cm, RS = 5 cm, PQ \parallel SR, PS = QR = 8 cm. If $\angle R$ = 130°, then $\angle P$ is (a) 130° (b) 50° (c) 150° (*d*) 120° 20. In parallelogram ABCD, AB = 3 cm and the diagonals AC and BD are 5.8 cm and 4.2 cm respectively. If the diagonals AC and BD intersect at O, then the perimeter of $\triangle AOB$ is

((a)	10 cm	(<i>b</i>) 8.8 cr	n

(c) 7.2 cm (d) 8 cm

Mathematics - Class 9

21.	If an angle of a pa	rallelogram is four- ams are	fifths of its adjacen	t angle, then the angles
	(a) 70° 110° 70°	110°	(b) 80° 100° 80°	100°
	(a) 70° , 110° , 70° , (c) 72° , 108° , 72°	108°	$(d) 60^{\circ} 120^{\circ} 60^{\circ}$	120°
22	$ \begin{array}{c} (c) & f \ge c \\ \hline c \\ c \\$	uadrilatoral are (?r	(u) 000) 120) 000) + 20)° (3r - 30)° (r	$\pm 10^{\circ}$ and $(2r)^{\circ}$ Value
~~.	of x is		+20), $(3x - 30)$, $(x$	+ 10) and (2x) . Value
	(<i>a</i>) 40	(<i>b</i>) 45	(<i>c</i>) 50	(<i>d</i>) 55
23.	ABCD is a rectang	gle where $BC = (4x)$	-5) cm and AD = ((2x + 3) cm. Then, BC is
	(<i>a</i>) 11 cm		(b) 12 cm	
	(c) 10 cm		(<i>d</i>) 15 cm	
24.	In rhombus PQRS	5, PQ = 3x cm, QR =	= 2(x + 3) cm. Each	side of the rhombus is
	(<i>a</i>) 17 cm	(b) 19 cm	(c) 18 cm	(<i>d</i>) 28 cm
25.	ABCD is a rhomb angles of the rhom	ous in which altitud nbus are	le from D to side A	B bisects AB. Then the
	(<i>a</i>) 100°, 80°, 100°	°, 80°	(<i>b</i>) 110°, 70°, 110°	, 70°
	(c) 120°, 60°, 120°	°, 60°	(<i>d</i>) 130°, 50°, 130°	, 50°
26.	P is the mid-point $\angle BAP = \angle DAP$. If	t of side BC of a par f AD = 10 cm, then	rallelogram ABCD length of CD is	such that
	(<i>a</i>) 10 cm	(<i>b</i>) 5 cm	(<i>c</i>) 6 cm	(<i>d</i>) 8 cm
27.	ABCD is a paralle CD. PQ and diag diagonal AC is	elogram. P and Q a gonal AC intersect	re respectively the at M. If AM = 3 c	mid-points of AB and cm, then the length of
	(<i>a</i>) 3 cm	(<i>b</i>) 4.5 cm	(<i>c</i>) 6 cm	(<i>d</i>) 7.5 cm
28.	The diagonals A0 point O. If \angle BOA	C and BD of a para $= 68^{\circ}$ and \angle CAD =	allelogram ABCD : = 25°, then ∠DBC is	intersect each other at s equal to
	(<i>a</i>) 40°	(<i>b</i>) 43°	(c) 68°	(<i>d</i>) 25°
29.	In a parallelogram SR in A. PA and C	n PQRS, PQ = 9 cm QR produced meet	and PS = 5 cm. Th at B. Then, the leng	e bisector of ∠P meets gth of RB is
	(<i>a</i>) 5 cm	(<i>b</i>) 4 cm	(c) 9 cm	(<i>d</i>) 6 cm
30.	M is the mid-poor C parallel to MA then the length of	int of side CD of intersects AB at P DR is	a parallelogram A and DA produced	BCD. A line through l at R. If DA = 3.5 cm,
	(<i>a</i>) 3.5 cm	(<i>b</i>) 5 cm	(<i>c</i>) 7 cm	(<i>d</i>) 10.5 cm
31.	ABCD is a trapez and BC respective	ium in which AB ely. If AB = 12 cm, l	DC. M and N are MN = 14 cm, then t	the mid-points of AD he length of CD is
	(<i>a</i>) 16 cm	(b) 14 cm	(<i>c</i>) 12 cm	(<i>d</i>) 10 cm
32.	PQRS is a paralle PQ and SR. AS a respectively. The	elogram. A and B and BQ meet the d	are respectively th liagonal PR of leng is	ne mid-points of sides gth 12 cm at C and D
	(<i>a</i>) 6 cm	(<i>b</i>) 3 cm	(c) 4 cm	(<i>d</i>) 5 cm

33. The side AB of the parallelogram ABCD is produced to X and the bisector of \angle CBX meets DA produced and DC produced at E and F respectively. If DE=10 cm, then the length of DF is

- (a) 5 cm (b) 10 cm
- (c) 7.5 cm (d) 15 cm

34. If the diagonals of a rhombus are 18 cm and 24 cm respectively, then its side is equal to

- (a) 16 cm (b) 15 cm (c) 20 cm (d) 17 cm
- **35.** In $\triangle ABC$, $\angle A = 30^\circ$, $\angle B = 40^\circ$ and $\angle C = 110^\circ$. Then, the angles of the triangle formed by joining the mid-point of the sides of this triangle are
 - (a) $70^{\circ}, 70^{\circ}, 40^{\circ}$ (b) $60^{\circ}, 40^{\circ}, 80^{\circ}$
 - (c) 30°, 40°, 110°

(*d*) $60^{\circ}, 70^{\circ}, 50^{\circ}$

Chapter 9: Areas of Parallelograms and Triangles

MULTIPLE-CHOICE QUESTIONS — Choose the correct answer from the given four options in the following questions: 1. The median of a triangle divides it into two

- (*a*) equilateral triangles (*b*) isosceles triangles
- (c) right triangles (d) triangles of equal areas

[CBSE SP 2012]

- **2.** ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD
 - (*a*) is a rhombus (*b*) is a parallelogram
 - (*c*) is a rectangle (*d*) need not be any of (*a*), (*b*) or (*c*)
- **3.** Two parallelograms are on equal base and between the same parallels. The ratio of their areas is
 - (a) 1:2 (b) 2:1
 - (c) 1:1 (d) 3:1
- **4.** The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to
 - (a) $\operatorname{ar}(\Delta ABC)$ (b) $\frac{1}{2}$ $\operatorname{ar}(\Delta ABC)$ (c) $\frac{1}{3}$ $\operatorname{ar}(\Delta ABC)$ (d) $\frac{1}{4}$ $\operatorname{ar}(\Delta ABC)$
- 5. In the given figure, PQRS is a rectangle. If PS = 8 cm and SR = 4 cm, then the area of $\triangle ABC$ is
 - (a) 32 cm^2
 - (b) 12 cm^2
 - (c) 20 cm^2
 - (d) 16 cm^2
- **6.** ABCD is a square. DEGH is a rectangle. Two equal parallelograms on the base DE are
 - (a) DCFE and DCBA
 - (*b*) DEGC and DEFH
 - (c) ABCD and HDEG
 - (d) DEGH and DEFC

Mathematics - Class 9

- 7. In the given figure, the area of quadrilateral ABCD is
 - (a) 24 cm^2
 - (b) 13 cm^2
 - (c) 21 cm^2
 - (d) 42 cm^2

- (a) $\triangle ADC$
- (b) $\triangle BOA$
- (c) $\triangle AOD$
- (d) $\triangle COB$
- 9. ABCD is a parallelogram. If AB = 12 cm, AE = 7.5 cm, CF = 15 cm, then AD is equal to
 - (a) 6 cm
 - (b) 3 cm
 - (c) 10.5 cm
 - (*d*) 8 cm

10. ABCD is a parallelogram and E and F are mid-points of AD and BC respectively. P is any point on EF. If area of $\Delta EFC = 8 \text{ cm}^2$, then ar($\Delta AEP + \Delta BFP$) is

- (a) 16 cm^2
- (c) 4 cm^2 (d) 12 cm^2

11. PQRS is a parallelogram and A and B are any points on PQ and QR respectively. If $ar(\parallel gm PQRS) = 48 \text{ cm}^2$, then $ar(\Delta PBS) + ar(\Delta ASR)$ is equal to

(a) 24 cm^2 (b) 96 cm^2 (c) 36 cm^2 (d) 48 cm^2

- **12.** In the given figure, if $ar(||gm ABCD) = 29 \text{ cm}^2$ and AB = 5.8 cm, then the height of \parallel gm ABEF is
 - (a) 4.8 cm
 - (b) 6 cm
 - (c) 5 cm
 - (d) 5.8 cm

13. In the given figure, ABCD is a parallelogram. If $ar(\Delta BAP) = 10 \text{ cm}^2 \text{ and } ar(\Delta CPD) = 30 \text{ cm}^2$, then ar(||gm ABCD) is

(a) 40 cm^2

(b) 80 cm² (d) 100 cm^2

(c) 60 cm^2

- (b) 8 cm^2

- 14. ABCD is a square. P and Q are mid-points of AB and DC respectively. If AB = 8 cm, then $ar(\Delta BPD)$ is
 - (a) 16 cm^2
 - (b) 18 cm²
 - (c) 24 cm^2
 - (*d*) 32 cm²
- **15.** ABCD and ABEF are parallelograms. M is any point of EB. If ar(||gm ABCD) = 28 cm², then ar(Δ FAM) is
 - (*a*) 7 cm^2
 - (b) 14 cm²
 - (c) 21 cm²
 - (*d*) 28 cm^2
- PQR is a triangle. S is any point on a line through P parallel to QR. If T is any point on a line through R parallel to SQ, then the three triangles equal in area are
 - (a) $\triangle PQR$, $\triangle QSR$, $\triangle QST$
 - (b) $\triangle PQR$, $\triangle QSR$, $\triangle QRT$
 - (c) ΔQRT , ΔSRT , ΔQSR
 - (*d*) \triangle QSR, \triangle TSR, \triangle PQR
- **17.** ABCD is a trapezium with parallel sides AB = a cm and DC = b cm. E and F are the mid-points of the non-parallel sides. The ratio of ar(ABFE) to ar(EFCD) is
 - (a) a:b
 - (b) (a + 3b) : (3a + b)
 - (c) (3a + b) : (a + 3b)
 - (d) (2a + b) : (3a + b)
- In quadrilateral PQRS, M is the mid-point of PR. If ar(quad SMQR) is 18 cm², then ar (quad PQMS) is
 - (a) 24 cm²
 - (b) 18 cm²
 - (c) 12 cm^2
 - (*d*) 36 cm^2
- **19.** In the given figure, ABCD is a parallelogram and its area is 64 cm². If P is any point in the interior of $\|$ gm ABCD, then ar(Δ APD) + ar(Δ PBC) is equal to
 - (a) 64 cm^2
 - (b) 48 cm²
 - (c) 32 cm^2
 - (*d*) 16 cm^2

