

Education, Our Mission

ICSE Living Science Chemistry

Class 10

Chapter-4 Analytical Chemistry

EDUCATION, OUR MISSION

As per the latest ICSE syllabus

Living Science CHEMISTRY

Raymond Fernandes

10

Ratna Sazar

EDUCATION, OUR MISSION

LEARNING OBJECTIVES

Why do compounds have colours?

- Action of alkali on solution of metallic salts
- Action of sodium hydroxide on solution of metallic salts
- Action of ammonium hydroxide onsolution of metallic salts
- Action of alkalis on amphoteric metals

Action of alkalis on amphotericmetal oxides

Action of alkalis on amphoteric metal hydroxides

What is Analytical Chemistry?

Analytical Chemistry is a branch of chemistry that deals with the analysis of compounds. Analysis can be qualitative and quantitative.

Why do compounds have colours?

Elements can be classified into normal elements, transition elements, inner transition elements and inert gases. **Transition elements** (ranging from group 3 to 12) usually form coloured compounds. This is because the ions of these elements have a tendency to absorb light of a particular colour in the visible region and reflect or transmit the rest. The light that is transmitted is the colour of the substance.

Colours of salts

The colour of a salt solution depends upon the colour of the cation and anion in solution. Different colours of salt help in the identification of cation during qualitative analysis.

Coloured cations

The colours have varied ranges depending on the type of compounds they form, their valency and oxidation states.

Colourless cations

Ions of normal elements (ranging from group IA to group VIIA) are generally colourless.

Coloured anions

Anions are generally colourless with a few exceptions such as the ermanganate ion which is pink, the dichromate ion which is orange and the chromate ion is yellow in colour.

Action of alkali on solution of metallic salts

Metal cations of salts can be identified by using either a strong alkali like sodium hydroxide or a weak alkali like ammonium hydroxide. The action of alkali on metal cations produces hydroxides that appear as insoluble coloured substances called precipitates. Therefore, the formation of coloured **precipitates** helps in the identification of the metal cation that is present in the salt.

Action of sodium hydroxide on solution of metallic salts

When sodium hydroxide is added to a solution of metallic salts in a dropwise manner, the metal hydroxides get precipitated. Some precipitated metallic hydroxides dissolve in excess of sodium hydroxide to form soluble complex salts. This helps in the identification of the metal ion.

Notes: Refer to Table 4.1, 4.2. 4,3 and 4.4 for some coloured cations, colourless cations, coloured anions and some colourless anions.

Following are the observations obtained by the action of sodium hydroxide on certain metallic salt solutions:

 For calcium salts (Ca²⁺): If a white precipitate is formed on reaction with NaOH which is insoluble in excess sodium hydroxide, then the metal cation in the salt solution is calcium ion.

 $CaCl_{2} + 2NaOH \longrightarrow Ca(OH)_{2} \downarrow + 2NaCl$ $Ca^{2+} + 2NaOH \longrightarrow Ca(OH)_{2} \downarrow + 2Na^{+}$

 For ferrous salts (Fe²⁺): If a dirty green precipitate is formed which is insoluble in excess sodium hydroxide, then the metal cation in the salt solution is iron(II) or ferrous.

 $\begin{array}{rcl} \mathrm{FeSO}_{4} + 2\mathrm{NaOH} & \longrightarrow & \mathrm{Fe(OH)}_{2} \downarrow + \mathrm{Na}_{2}\mathrm{SO}_{4} \\ & \mathrm{Fe}^{2+} + 2\mathrm{NaOH} & \longrightarrow & \mathrm{Fe(OH)}_{2} \downarrow + 2\mathrm{Na}^{+} \end{array}$

 For ferric salts (Fe³⁺): If a reddish brown precipitate is formed which is insoluble in excess sodium hydroxide, then the metal cation in the salt solution is iron(III) or ferric.

 $\begin{array}{rcl} \operatorname{FeCl}_3 + 3\operatorname{