Μ

D

R

20. PQRS is a trapezium with PQ \parallel SR. A line parallel to PR intersects PQ at X and QR at Y. If ar(Δ PYR) = 5 cm², then ar(Δ PXS) is

- (a) 10 cm^2
- (*b*) 5 cm^2
- (c) 2.5 cm^2
- (d) 7.5 cm^2

21. D and E are mid-points of BC and AD respectively. If $ar(\Delta ABC) = 10 \text{ cm}^2$, then $ar(\Delta EBC)$ is

(a)	2.5 cm^2	<i>(b)</i>	10 cm ²
(C)	5 cm^2	(d)	7.5 cm ²

22. Points A, B, C and D are collinear. AB = BC = CD. XY || AD. If P and M lie on XY and $ar(\Delta MCD) = 7 \text{ cm}^2$, then $ar(\Delta APB)$ and $ar(\Delta APD)$ respectively are (*a*) 7 cm², 21 cm² (*b*) 7 cm², 14 cm²

(c) 14 cm^2 , 21 cm^2

(b) 7 cm^2 , 14 cm² (d) 14 cm², 14 cm² X

- *(a)* 14 cm , 14 cm
- **23.** In the given figure, if BC || AE, CD || BE, and $ar(\Delta BED) = 6 \text{ cm}^2$, then $ar(\Delta ABC)$ is (*a*) 6 cm^2 (*b*) 8 cm^2
 - (c) 10 cm^2 (d) 12 cm^2
- **24.** In the given figure, if ar (||gm ABEF) = ar (||gm ABCD) = 50 cm², AFGH is a parallelogram and points E, B, G and H are collinear points, then ar(||gm AFGH) is

(a)	25 cm^2	(b)	50 cm^2
(c)	100 cm ²	(<i>d</i>)	75 cm ²

25. PQRS is a parallelogram. A and B are any points on PQ and RQ respectively. If $ar(\Delta SBR) = 16 \text{ cm}^2$ and $ar(\Delta PBQ) = 8 \text{ cm}^2$, then the area of ΔRAS is (*a*) 8 cm^2 (*b*) 16 cm^2

(c) 24 cm^2 (d) 32 cm^2

26. ABCD is a parallelogram. P is any point on CD. If $ar(\Delta DPA) = 15 \text{ cm}^2$ and $ar(\Delta APC) = 20 \text{ cm}^2$, then $ar(\Delta APB)$ is (a) 15 cm^2 (b) 20 cm^2 (c) 35 cm^2 (d) 30 cm^2

27. M and N are the mid-points of sides DC and AB respectively, of a rectangle ABCD. If ar(rectangle ABCD) = 48 cm², then ar(Δ EMC) is A N B

- (a) 36 cm²
- (b) 48 cm²
- (c) 24 cm^2
- (*d*) 12 cm^2

Ĥ

- **28.** ABCD is a rectangle in which AB = 8 units and AD = 3 units. If DCEF is a parallelogram, then the area of Δ EFG in sq units is
 - (*a*) 16
 - (*b*) 6
 - (c) 24
 - (*d*) 12
- **29.** ABCD is a quadrilateral. A line through D, parallel to AC meets BC produced at E. If $ar(\Delta ABE) = 36 \text{ cm}^2$, then the ar(quad ABCD) is
 - (*a*) 18 cm²
 - (b) 36 cm²
 - (c) 72 cm^2
 - (*d*) 9 cm^2

30. In the given figure, ABCD and AGEF are parallelograms. If $ar(\|gm AGEF) = 27 \text{ cm}^2$, then $ar(\Delta ADG) + ar(\Delta GCB)$ is

- (a) 13.5 cm^2
- (*b*) 27 cm^2
- (c) 9 cm^2
- (d) 18 cm^2

31. ABCD is a trapezium in which AB || DC. A line through A parallel to BC meets diagonal BD at P. If $ar(\Delta BPC) = 5 \text{ cm}^2$, then $ar(\Delta ABD)$ is

- (a) 5 cm^2
- (*b*) 2.5 cm²
- (c) 7.5 cm^2
- (*d*) 10 cm^2
- **32.** PQRS and ADEQ are rectangles. RE \parallel AP. If ar(ACPQ) = 25 cm² and ar(ABEP) = 10 cm², then ar(PQRS) is
 - (*a*) 25 cm^2
 - (*b*) 10 cm²
 - (c) 35 cm^2
 - (*d*) 30 cm²
- **33.** ABCD is a parallelogram. O is any point on diagonal BD. If $ar(\Delta DOP) = 8 \text{ cm}^2$, $ar(\Delta BOS) = 3 \text{ cm}^2$ and $ar(\Delta APS) = 6 \text{ cm}^2$, then $ar(\|gm \ ABCD)$ is
 - (*a*) 33 cm²
 - (b) 45 cm^2
 - (c) 46 cm^2
 - (d) 34 cm^2

- (a) 130 cm^2
- (c) 120 cm^2

- (b) 160 cm^2
- (d) 90 cm^2

42. In the given figure, QA = AB = BC = CR. If $ar(\Delta PQR) = 24 \text{ cm}^2$, then $ar(\Delta PAR)$ is (*a*) 18 cm² (*b*) 12 cm² (c) 20 cm^2 R (d) 16 cm^2 43. ABCD is a parallelogram. M is any point on AD. Р P is the mid-point of BM. If the area of parallelogram ABCD = 28 cm², then the area of \triangle MPC is (*b*) 12 cm² (a) 14 cm^2 (c) 7 cm^2 (d) 16 cm^2 D 44. P is any point on the base BC of \triangle ABC. D is the mid-point of BC. DE is drawn parallel to E PA. If $ar(\Delta ABC) = 12 \text{ cm}^2$, then $ar(\Delta EPC)$ is (a) 4 cm^2 (b) 8 cm^2 (*d*) 6 cm^2 (c) 9 cm^2 [Hint: Join AD] P 45. ABC is a triangle in which D is the mid-point of BC. E and F are mid-points of DC and AE respectively. If ar ($\triangle ABC$) = 16 cm², then ar($\triangle DEF$) is (a) 2 cm^2 (b) 1 cm^2 (c) 4 cm^2 (*d*) 8 cm^2 B

Chapter 10: Circles

is equal to (*a*) 75° (*b*) 120°

(c) 100° (*d*) 80°

9. In the given figure, if $OA = $	5 cm, $AB = 8 cm$ and OD is	
(a) 2 and	J is equal to	(
(a) 2 cm		\rightarrow
(b) 3 cm		
(c) 4 cm		
(<i>d</i>) 5 cm		
10. If ABCD is a cyclic trapezium	\mathfrak{n} in which AD \parallel BC and	A
$\angle B = 60^\circ$, then $\angle BCD$ is equa	l to	
(<i>a</i>) 120°	(<i>b</i>) 100°	BK60
(<i>c</i>) 80°	(<i>d</i>) 60°	-
11. If a straight line APQB is d circles, then	rawn to cut two concentric	
(a) $AP > BQ$	(b) $AP = BQ$	
(c) $AP < BQ$	(d) $AQ > PB$	
12. If AB = 12 cm, BC = 16 cm an	d AB is perpendicular to BC,	A CP
then the radius of the circle p	assing through the points A, B	and C is
(<i>a</i>) 8 cm	(b) 6 cm	
(c) 12 cm	(<i>d</i>) 10 cm	Ç
13. The value of x in the given fig	gure is	
(a) 35°		A (
(<i>h</i>) 45°		x
$(c) 25^{\circ}$		
$(d) 30^{\circ}$		
14 In the given figure if $\langle BAC \rangle$	$= 25^{\circ}$ then $\angle BOC$ is equal to	
(a) 25°	= 20, men 2000 is equal to	
(u) 23		AL,
(b) 50		
(t) = 00		
(u) 125 ⁻ 15 In the given figure if (ΔDC)	-110° then the massure of	
/BDC is	= 110, then the measure of	
2000 13		AF
$\begin{array}{c} (u) \angle \angle \\ (b) 28^{\circ} \end{array}$		
(U) 20		
$(U) 32^{-}$		
(<i>a</i>) 38°		
16 ABCID is a parallelogram A d	ircle passes through A and D	

16. ABCD is a parallelogram. A circle passes through A and D and cuts AB at E and DC at F. If \angle BEF = 80°, then \angle ABC

0 ΈB D

39

- **17.** If a chord of a circle is equal to its radius, then the angle subtended by this chord in major segment is
 - (*a*) 90°

(c) 45°

- (*b*) 60° (*d*) 30°
- 18. In the given figure, PQ and RS are two equal chords of a circle with centre O. OA and OB are perpendiculars on chords PQ and RS, respectively. If ∠AOB = 140°, then ∠PAB is equal to
 - (a) 50° (b) 70°
 - (c) 60° (d) 40°
- **19.** In the given figure, AD is the diameter of the circle and AE = DE. If $\angle ABC = 115^\circ$, then the measure of $\angle CAE$ is (*a*) 60° (*b*) 80°
 - (a) 30° (b) 30° (c) 70° (d) 90°
- **20.** In the given figure, if $\angle ABC = 50^{\circ}$ and $\angle BDC = 40^{\circ}$, then $\angle BCA$ is equal to
 - (a) 100° (b) 40° (c) 90° (d) 50°

21. In the given figure, AC is a diameter of the given circle and \angle BCD = 75°. Then, \angle EAF – \angle ABC is equal to

(a) 10° (b) 15° (c) 20° (d) 25°

22. In the given figure, O is the centre of the circle. ∠OAB and ∠OCB are 40° and 30° respectively. Then, the measure of ∠AOC is

- (*a*) 120° (*b*) 140°
- (c) 170° (d) 110° [CBSE SP 2010]

23. If $\angle OAB = 40^\circ$, then the measure of $\angle ACB$ is

- (a) 40° (b) 80° (c) 50°
- (c) 50° (d) 20°

24. BC is a diameter of the circle and $\angle BAO = 60^{\circ}$. Then $\angle ADC$ is equal to

- (a) 60° (b) 45°
- (c) 30° (d) 90°

25. In the given figure, O is the centre of the circle and $\angle CBE = 25^{\circ}$ and $\angle DEA = 60^\circ$. The measure of $\angle ADB$ is (a) 90° (*b*) 85° ň (c) 95° (*d*) 120° [CBSE SP 2010] **26.** In the given figure, if $\angle CAB = 50^{\circ}$ and $\angle CBA = 70^{\circ}$, then ∠ADB is equal to (a) 80° (b) 60° ′50° (c) 50° (*d*) 70° 27. ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and $\angle ADC = 140^\circ$, then $\angle BAC$ is equal to (b) 50° (a) 30° (c) 40° (d) 60° **28.** In the given figure, $\angle ABC = 45^\circ$, then the measure of ∠AOC is (a) 45° (b) 90° (c) 60° (d) 75° **29.** O is the centre of the given circle. If $\angle APB = 120^{\circ}$ and $\angle DBC = 25^\circ$, then the measure of $\angle ADB$ is equal to (b) 60° (a) 120° ò (c) 100° (*d*) 95° 30. In the given figure, O is the centre of the circle. If \angle DBA = 35°, then the measure of \angle ACB is equal to (*a*) 35° (b) 45° (c) 55° (*d*) 65° **31.** In the given figure, if $\angle CDB = 40^\circ$, then the measure of $\angle PAC$ is 240 (a) 160° (b) 120° (c) 100° (*d*) 140° 32. The given figure shows two intersecting circles. If $\angle ABC = 75^\circ$, then the measure of $\angle PAD$ is (a) 125° (b) 150° (c) 75° (*d*) 105°

70

B

75

33. In the given figure, chords AB and CD intersect at P. If \angle DPB = 88° and \angle DAP = 46°, then the measure of \angle ABC is

- (a) 48°
- (*b*) 42°
- (c) 46°
- (*d*) 44°
- **34.** In the given figure, O is the centre of the circle. ABE is a straight line. If $\angle DBE = 95^\circ$, then $\angle AOD$ is equal to
 - (a) 170°
 - (b) 190°
 - (c) 180°
 - (d) 175°
- **35.** AOB is the diameter of the circle. If $\angle AOE = 150^\circ$, then the measure of $\angle CBE$ is
 - (a) 105° (b) 120°
 - (c) 125° (d) 115°
- 36. The region between a chord and either of the arc is called
 - (a) a segment (b) a semicircle
 - (*c*) a quarter circle (*d*) a sector

37. In the given figure, AB is a side of a regular five sided polygon and AC is a side of a regular six sided polygon inscribed in the circle with centre O. AO and CB intersect at P, then ∠APB is equal to

- (a) 100° (b) 72°
- (c) 96° (d) 90°

38. AOB is a diameter of the circle and C, D, E are any three points on the semicircle. Then, ∠AED + ∠BCD is equal to (*a*) 25°
(*b*) 260°

- (c) 270° (d) 280°
- **39.** What fraction of the whole circle is minor arc RP in the given figure?
 - (a) $\frac{1}{2}$ of the circle(b) $\frac{1}{4}$ of the circle(c) $\frac{1}{3}$ of the circle(d) $\frac{1}{5}$ of the circle

40. In the given circle, O is the centre and $\angle BDC = 42^\circ$. Then, $\angle ACB$ is equal to

- (a) 42° (b) 48°
- (c) 58° (d) 52°

- **41.** In the given figure, AB \parallel CD and O is the centre of the circle. If $\angle ADC = 25^\circ$, then the measure of $\angle AEB$ is
 - (a) 80° (b) 50° (c) 25° (d) 40°
- **42.** In the given figure, $\angle OPQ = 30^{\circ}$ and $\angle ORQ = 57^{\circ}$. Then, the measure of $\angle POR$ is
 - (a) 33° (b) 57° (c) 66° (d) 54°
- **43.** In the given figure, O is the centre of the circle and \angle SPQ = 50°. Then, the measure of \angle SRQ is
 - (*a*) 100° (*b*) 130°
 - (c) 120° (d) 110°

44. In the given figure, M, A, B and N are points on a circle having centre O. AN and MB cut at Y. If ∠NYB = 50° and ∠YNB = 20°, then reflex ∠MON is equal to

- (a) 200° (b) 220° (c) 240°
- **45.** In the given figure, ABCD is a cyclic quadrilateral, \angle CBQ = 48° and *a* = 2*b*. Then, *b* is equal to
 - (a) 48°
 - $(b) \ 38^\circ$
 - (c) 28°
 - (*d*) 18°

46. In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E. If $\angle ADE = 95^{\circ}$ and $\angle OBA = 30^{\circ}$, then $\angle OAC$ is equal to

- (a) 10° (b) 5°
- (c) 15° (d) 20°

47. In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, the measure of ∠DPC is
(*a*) 94°
(*b*) 90°

(c) 92° (d) 105°

48. AD is a diameter of a circle and AB is a chord. If AD = 50 cm, AB = 48 cm, then the distance of AB from the centre of the circle is

- (a) 5 cm (b) 6 cm
- (c) 7 cm (d) 8 cm

49. The given figure shows two congruent circles with centre O and O' intersecting at A and B. If $\angle AO'B = 50^{\circ}$, then the measure of $\angle APB$ is

- (a) 50° (b) 40° (c) 25° (d) 45°
- **50.** In the given figure, if $\angle CAB = 49^{\circ}$ and $\angle ADC = 43^{\circ}$, then the measure of $\angle ACB$ is

(*d*) 88°

- (a) 96° (b) 74°
- (c) 92°

51. P is a point on the diameter AB of a circle and CD is a chord perpendicular to AB. If AP = 4 cm and PB = 16 cm then the length of chord CD is

- (a) 20 cm (b) 10 cm (c) 8 cm (d) 16 cm
- **52.** In the given figure, if $\angle AOB = 80^{\circ}$ and $\angle ABC = 30^{\circ}$, then $\angle CAO$ is equal to
 - (a) 30° (b) 80°
 - (c) 60° (d) 40°

53. In the given figure, AB is a diameter of the circle APBR. APQ and RBQ are straight lines. If $\angle A = 35^{\circ}$ and $\angle Q = 25^{\circ}$, then the measure of $\angle PBR$ is

- (a) 135° (b) 115°
- (c) 155° (d) 165°
- 54. In the given figure, P and Q are centres of two circles intersecting at B and C. ACD is a straight line. Then, the measure of ∠BQD is
 - (a) 115° (b) 150° (c) 105° (d) 130°
- **55.** The figure shows two circles which intersect at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. If $\angle APB = 70^{\circ}$, then the measure of $\angle ACB$ is
 - (a) 50° (b) 60°
 - (c) 70° (d) 40°

Chapter 11: **Constructions**

——— MULTIPLE-CHO	ICE QUESTIONS ———
Choose the correct answer from the given	n four options in the following questions:
1. With the help of a ruler and compas	s, it is possible to construct an angle of
(<i>a</i>) 40°	(<i>b</i>) 65°
(<i>c</i>) 37.5°	(<i>d</i>) 50°
2. With the help of a ruler and compass	, it is not possible to construct an angle of
(<i>a</i>) 7.5°	(<i>b</i>) 82.5°
(c) 35°	(<i>d</i>) 67.5°
3. The construction of ΔABC in which <i>A</i> difference of BC and AC is equal to	$AB = 5 \text{ cm}, \angle A = 75^{\circ} \text{ is not possible when}$
(<i>a</i>) 4.5 cm	(b) 5.5 cm
(c) 4 cm	(<i>d</i>) 3.5 cm
4. The construction of \triangle ABC, given that the difference of AB and AC is equal	$BC = 5 \text{ cm}, \angle B = 60^{\circ} \text{ is not possible when}$ to
(<i>a</i>) 3 cm	(b) 4 cm
(c) 4.2 cm	(<i>d</i>) 5.9 cm
5. The construction of a triangle ABC, g when the difference of AB and AC is	given that BC = 3 cm, \angle C = 60° is possible sequal to
(<i>a</i>) 3.1 cm	(<i>b</i>) 3 cm

(c) 2.8 cm (d) 3.2 cm

Chapter 12: Heron's Formula

		MULTIPLE-CHO	ICE QUESTIONS	
Cho	ose the correct an	swer from the give	n four options in th	ne following questions:
1.	The area of a tria	ngle with base 8 cm	and height 10 cm	is
	(a) 80 cm ²	(b) 40 cm^2	(c) 20 cm^2	(<i>d</i>) 18 cm^2
2.	The sides of a tria	angle are 12 cm, 16	cm and 20 cm. Its a	area is
	(a) 48 cm^2	(<i>b</i>) 120 cm ²	(c) 96 $\rm cm^2$	(<i>d</i>) 160 cm ²
				[CBSE SP 2012]
3.	The area of a tria	ngle whose sides ar	e 3 cm, 4 cm and 5	cm is
	(a) 42 cm^2	(<i>b</i>) 6 cm^2	(c) 84 cm^2	(d) 100 cm^2
				[CBSE SP 2012]
4.	If the perimeter o	of an equilateral tria	ngle is 24 m, then	its area is
	(a) $20\sqrt{3}$ m ²	(b) $16\sqrt{3} \text{ m}^2$	(c) $8\sqrt{3}$ m ²	(d) $24\sqrt{3}$ m ²
5.	If the area of an triangle is	equilateral triangle	e is $16\sqrt{3}$ cm ² , the	en the perimeter of the
	(<i>a</i>) 12 cm	(b) 24 cm	(c) 48 cm	(<i>d</i>) 36 cm
				[CBSE SP 2013]
6.	The edges of a tri it at the rate of 70	angular board are 6) paise per cm ² is	5 cm, 8 cm and 10 c	m. The cost of painting
	<i>(a)</i> ₹ 7	<i>(b)</i> ₹ 16.80	(c) ₹17	(<i>d</i>) ₹ 16
7.	The perimeter of area is	a rhombus is 20 cr	n. If one of its diag	gonals is 6 cm, then its
	(a) 28 cm^2	(b) 36 cm^2	(c) 24 cm^2	(<i>d</i>) 20 cm^2
8.	An isosceles right	t triangle has area 8	cm ² . The length of	f the hypotenuse is
	(<i>a</i>) 6 cm	(<i>b</i>) $\sqrt{32}$ cm	(c) 8 cm	(<i>d</i>) 4 cm
9.	The area of an is equal sides 20 cm	osceles triangle hav 1 is	ving base 24 cm ar	nd length of one of the
	(a) 480 cm^2	(<i>b</i>) 196 cm ²	(c) 240 $\rm cm^2$	(<i>d</i>) 192 cm^2
10.	10. The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3 : 2. Then area of the triangle is			
	(<i>a</i>) $32\sqrt{2}$ cm ²	(b) 32 cm^2	(c) $16\sqrt{2}$ cm ²	(<i>d</i>) 16 cm^2
11.	11. If the perimeter and base of an isosceles triangle are 11 cm and 5 cm respectively, then its area is			
	(a) $5\sqrt{11}$ cm ²	(b) $\frac{5}{2}\sqrt{11}$ cm ²	(c) $\frac{5}{8}\sqrt{11}$ cm ²	(d) $\frac{5}{4}\sqrt{11}$ cm ²
12.	If the difference ΔABC are 8 cm, 7	petween the semi-p cm and 6 cm respe	erimeter 's' and the ectively, then $ar(\Delta A)$	e sides ' a ', ' b ' and ' c ' of ABC) is

- (a) 63 cm^2 (b) 42 cm^2 (c) 84 cm^2 (d) 168 cm^2
- **13.** The sides of a triangle are 13 cm, 14 cm and 15 cm. The length of the shortest altitude is
 - (a) 12 cm (b) 11.2 cm (c) 12.9 cm (d) 11.9 cm
- **14.** The sides of a triangle are 17 cm, 25 cm and 26 cm. The length of the altitude to the longest side correct up to two places of decimals is
 - (a) 16.32 cm (b) 34.00 cm
 - (c) 15.69 cm (d) 24.00 cm
- **15.** If the perimeter of a rhombus whose diagonals measure 12 cm and 16 cm is equal to the perimeter of an isosceles triangle having its equal side and the base in the ratio 3 : 2, then the area of the isosceles triangle is
 - (a) $50\sqrt{2}$ cm² (b) $25\sqrt{2}$ cm² (c) $75\sqrt{2}$ cm² (d) $100\sqrt{2}$ cm²

Chapter 13: Surface Areas and Volumes

	MULTIPLE-CHOICE QUESTIONS			
Cho	ose the correct and	swer from the giver	n four options in the	e following questions:
1.	The total surface a	area of a cube is 96	cm ² . The volume o	f the cube is
	(<i>a</i>) 27 cm^3	(<i>b</i>) 64 cm^3	(c) 8 cm^3	(<i>d</i>) 512 cm ³
2.	The number of cul	bes whose edge mea	asures 3 cm, that car	be formed by melting
	a cubic block of m	netal of edge 15 cm	is	
	(<i>a</i>) 125	(<i>b</i>) 45	(c) 75	(<i>d</i>) 135
3.	The difference be lateral surface are	tween the total sur a is	rface area of a cube	e of side 4 cm and its
	(a) 16 cm^2	(<i>b</i>) 20 cm ²	(c) 32 cm^2	(<i>d</i>) 24 cm^2
4.	The volume of a c	ube whose diagona	al is $2\sqrt{3}$ cm is	
	(a) 8 cm^3		(b) 4 cm^3	
	(c) $8\sqrt{3}$ cm ³		(<i>d</i>) $4\sqrt{3}$ cm ³	
5.	The number of pl in a pit which is 2	anks of dimensions 0 m long, 6 m wide	s (5 m × 25 cm × 10 s and 80 cm deep is	cm) that can be placed
	(a) 764	(b) 840	(c) 768	(<i>d</i>) 960
6.	6. The number of 6 m cubes that can be formed from another cuboid measuring $18 \text{ m} \times 12 \text{ m} \times 9 \text{ m}$ is			
	(a) 9	(<i>b</i>) 10	(c) 12	(<i>d</i>) 15
7.	The length of the l and 8 m high is	longest rod that can	be placed in a room	n 12 m long, 9 m broad
	(a) 15 m	(<i>b</i>) 20 m	(c) 18 m	(<i>d</i>) 17 m
8.	The edge of a cu dimensions 36 cm	ıbe whose volume 1 × 75 cm × 80 cm is	is equal to the vo	olume of a cuboid of
	(<i>a</i>) 48 cm	(<i>b</i>) 60 cm	(c) 36 cm	(<i>d</i>) 42 cm
9.	9. A rectangular pit of dimensions $30 \text{ m} \times 15 \text{ m} \times 12 \text{ m}$ is dug and the earth taken out is disposed of in a carrier which can carry a maximum load of 540 m^3 of earth. The least number of rounds the carrier had to make to dispose of the earth dug out is			
	(<i>a</i>) 20	(<i>b</i>) 10	(c) 15	(<i>d</i>) 12
10.	A granary is in the grain occupies a substored in the grane	ne shape of a cuboi pace of 0.48 m ³ , the ranary is	d of size 16 m × 12 en the maximum nu	$2 \text{ m} \times 9 \text{ m}$. If a bag of imber of bags that can
	(<i>a</i>) 1800	(<i>b</i>) 3600	(c) 2400	(<i>d</i>) 3000

11.	When a cuboid of into cubes of edge	dimensions 30 cm : e 3 cm, then the nur	× 30 cm × 42.6 cm is mber of cubes form	s melted and converted red is
	(<i>a</i>) 2840	(<i>b</i>) 2130	(c) 1420	(<i>d</i>) 710
12.	The volume of a 7 cm, then its heig	right circular cylinc ght is	ler is 2310 cm ³ . If t	he radius of its base is
	(<i>a</i>) 7.5 cm	(<i>b</i>) 22.5 cm	(c) 15 cm	(<i>d</i>) 30 cm
13.	If a square paper surface area is	r of side 25 cm is r	olled to form a cyl	inder, then its curved
	(a) 625 cm^2	(b) 500 cm ²	(c) 250 cm^2	(d) 1000 cm^2
14.	The curved surface	ce area of a well of	diameter 3.5 m and	l depth 10 m is
	(<i>a</i>) 135 m ²	(<i>b</i>) 35 m ²	(c) 70 m^2	(<i>d</i>) 110 m ²
15.	The curved surface and height 3 m is	ce area of a cylinde	r whose circumfere	ence of the base is 22 m
	(<i>a</i>) 66 m^2	(<i>b</i>) 132 m ²	(c) 33 m ²	(<i>d</i>) 99 m ²
16.	If the outer diame area is	eter of a pipe 21 m	long is 1 m, then it	s outer curved surface
	(a) 21 m^2	(<i>b</i>) 63 m ²	(c) 66 m^2	(<i>d</i>) 42 m^2
17.	The cost of cemer 2 m at the rate of	nting the inner curv ₹ 2 per m ² is	ved surface of a 14	m deep well of radius
	<i>(a)</i> ₹ 352	<i>(b)</i> ₹ 56	(c) ₹112	(<i>d</i>) ₹ 176
18.	The diameter of the 14 cm is	he base of a cylinder	r of curved surface	area 88 cm ² and height
	(<i>a</i>) 1 cm	(<i>b</i>) 2 cm	(c) 1.5 cm	(<i>d</i>) 2.5 cm
19.	The total surface a is	area of a right circul	ar cylinder of heigh	nt 4 cm and radius 3 cm
	(a) 132 cm^2	(<i>b</i>) 66 cm ²	(c) 198 cm^2	(<i>d</i>) 99 cm ²
20.	If the lateral surfa base diameter is	ace area of a cylinde	r is 132 cm ² and its	height is 7 cm, then its
	(<i>a</i>) 5 cm	(<i>b</i>) 3 cm	(c) 6 cm	(<i>d</i>) 4 cm
21.	The circumference surface area is 96	te of the base of a rig 8 cm ² , then the sum	ght circular cylinde of its height and r	er is 44 cm. If its whole adius is
	(<i>a</i>) 16 cm	(b) 18 cm	(c) 20 cm	(<i>d</i>) 22 cm
22.	The curved surf circumference of	ace area of a righ its base is 110 cm, t	nt circular cylinde hen its height is	er is 4400 cm ² . If the
	(<i>a</i>) 36 cm	(<i>b</i>) 38 cm	(c) 40 cm	(<i>d</i>) 42 cm
23.	A cylindrical piece edge 4 cm. Then,	ce of maximum vol the maximum volu	ume has to be cut me of the iron cylii	out of an iron cube of nder is
	(a) $32\pi \text{ cm}^3$	(<i>b</i>) $24\pi \text{ cm}^3$	(c) $16\pi \text{ cm}^3$	(<i>d</i>) $28\pi \text{ cm}^3$

24. If each bag containing rice occupies 2.1 m³ of space, then the number of full bags which can be emptied into a drum of radius 4.2 m and height 3.5 m is
(*a*) 69 (*b*) 46 (*c*) 92 (*d*) 138

25. If the radius of the base of a right circular cylinder is halved, keeping the same height, then the ratio of the volume of the reduced cylinder to the volume of the original cylinder is

(a)
$$1:4$$
 (b) $4:1$ (c) $1:2$ (d) $2:1$

26. A cylindrical vessel of radius 16 cm contains water to a depth of 30 cm. If a spherical ball of brass is dropped into it and the water rises by 9 cm, then the radius of the ball is

(a)
$$12 \text{ cm}$$
 (b) 15 cm (c) 8 cm (d) 18 cm

27. The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio of 5 : 3. The ratio of their volumes is

(a) 20:27 (b) 20:37 (c) 17:27 (d) 10:17

28. The volume of a sphere of diameter 42 cm is
(*a*) 38000 cm³
(*b*) 34000 cm³

(c)
$$30000 \text{ cm}^3$$
 (d) 38808 cm^3

29. The surface area of a sphere of radius 3.5 cm is $(x) = \frac{1}{2} \frac{1}{2}$

(a) 77 cm^2 ((b) 154 cm^3	(c) 154 cm^2	(<i>d</i>) 120 cm^2
-------------------------	------------------------	------------------------	---------------------------------

30. The volume of a sphere is numerically equal to its surface area, then its diameter is

(a) 6 units (b) 3 units (c) 1 unit (d) 2 units

[CBSE SP 2011]

- **31.** A cube of side 4 cm contains a sphere touching its sides. Find the approximate volume of the gap in between.
 - (a) 33 cm^3 (b) 30.48 cm^3 (c) 33.52 cm^3 (d) 34 cm^3

32. The ratio of the radii of two spheres whose volumes are in the ratio 64 : 27 is *(a)* 16 : 9 *(b)* 8 : 3 *(c)* 10 : 7 *(d)* 4 : 3

33. Given that the surface area of a spherical shot-put is 616 cm², its diameter is *(a)* 12 cm *(b)* 14 cm *(c)* 16 cm *(d)* 18 cm

- **34.** If a sphere of radius 3 cm is melted and recast into a right circular cone of height 3 cm, then the radius of the base of the cone is
 - (a) 27 cm (b) 3 cm (c) 6 cm (d) 9 cm
- **35.** If a spherical balloon grows to twice its radius when inflated, then the ratio of the volume of the inflated balloon to the original balloon is

(a) 8:1 (b) 4:1 (c) 6:1 (d) 5:1

- **36.** If the total surface area of a hemisphere is 1848 cm^2 , then its diameter is
 - (a) 22 cm (b) 26 cm (c) 28 cm (d) 24 cm

37. The total surface	area of a cone of ra	adius 2 <i>r</i> and slant h	height $\frac{l}{2}$ is
(a) $2\pi r(l+r)$	(b) $\pi r \left(l + \frac{r}{4} \right)$	(c) $\pi r(4r+l)$	(<i>d</i>) $2\pi r$ [CBSE SP 2010]
38. The total surface	area of a cone of ra	adius 7 m and slant	height 10 m is
(<i>a</i>) 374 m ²	(b) 598.4 m^2	(c) 561 m ²	(d) 280.5 m^2
39. The volume of a	cone is 1570 cm^3 . If	f it is 15 cm high th	en its base area is
(a) 415 cm^2	(<i>b</i>) 413 cm ²	(c) 314 cm^2	(<i>d</i>) 514 cm ²
40. If the slant heigh	nt of a cone of base i	radius 7 cm is 25 cr	n, then its height is
(<i>a</i>) 32 cm	(<i>b</i>) 24 cm	(c) 18 cm	(<i>d</i>) 36 cm
41. The diameter of	the base of a cone o	of height 15 cm and	volume 770 cm ³ is
(<i>a</i>) 7 cm	(<i>b</i>) 14 cm	(c) 21 cm	(<i>d</i>) 10.5 cm
42. A conical tent is	21 m high and the	diameter of its base	e is 4 m. If 10 men sleep
in it, then the av	erage number of cu	bic dm of air space	per man is
(a) 4400	(<i>b</i>) 8800	(c) 8400	(<i>d</i>) 4800
43. A conical panda	l 240 m in radius a	and 100 m high is a	made of cloth which is
100π m wide. Th	en, the length of clo	oth used to make th	ne pandal is
(<i>a</i>) 625 m	(<i>b</i>) 676 m	(c) 600 m	(<i>d</i>) 624 m
44. The curved surfa	ace area of a cylind	er and a cone is eq	ual. If their base radius
is same, then the	ratio of the slant her	ight of the cone to th	te neight of the cylinder
$(a) 2 \cdot 3$	(<i>b</i>) $1 \cdot 1$	$(c) 2 \cdot 1$	$(d) 1 \cdot 2$
45 If the ratio of the	radii of bases of two	(0) = 1	the ratio of their heights
is 1 : 3, then the	ratio of their volum	es is	
(<i>a</i>) 1:2	(<i>b</i>) 2:1	(<i>c</i>) 1:3	(<i>d</i>) 3:1
46. The cost of digg	ing a pit of dimens	sions 4.5 m × 2.5 m	$n \times 2.5$ m at the rate of
₹ 20 per cubic m	etre is		
<i>(a)</i> ₹ 281.25	(<i>b</i>) ₹ 562.50	(c) ₹1125	(<i>d</i>) ₹ 1687.50
47. The volume of re	esulting cuboid forr	ned when two cube	es each of side 6 cm are
joined end to end	d is		
(a) 648 cm^3	(b) 864 cm^3	(c) 432 cm^3	(<i>d</i>) 416 cm^3
48. The number of li	tres that a cuboidal v	vater tank of dimen	sions $6 \text{ m} \times 5 \text{ m} \times 4.5 \text{ m}$
can hold is			
(a) 135000 L	(b) 135 L	(c) 270 L	(<i>d</i>) 270000 L
49. The surface area	of a cuboid whose l	ength, breadth and	height are 15 cm, 10 cm
and 20 cm respe	ctively is		$(h) \circ (h) $
(a) 1300 cm^2	(<i>b</i>) 650 cm^2	(c) 1950 cm^2	(<i>a</i>) 2600 cm^2

50.	The difference be cuboid of length	tween the total sur 20 cm, breadth 10 c	face area and the la m and height 40 cm	ateral surface area of a n is
	(a) 400 cm^2	(<i>b</i>) 800 cm ²	(c) 200 cm^2	(<i>d</i>) 600 cm^2
51.	The volume of a height 25 cm is	cylinder whose c	ircumference of th	e base is 132 cm and
	(a) 3300 cm^3	(b) 34650 cm^3	(c) 9900 $\rm cm^3$	(d) 19800 cm ³
52.	A cylinder and a the ratio of the he	cone have equal ba eight of the cylinder	se radius. If their v to the height of th	olumes are same, then e cone is
	(<i>a</i>) 1:3	(b) 1:2	(c) 2:1	(<i>d</i>) 3 : 1
53.	If the area of the is 92400 cm ³ , then (<i>a</i>) 2880 cm ² (<i>c</i>) 2640 cm ²	base of a right circu ı its curved surface	alar cylinder is 154 area is (b) 2760 cm ² (d) 2600 cm ²	00 cm ² and its volume
- 4	(<i>t</i>) 2040 cm	area of a 7 are high	(<i>u</i>) 2000 Chi	$148 - m^3$
54.	(a) $\frac{5110}{7}$ cm ²	area or a / cm nign	(b) $\frac{5280}{7}$ cm ²	volume of 448% cm ² is
	(c) $\frac{5287}{7}$ cm ²		(<i>d</i>) 755 cm ²	
55.	If the circumferer volume of air cor	nce of the base of a Itained in it is	a 9 m high conical	tent is 44 m, then the
	(a) 693 m^3	(<i>b</i>) 924 m ³	(c) 1386 m ³	(<i>d</i>) 462 m^3
56.	If a conical glass i is	s 35 cm in diameter	and 12 cm deep, th	en its capacity in litres
	(a) 1.155 L	(b) 3.85 L	(c) 0.5775 L	(<i>d</i>) 7.7 L
57.	(<i>a</i>) 1.155 L To make a closed of metal sheet rec	(b) 3.85 L hollow cone of bas juired is	(c) 0.5775 L se radius 7 cm and	(d) 7.7 L height 24 cm, the area
57.	 (<i>a</i>) 1.155 L To make a closed of metal sheet rec (<i>a</i>) 550 cm² 	 (b) 3.85 L hollow cone of bas quired is (b) 704 cm² 	 (c) 0.5775 L se radius 7 cm and (c) 825 cm² 	 (<i>d</i>) 7.7 L height 24 cm, the area (<i>d</i>) 1100 cm²
57. 58.	 (<i>a</i>) 1.155 L To make a closed of metal sheet rec (<i>a</i>) 550 cm² The area of canva 7 m is 	 (b) 3.85 L hollow cone of bas juired is (b) 704 cm² as required for a co 	 (c) 0.5775 L se radius 7 cm and (c) 825 cm² nical tent of height 	 (d) 7.7 L height 24 cm, the area (d) 1100 cm² 24 m and base radius
57. 58.	 (<i>a</i>) 1.155 L To make a closed of metal sheet rec (<i>a</i>) 550 cm² The area of canva 7 m is (<i>a</i>) 550 m² 	 (b) 3.85 L hollow cone of bas puired is (b) 704 cm² as required for a co (b) 1100 m² 	 (c) 0.5775 L se radius 7 cm and (c) 825 cm² nical tent of height (c) 275 m² 	 (d) 7.7 L height 24 cm, the area (d) 1100 cm² 24 m and base radius (d) 825 m²
57. 58. 59.	 (<i>a</i>) 1.155 L To make a closed of metal sheet rec (<i>a</i>) 550 cm² The area of canva 7 m is (<i>a</i>) 550 m² A conical vessel v full of water. If 1 in the conical vess 	 (b) 3.85 L hollow cone of bas quired is (b) 704 cm² as required for a co (b) 1100 m² whose internal depth cubic dm of water sel is 	(c) $0.5775 L$ se radius 7 cm and (c) $825 cm^2$ nical tent of height (c) $275 m^2$ n is 42 cm and intern weighs 1 kg-wt, the	 (d) 7.7 L height 24 cm, the area (d) 1100 cm² 24 m and base radius (d) 825 m² nal diameter is 48 cm is en the weight of water
57. 58. 59.	(a) 1.155 L To make a closed of metal sheet rec (a) 550 cm ² The area of canva 7 m is (a) 550 m ² A conical vessel w full of water. If 1 in the conical vess (a) 26.5 kg-wt	 (b) 3.85 L hollow cone of bas quired is (b) 704 cm² as required for a co (b) 1100 m² whose internal depth cubic dm of water sel is (b) 25.344 kg-wt 	(c) $0.5775 L$ se radius 7 cm and (c) $825 cm^2$ nical tent of height (c) $275 m^2$ n is 42 cm and intervieweighs 1 kg-wt, the (c) $25.5 kg$ -wt	 (<i>d</i>) 7.7 L height 24 cm, the area (<i>d</i>) 1100 cm² 24 m and base radius (<i>d</i>) 825 m² nal diameter is 48 cm is en the weight of water (<i>d</i>) 25.65 kg-wt
57.58.59.60.	(<i>a</i>) 1.155 L To make a closed of metal sheet rec (<i>a</i>) 550 cm ² The area of canva 7 m is (<i>a</i>) 550 m ² A conical vessel v full of water. If 1 in the conical vess (<i>a</i>) 26.5 kg-wt The height of a co the diameter of it	 (b) 3.85 L hollow cone of bas quired is (b) 704 cm² as required for a co (b) 1100 m² whose internal depth cubic dm of water sel is (b) 25.344 kg-wt onical vessel is 3.5 c s base is 	(c) $0.5775 L$ se radius 7 cm and (c) $825 cm^2$ nical tent of height (c) $275 m^2$ n is 42 cm and inter- weighs 1 kg-wt, the (c) $25.5 kg$ -wt m. If its capacity is	 (d) 7.7 L height 24 cm, the area (d) 1100 cm² 24 m and base radius (d) 825 m² nal diameter is 48 cm is en the weight of water (d) 25.65 kg-wt 3.3 litres of milk, then
57.58.59.60.	 (<i>a</i>) 1.155 L To make a closed of metal sheet rec (<i>a</i>) 550 cm² The area of canva 7 m is (<i>a</i>) 550 m² A conical vessel v full of water. If 1 in the conical vess (<i>a</i>) 26.5 kg-wt The height of a contract the diameter of it (<i>a</i>) 30 cm 	 (b) 3.85 L hollow cone of bas quired is (b) 704 cm² as required for a co (b) 1100 m² whose internal depth cubic dm of water sel is (b) 25.344 kg-wt onical vessel is 3.5 c s base is (b) 60 cm 	(c) 0.5775 L se radius 7 cm and (c) 825 cm^2 nical tent of height (c) 275 m^2 n is 42 cm and intern weighs 1 kg-wt, the (c) 25.5 kg-wt m. If its capacity is (c) 15 cm	 (<i>d</i>) 7.7 L height 24 cm, the area (<i>d</i>) 1100 cm² 24 m and base radius (<i>d</i>) 825 m² nal diameter is 48 cm is en the weight of water (<i>d</i>) 25.65 kg-wt 3.3 litres of milk, then (<i>d</i>) 35 cm
57.58.59.60.61.	(<i>a</i>) 1.155 L To make a closed of metal sheet rec (<i>a</i>) 550 cm ² The area of canva 7 m is (<i>a</i>) 550 m ² A conical vessel v full of water. If 1 in the conical vess (<i>a</i>) 26.5 kg-wt The height of a co the diameter of it (<i>a</i>) 30 cm If the volume of a	 (b) 3.85 L hollow cone of bas quired is (b) 704 cm² as required for a co (b) 1100 m² whose internal depth cubic dm of water sel is (b) 25.344 kg-wt onical vessel is 3.5 c s base is (b) 60 cm sphere is 4851 cm³ 	(c) $0.5775 L$ se radius 7 cm and (c) $825 cm^2$ nical tent of height (c) $275 m^2$ n is 42 cm and intern weighs 1 kg-wt, the (c) $25.5 kg$ -wt m. If its capacity is (c) $15 cm$	 (d) 7.7 L height 24 cm, the area (d) 1100 cm² 24 m and base radius (d) 825 m² nal diameter is 48 cm is en the weight of water (d) 25.65 kg-wt 3.3 litres of milk, then (d) 35 cm rea is

Mathematics - Class 9

62.	A hemispherical b bowl is 3.25 cm, th	owl is made of ste nen the outer curve	el 0.25 cm thick. If ed surface area of th	the inner radius of the ne bowl is
	(a) 77 cm ²	(b) 154 cm^2	(c) 38.5 cm^2	(<i>d</i>) 115.5 cm^2
63.	If the surface area the solid hemisphe	of a solid sphere i ere of the same rad	is 1386 cm ² , then th lius is	ne total surface area of
	(a) 693 cm^2	(b) 1039.5 cm^2	(c) 519.75 $\rm cm^2$	(d) 1559.25 cm^2
64.	The number of spl a rectangular bloc	nerical bullets each k of lead 11 m long	5 dm in diameter v 5, 10 m broad and 5	which can be cast from 5 m high is
	(<i>a</i>) 8400		(<i>b</i>) 4200	
	(c) 6300		(<i>d</i>) 5600	
65.	The number of so from a solid cyline	lid spheres each 6 ler of height 45 cm	cm in diameter, v and diameter 4 cn	vhich can be moulded n without any loss is
	(<i>a</i>) 7		(<i>b</i>) 12	
	(c) 10		(<i>d</i>) 5	
66.	If a hollow sphere melted into a cone	of internal and exte of base diameter 8	rnal diameters 4 cm cm, then the heigh	n and 8 cm respectively It of the cone formed is
	(a) 14 cm		(<i>b</i>) 12 cm	
	(c) 16 cm		(<i>d</i>) 8 cm	
67.	If a sphere of radii base of radius <i>r</i> , the sphere of <i>radius radius radius</i>	us 2 <i>r</i> has the same nen the height of th	e volume as that of ne cone is	a cone with a circular
	(<i>a</i>) 32 <i>r</i>		(<i>b</i>) 30 <i>r</i>	
	(c) 28r		(<i>d</i>) 24 <i>r</i>	
68.	If the radius and surface area is 286	slant height of a co cm ² , then its radiu	one are in the ratio 1s is	7:13 and its curved
	(<i>a</i>) 7 cm		(<i>b</i>) 10 cm	
	(c) 10.5 cm		(<i>d</i>) 7.5 cm	
69.	The curved surface of radius <i>r</i> is	e area of a right circ	cular cylinder which	n just encloses a sphere
	(<i>a</i>) $2\pi r^2$		(b) $4\pi r^2$	
	(c) $8\pi r^2$		(d) $6\pi r^2$	
70.	If the radius (<i>r</i>) of	a sphere is reduce	d to its half, then n	ew volume would be
	1(1)		$\begin{pmatrix} 3 \end{pmatrix}$	

(a)
$$\frac{1}{2} \left(\frac{4}{3} \pi r^3\right)$$
 (b) $\frac{4}{3} \pi \left(\frac{r^3}{2}\right)$
(c) $\frac{4}{3} \pi \left(\frac{r^3}{8}\right)$ (d) $\frac{4}{6} \pi \left(\frac{r^3}{8}\right)$ [CBSE SP 2010]

Chapter 14: **Statistics**

		- MULTIPLE-CHO	ICE QUESTIONS	
Cho	oose the correct an	swer from the give	n four options in th	ne following questions:
1.	A student collects locality consisting	s information abour g of a hundred hou	t the number of sch seholds. The data c	ool going children in a collected by him is
	(<i>a</i>) primary data		(b) secondary dat	a
	(c) grouped data		(<i>d</i>) arrayed data	
2.	To analyse the electron thus collected is l	ection results, the da known as	ata is collected from	n newspapers. The data
	(a) primary data		(b) secondary dat	a
	(c) raw data		(d) grouped data	
3.	Which of the follo	owing variables are	e discrete?	
	1. Size of shoes		2. Number of pa	iges in a book
	3. Distance trave	elled by a train	4. Time	
	(<i>a</i>) 1 and 4	(<i>b</i>) 1 and 3	(c) 1 and 2	(<i>d</i>) 2 and 4
4.	For a given dat observations is kn	a, the difference nown as its	between the max	imum and minimum
	(a) class		(b) range	
	(c) class mark		(d) class limit	
5.	A data is such that value is	ıt its maximum valı	ue is 75 and range is	s 20, then the minimum
	(<i>a</i>) 95	(<i>b</i>) 55	(c) 20	(<i>d</i>) 75
6.	In a grouped free $20-30, \ldots$, then the	equency distribution of the state of the second sec	on, the class inter	vals are 0–10, 10–20,
	(<i>a</i>) 20	(<i>b</i>) 15	(c) 10	(<i>d</i>) 30
7.	In a grouped free $41-60, \ldots$, then the	equency distribution ne class width is	on, the class inter	vals are 1–20, 21–40,
	(<i>a</i>) 10.5	(<i>b</i>) 30	(c) 10	(<i>d</i>) 20
8.	Class size of a dis	stribution having 28	8, 34, 40, 46 and 52	as its class marks is
	(<i>a</i>) 3	(<i>b</i>) 4	(<i>c</i>) 5	(<i>d</i>) 6
9.	Given the class in	tervals 0–10, 10–2	0, 20–30,, then 1	0 is considered in class
	(<i>a</i>) 0–10	(<i>b</i>) 10–20	(c) 0 - 20	(<i>d</i>) 10–30
10.	The class mark of	f the class interval 2	2.4–6.6 is	
	(<i>a</i>) 2.4	(<i>b</i>) 4.5	(c) 6.6	(<i>d</i>) 4.2
11.	The class marks o	of a frequency distr	ibution are as giver	n below:
		38, 43, 4	48, 53, 58	

The class corresponding to the class mark 43 is

$(a) \ 38-48 \qquad (b) \ 38.5-48.5$	(c) 35.5-45.5	(<i>d</i>) 40.5-45.5
--------------------------------------	---------------	------------------------

12. The class size of a distribution is 25 and the first class interval is 200–224. Then, the class marks of first two class intervals are

(a) 212, 237(b) 237, 262(c) 212, 262(d) 237, 287

13. Observe the table given below and choose the correct alternative in each case.

	Colum	n		Р	ĺ	Q		R		S	Т		τ	J
	Marks	scored		30-4	0	40-50)	50-60		60-70	70-	80	80-	-90
	Numbe	r of stud	lents	4		8		12		10	7		4	1
(<i>i</i>)	The cla	ss mar	k of R	is										
()	(<i>a</i>) 50		(1	b) 60			(C)	55		(0	l) 12			
(ii)	The cla	ss wid	th of 1	Гis										
	(<i>a</i>) 70		(1	b) 10			(C)	80		(0	l) 7			
(iii)	The fre	quency	of Q	is										
	(<i>a</i>) 50		(1	b) 40			(C)	45		(0	l) 8			
(iv)	The cla	ss size	of P is	s										
	(<i>a</i>) 80		(1	b) 10			(C)	90		(0	l) 4			
14.	A grou (5 inclu followi	iped fi ided in ng data	reque this i a:	ncy ta nterva	ble l) a	with o s one o	class of th	s interv e class	vals inte	of equ rvals is	ial siz const	zes ı ruct	ısing ed fo	; 3–5 or the
	1	4	7	2	0	3	9	2	3	7	6	3		5
	2	5	5	6	2	3	5	1	0	4	6	4		
	The fre	quency	of th	e class	3-	5 is								
	(<i>a</i>) 8		(1	b) 11			(C)	5		(0	l) 3			
15	The viv	en cum	nılətiy	ve fredi	iien	cy dist	rihu	tion she		the clas	s inter	rvals	and	their

15. The given cumulative frequency distribution shows the class intervals and their corresponding cumulative frequencies.

Class	10-20	20-30	30-40
Cumulative frequency	5	14	25

Then, the frequency of class interval 20-30 is

16. 'Less than' cumulative frequency table for a given data is as follows:

Marks	Less than 10	Less than 20	Less than 30	Less than 40
Cumulative frequency	3	17	37	92

Then, the frequency of class interval 20-30 is

- (a) 20 (b) 14
- (c) 55 (d) 34
- 17. 'More than' cumulative frequency table for a given data is as follows:

Marks	More than	More than	More than	More than
	89	79	69	59
Cumulative frequency	8	18	30	65

```
Then, the frequency of the class interval 70-80 is
```

(a) 10 (b) 35 (c) 12	(d) 22
------------------------	--------

18. In a bar graph, 0.25 cm length of a bar represents 100 people. Then, the length of bar which represents 2000 people is

(a) 4 cm (b) 4.5 cm (c) 5 cm (d) 3.5 cm

- **19.** In a bar graph, the widths of bars
 - (a) have no significance
 - (b) are proportional to the corresponding heights
 - (c) are proportional to the corresponding frequencies
 - (*d*) are proportional to the space between two consecutive bars

20. For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequency of respective classes and abscissa are respectively

- (*a*) lower limits of the classes
- (*b*) upper limits of the classes
- (c) class marks of the classes
- (d) upper limits of preceeding classes
- 21. One of the sides of a frequency polygon is
 - (*a*) the *x*-axis (*b*) the *y*-axis
 - (*c*) either of the coordinate axes (*d*) neither of the coordinate axes

22. Which of the following is not a measure of central tendency?

- (a) Mean (b) Median
- (c) Mode (d) Standard deviation
- **23.** The mean for counting numbers through 100 is
 - (a) 50 (b) 49.5 (c) 50.5 (d) 51
- **24.** The mean of first four prime numbers is (*a*) 4 (*b*) 4.5 (*c*) 3.75 (*d*) 4.25

25. The smallest of three consecutive even integers is 32. Then, the mean of the three integers is

(a) 34 (b) 36 (c) 33 (d) 35

26. If each observation of the data is increased by 3, then their mean

(a) becomes 3 times the original mean

- (b) is decreased by 3
- (c) is increased by 3
- (*d*) remains the same

27. The mean of 30 observations is 12. If 25 is subtracted from the sum of observations, then remaining sum is

- (a) 375 (b) 335
- (c) 385 (d) 365
- 28. The mean of prime numbers between 30 and 40 is
 - (a) 37 (b) 31 (c) 34 (d) 36
- **29.** The mean of x_1 , x_2 is 6 and mean of x_1 , x_2 , x_3 is 7. The value of x_3 is
 - (a) 2 (b) 9
 - (c) 5 (d) 4 [CBSE SP 2010]
- **30.** Sheila received *x* marks in two of her tests and *y* marks in three other tests. Her average score in all the five tests in terms of *x* and *y* is

(a)	$\frac{3x+2y}{5}$	(b)	$\frac{2x+3y}{5}$
(C)	$\frac{3x+2y}{3}$	(<i>d</i>)	$\frac{2x+3y}{2}$

31. The marks obtained by 10 students in a mathematics test are 75, 90, 70, 50, 70, 50, 75, 90, 70 and 75. Their median mark is

- (a) 70 (b) 71.5
- (c) 72.5 (d) 75
- **32.** Out of sixteen observations arranged in an ascending order, the 8th and 9th observations are 25 and 27. Then, the median is

(a) 25 (b) 27 (c) 26.5 (d) 26

33. The following observations have been arranged in an ascending order:

18, 20, 25, 26, 30, *x*, 37, 38, 39, 48

If the median of the data is 35, then the value of *x* is

- (a) 35 (b) 40 (c) 45 (d) 50
- **34.** Mode of a set of observations is the value which
 - (*a*) occurs most frequently
 - (b) divides the observations into two equal parts
 - (c) is the mean of the middle two observations
 - (*d*) is the sum of the observations

35. The mode of 4, 6, 7, 6, 4, 2, 4, 8, 6, 4, 3, 4, 6 is

- (a) 6 (b) 4
- (c) 3 (d) 2

36. The given data is 3, 5, 6, 7, 5, 4, 7, 5, 6, *x*, 8 and 7. Then, the value of *x* for which the mode of the above data will be 7, is

37. A set of data consists of six numbers: 7, 8, 8, 9, 9 and *x*The difference between the modes when *x* = 9 and *x* = 8 is
(*a*) 4 (*b*) 1 (*c*) 2 (*d*) 3

38. For a frequency distribution, mean, median and mode are connected by the relation:

- (a) Mode = 3 Median 2 Mean
- (b) Mode = 3 Median + 2 Mean
- (c) Mode = 3 Mean 2 Median
- (d) Mode = 2 Median 3 Mean

39. Median of the following observations, arranged in an ascending order is 22.

8, 11, 13, 15, *x* + 1, *x* + 3, 30, 35, 40, 43

Then, the value of *x* is

(a) 16 (b) 18 (c) 19 (d) 20

40. For which set of data does the median equal the mode?

<i>(a)</i>	3, 3, 4, 5	(<i>b</i>) 3, 3, 4, 5, 6	(c) 3, 3, 4	(<i>d</i>) 3, 4, 5, 6, 6
------------	------------	----------------------------	-------------	----------------------------

41. A grouped frequency distribution table with classes of equal sizes using 105–120 (120 not included) as one of the class interval is constructed for the following data:

125	126	140	98	128	78	108	67
87	149	102	136	145	112	103	84
123	130	120	89	103	65	96	65

The number of classes in the distribution will be

(b) 6

(*a*) 7

(c) 5

(*d*) 4

- **42.** In the graph given alongside, the number of students who scored 60 or more marks is
 - (a) 19
 - (*b*) 20
 - (c) 22
 - (*d*) 21

Mathematics - Class 9

- 43. The graph given alongside shows the frequency distribution of the age of 22 teachers in a school. The number of teachers whose age is less than 40 years is
 - (*a*) 15
 - (b) 14
 - (c) 16
 - (*d*) 17

Class interval

Frequency

44.

10

For the frequency distribution given above, the adjusted frequency for the class 25 – 45 is:

12

(*a*) 6 (b) 5 (c) 3 (d) 2

5 - 10

6

45. The average of three consecutive even integers is 20. Then, the integers are

- (b) 20, 22, 24 (a) 14, 16, 18
- (*d*) 18, 20, 22 (c) 16, 18, 20

46. Vihaan has marks of 92, 85 and 78 in three mathematics tests. In order to have an average of exactly 87 for the four math tests, he should obtain

- (a) 90 marks (b) 92 marks
- (*d*) 91 marks (c) 93 marks

47. If the mean of x and $\frac{1}{x}$ is M, then the mean of x^2 and $\frac{1}{x^2}$ is

(a) $2M^2 + 1$ (d) $2M^2 - 1$ (b) 2M + 1 (c) 2M - 1

48. The mean of six numbers is 23. If one of the numbers is excluded, the mean of the remaining numbers becomes 20. The excluded number is

(a) 36 (b) 38 (c) 39 (*d*) 37

49. The mean of five observations is 15. If the mean of first three observations is 14 and that of last three is 17, then the third observation is

(*d*) 32 (a) 29 (b) 18 (c) 31

50. The mean of *n* observations is \overline{x} . If the first item is increased by 1, second by 2, third by 3 and so on, then the new mean is

(a) $\bar{x} + \frac{n+1}{2}$ (b) $\overline{x} + \frac{n}{2}$ (*d*) $\bar{x} + \frac{n(n+1)}{2}$ (c) $\overline{x} + n$

15

51.	Variable	1	2	x	4	5
	Frequency	2	3	4	5	6

The mean of the above frequency distribution is 3.5, then the value of x is (*a*) 4 (*b*) 3 (*c*) 2 (*d*) 5

52. If the mean of the observations:

x, x + 3, x + 5, x	x + 7, x + 10 is 9, the formula of the formula o	he mean of last thr	ee observations is
(a) $11\frac{2}{3}$	(b) $11\frac{1}{3}$	(c) $10\frac{1}{3}$	(<i>d</i>) $10\frac{2}{3}$

53. The traffic police recorded the speed (in km/h) of 10 motorists as 48, 52, 57, 55, 42, 39, 60, 49, 53 and 47. Later an error in recording instrument was found. If the instrument had recorded the speed 5 km/h less in each case, then the correct average speed of the motorists is

(a)
$$50.2 \text{ km/h}$$
 (b) 52.5 km/h (c) 55.2 km/h (d) 54.5 km/h

54. The difference between the mean and median of first five prime numbers is

- (a) 1 (b) 0.4 (c) 0.6 (d) 0.8
- 55. When the data consists of 3, 4, 5, 4, 3, 4, 5, which statement is true?
 - (*a*) mean > median (*b*) mean > mode
 - (c) median < mode (d) mean = mode

Chapter 15: Probability

obtained 198 times. The probability of getting no head is

(a) 0.45 (b) 0.21 (c) 0.36 (d) 0.34

11. In *n* trials of a random experiment, if an event E happens *m* times, then P(E) is equal to

(a)	<u>m</u>	(b) $\frac{n}{n}$	$(c) \underline{m}$	(d)	<u>n</u>
(11)	п	(^{c)} m	m+n	(11)	m + n

		AN	SWERS		
		—— Сн	APTER 1		
1. (<i>c</i>)	2. (<i>d</i>)	3. (<i>d</i>)	4. (<i>a</i>)	5. (<i>a</i>)	6. (<i>d</i>)
7. (b)	8. (<i>c</i>)	9. (<i>a</i>)	10. (<i>a</i>)	11. (<i>c</i>)	12. (<i>b</i>)
13. (<i>d</i>)	14. (<i>a</i>)	15. (<i>c</i>)	16. (<i>b</i>)	17. (<i>a</i>)	18. (<i>c</i>)
19. (<i>a</i>)	20. (<i>c</i>)	21. (<i>c</i>)	22. (<i>b</i>)	23. (<i>a</i>)	24. (<i>c</i>)
25. (<i>c</i>)	26. (<i>a</i>)	27. (<i>d</i>)	28. (<i>d</i>)	29. (<i>c</i>)	30. (<i>c</i>)
31. (b)	32. (a)	33. (b)	34. (b)	35. (<i>c</i>)	36. (<i>C</i>)
37. (<i>a</i>)	38. (<i>D</i>)	39. (<i>a</i>)	40. (<i>D</i>)		
		——— СН/	APTER 2		
1. (<i>b</i>)	2. (<i>d</i>)	3. (<i>b</i>)	4. (<i>b</i>)	5. (<i>d</i>)	6. (<i>b</i>)
7. (<i>a</i>)	8. (<i>b</i>)	9. (<i>c</i>)	10. (<i>c</i>)	11. (<i>d</i>)	12. (<i>b</i>)
13. (<i>d</i>)	14. (<i>c</i>)	15. (<i>d</i>)	16. (<i>a</i>)	17. (<i>c</i>)	18. (<i>c</i>)
19. (<i>a</i>)	20. (<i>b</i>)	21. (<i>b</i>)	22. (<i>b</i>)	23. (<i>d</i>)	24. (<i>d</i>)
25. (<i>a</i>)	26. (<i>b</i>)	27. (<i>a</i>)	28. (b)	29. (<i>c</i>)	30. (<i>b</i>)
31. (<i>c</i>)	32. (<i>d</i>)	33. (<i>a</i>)	34. (<i>c</i>)	35. (<i>b</i>)	36. (<i>b</i>)
37. (<i>b</i>)	38. (<i>d</i>)	39. (<i>c</i>)	40. (<i>b</i>)	41. (<i>b</i>)	42. (c)
43. (<i>b</i>)	44. (<i>c</i>)	45. (<i>a</i>)	46. (<i>d</i>)	47. (<i>a</i>)	48. (b)
49. (<i>a</i>)	50. (<i>b</i>)	51. (<i>a</i>)	52. (<i>a</i>)	53. (<i>c</i>)	54. (<i>a</i>)
55. (<i>c</i>)					
		—— СН/	APTER 3		
1. (<i>c</i>)	2. (<i>c</i>)	3. (<i>d</i>)	4. (<i>b</i>)	5. (<i>a</i>)	6. (<i>a</i>)
7. (<i>b</i>)	8. (<i>c</i>)	9. (<i>a</i>)	10. (<i>b</i>)	11. (<i>a</i>)	12. (<i>c</i>)
13. (<i>b</i>)	14. (<i>c</i>)	15. (<i>b</i>)	16. (<i>c</i>)	17. (<i>a</i>)	18. (<i>d</i>)
19. (<i>c</i>)	20. (<i>b</i>)				
		——— СН/	APTER 4		
1. (<i>b</i>)	2. (<i>d</i>)	3. (<i>a</i>)	4. (<i>a</i>)	5. (<i>c</i>)	6. (<i>d</i>)
7. (<i>b</i>)	8. (<i>b</i>)	9. (<i>a</i>)	10. (<i>b</i>)	11. (<i>a</i>)	12. (<i>b</i>)
13. (<i>c</i>)	14. (<i>b</i>)	15. (<i>b</i>)	16. (<i>c</i>)	17. (<i>b</i>)	18. (c)
19. (<i>c</i>)	20. (<i>d</i>)	21. (<i>b</i>)	22. (<i>d</i>)	23. (<i>d</i>)	24. (b)
25. (<i>a</i>)	26. (<i>d</i>)	27. (<i>b</i>)	28. (<i>b</i>)	29. (<i>d</i>)	30. (<i>b</i>)
31. (<i>b</i>)	32. (<i>c</i>)	33. (<i>a</i>)	34. (<i>d</i>)	35. (<i>c</i>)	
		——— СН/	APTER 5 ——		
1. (<i>d</i>)	2. (b)	3. (<i>b</i>)	4. (<i>d</i>)	5. (<i>c</i>)	6. (<i>c</i>)
7. (<i>d</i>)	8. (<i>d</i>)	9. (<i>a</i>)	10. (<i>d</i>)	11. (<i>b</i>)	12. (<i>a</i>)
13. (<i>c</i>)	14. (<i>c</i>)	15. (<i>b</i>)	16. (<i>a</i>)	17. (<i>c</i>)	18. (<i>a</i>)
19. (<i>a</i>)	20. (<i>b</i>)				

		—— СН	APTER 6 ——		
1. (<i>b</i>)	2. (<i>c</i>)	3. (<i>c</i>)	4. (<i>a</i>)	5. (<i>d</i>)	6. (<i>a</i>)
7. (<i>d</i>)	8. (<i>d</i>)	9. (<i>a</i>)	10. (<i>b</i>)	11. (<i>c</i>)	12. (<i>c</i>)
13. (<i>d</i>)	14. (<i>b</i>)	15. (<i>a</i>)	16. (<i>c</i>)	17. (<i>b</i>)	18. (<i>c</i>)
19. (<i>a</i>)	20. (<i>d</i>)	21. (<i>a</i>)	22. (<i>b</i>)	23. (<i>d</i>)	24. (<i>c</i>)
25. (<i>c</i>)	26. (<i>d</i>)	27. (<i>b</i>)	28. (<i>a</i>)	29. (<i>c</i>)	30. (<i>d</i>)
31. (<i>b</i>)	32. (<i>c</i>)	33. (<i>c</i>)	34. (<i>d</i>)	35. (<i>b</i>)	36. (<i>d</i>)
37. (<i>a</i>)	38. (<i>c</i>)	39. (<i>a</i>)	40. (<i>d</i>)	41. (<i>d</i>)	42. (<i>a</i>)
43. (<i>c</i>)	44. (<i>b</i>)	45. (<i>c</i>)	46. (<i>b</i>)	47. (<i>c</i>)	48. (<i>c</i>)
49. (<i>a</i>)	50. (<i>d</i>)				
		—— СН	APTER 7		
1. (<i>c</i>)	2. (<i>b</i>)	3. (<i>c</i>)	4. (<i>b</i>)	5. (<i>b</i>)	6. (<i>a</i>)
7. (<i>c</i>)	8. (<i>d</i>)	9. (<i>c</i>)	10. (<i>d</i>)	11. (<i>b</i>)	12. (<i>c</i>)
13. (<i>a</i>)	14. (c)	15. (<i>b</i>)	16. (<i>c</i>)	17. (<i>d</i>)	18. (<i>c</i>)
19. (<i>c</i>)	20. (<i>b</i>)				
		——— СН	APTER 8		
1. (<i>a</i>)	2. (<i>b</i>)	3. (<i>b</i>)	4. (c)	5. (<i>a</i>)	6. (<i>c</i>)
7. (<i>c</i>)	8. (<i>d</i>)	9. (<i>d</i>)	10. (<i>d</i>)	11. (<i>c</i>)	12. (<i>a</i>)
13. (<i>c</i>)	14. (<i>b</i>)	15. (<i>b</i>)	16. (<i>c</i>)	17. (<i>c</i>)	18. (<i>a</i>)
19. (<i>b</i>)	20. (<i>d</i>)	21. (<i>b</i>)	22. (<i>b</i>)	23. (<i>a</i>)	24. (<i>c</i>)
25. (<i>c</i>)	26. (b)	27. (<i>c</i>)	28. (b)	29. (b)	30. (<i>c</i>)
31. (<i>a</i>)	32. (<i>c</i>)	33. (<i>b</i>)	34. (<i>b</i>)	35. (<i>c</i>)	
		—— СН	APTER 9 ——		
1. (<i>d</i>)	2. (<i>d</i>)	3. (<i>c</i>)	4. (b)	5. (<i>d</i>)	6. (d)
7. (<i>d</i>)	8. (<i>b</i>)	9. (<i>a</i>)	10. (<i>b</i>)	11. (<i>d</i>)	12. (<i>c</i>)
13. (<i>b</i>)	14. (<i>a</i>)	15. (<i>b</i>)	16. (<i>a</i>)	17. (<i>c</i>)	18. (b)
19. (<i>c</i>)	20. (<i>b</i>)	21. (<i>c</i>)	22. (<i>a</i>)	23. (<i>a</i>)	24. (b)
25. (<i>c</i>)	26. (<i>c</i>)	27. (<i>d</i>)	28. (<i>d</i>)	29. (<i>b</i>)	30. (<i>a</i>)
31. (<i>a</i>)	32. (<i>c</i>)	33. (<i>c</i>)	34. (<i>b</i>)	35. (<i>c</i>)	36. (b)
37. (<i>d</i>)	38. (<i>b</i>)	39. (<i>a</i>)	40. (<i>c</i>)	41. (<i>b</i>)	42. (<i>a</i>)
43. (<i>c</i>)	44. (<i>d</i>)	45. (<i>a</i>)			
		——— СНА	APTER 10		
1. (<i>c</i>)	2. (<i>a</i>)	3. (<i>b</i>)	4. (<i>b</i>)	5. (<i>a</i>)	6. (<i>a</i>)
7. (b)	8. (<i>c</i>)	9. (<i>a</i>)	10. (<i>d</i>)	11. (<i>b</i>)	12. (<i>d</i>)
13. (<i>a</i>)	14. (<i>b</i>)	15. (<i>b</i>)	16. (<i>d</i>)	17. (<i>d</i>)	18. (<i>b</i>)
19. (<i>c</i>)	20. (<i>c</i>)	21. (<i>b</i>)	22. (<i>b</i>)	23. (<i>c</i>)	24. (<i>a</i>)
25. (<i>c</i>)	26. (<i>b</i>)	27. (<i>b</i>)	28. (<i>b</i>)	29. (<i>d</i>)	30. (<i>c</i>)
31. (<i>d</i>)	32. (<i>d</i>)	33. (<i>b</i>)	34. (<i>a</i>)	35. (<i>a</i>)	36. (<i>a</i>)
37. (<i>c</i>)	38. (<i>c</i>)	39. (<i>c</i>)	40. (<i>b</i>)	41. (<i>d</i>)	42. (<i>d</i>)

Mathemati	cs - Class 9				65
43. (<i>b</i>)	44. (<i>b</i>)	45. (<i>c</i>)	46. (<i>b</i>)	47. (<i>c</i>)	48. (<i>c</i>)
49. (<i>c</i>)	50. (<i>d</i>)	51. (<i>d</i>)	52. (<i>c</i>)	53. (<i>b</i>)	54. (b)
55. (<i>d</i>)					
		—— СНА	APTER 11		
1 (c)	2(c)	3 (<i>h</i>)	4 (d)	5 (c)	
I. (<i>t</i>)	2. (<i>t</i>)	5. (0)	I. (<i>u</i>)	5. (c)	
		——— СНА	APTER 12		
1. (<i>b</i>)	2. (<i>c</i>)	3. (<i>b</i>)	4. (b)	5. (<i>b</i>)	6. (<i>b</i>)
7. (<i>c</i>)	8. (<i>b</i>)	9. (<i>d</i>)	10. (<i>a</i>)	11. (<i>d</i>)	12. (<i>c</i>)
13. (<i>b</i>)	14. (c)	15. (<i>a</i>)			
		—— СНА	APTER 13		
1. (b)	2. (<i>a</i>)	3. (<i>c</i>)	4. (<i>a</i>)	5. (<i>c</i>)	6. (<i>a</i>)
7. (<i>d</i>)	8. (<i>b</i>)	9. (<i>b</i>)	10. (<i>b</i>)	11. (<i>c</i>)	12. (<i>c</i>)
13. (<i>a</i>)	14. (<i>d</i>)	15. (<i>a</i>)	16. (<i>c</i>)	17. (<i>a</i>)	18. (b)
19. (<i>a</i>)	20. (<i>c</i>)	21. (<i>d</i>)	22. (<i>c</i>)	23. (<i>c</i>)	24. (<i>c</i>)
25. (<i>a</i>)	26. (<i>a</i>)	27. (<i>a</i>)	28. (<i>d</i>)	29. (<i>c</i>)	30. (<i>a</i>)
31. (<i>b</i>)	32. (<i>d</i>)	33. (<i>b</i>)	34. (<i>c</i>)	35. (<i>a</i>)	36. (<i>c</i>)
37. (<i>c</i>)	38. (<i>a</i>)	39. (<i>c</i>)	40. (<i>b</i>)	41. (<i>b</i>)	42. (<i>b</i>)
43. (<i>d</i>)	44. (<i>c</i>)	45. (<i>d</i>)	46. (<i>b</i>)	47. (<i>c</i>)	48. (<i>a</i>)
49. (<i>a</i>)	50. (<i>a</i>)	51. (<i>b</i>)	52. (<i>a</i>)	53. (<i>c</i>)	54. (<i>b</i>)
55. (<i>d</i>)	56. (<i>b</i>)	57. (<i>b</i>)	58. (<i>a</i>)	59. (<i>b</i>)	60. (<i>b</i>)
61. (<i>b</i>)	62. (<i>a</i>)	63. (<i>b</i>)	64. (<i>a</i>)	65. (<i>d</i>)	66. (<i>a</i>)
67. (<i>a</i>)	68. (<i>a</i>)	69. (<i>b</i>)	70. (<i>c</i>)		
		—— СНА	APTER 14		
1. (<i>a</i>)	2. (<i>b</i>)	3. (<i>c</i>)	4. (<i>b</i>)	5. (<i>b</i>)	6. (<i>c</i>)
7. (<i>d</i>)	8. (<i>d</i>)	9. (<i>b</i>)	10. (<i>b</i>)	11. (<i>d</i>)	12. (<i>a</i>)
13. (<i>i</i>) (<i>c</i>)	(<i>ii</i>) (<i>b</i>) (<i>iii</i>) (<i>d</i>)	(<i>iv</i>) (<i>b</i>)	14. (<i>b</i>)	15. (<i>b</i>)	16. (<i>a</i>)
17. (<i>c</i>)	18. (<i>c</i>)	19. (<i>a</i>)	20. (<i>c</i>)	21. (<i>a</i>)	22. (<i>d</i>)
23. (<i>c</i>)	24. (<i>d</i>)	25. (<i>a</i>)	26. (<i>c</i>)	27. (<i>b</i>)	28. (<i>c</i>)
29. (b)	30. (<i>b</i>)	31. (<i>c</i>)	32. (<i>d</i>)	33. (<i>b</i>)	34. (<i>a</i>)
35. (<i>b</i>)	36. (<i>d</i>)	37. (<i>b</i>)	38. (<i>a</i>)	39. (<i>d</i>)	40. (<i>c</i>)
41. (b)	42. (<i>d</i>)	43. (<i>a</i>)	44. (<i>d</i>)	45. (<i>d</i>)	46. (<i>c</i>)
47. (<i>d</i>)	48. (b)	49. (b)	50. (<i>a</i>)	51. (<i>b</i>)	52. (<i>b</i>)
53. (<i>c</i>)	54. (<i>c</i>)	55. (<i>d</i>)			
		—— СНА	APTER 15		
1. (<i>b</i>)	2. (<i>b</i>)	3. (<i>d</i>)	4. (<i>c</i>)	5. (<i>b</i>)	6. (<i>a</i>)
7. (<i>c</i>)	8. (<i>d</i>)	9. (<i>c</i>)	10. (<i>d</i>)	11. (<i>a</i>)	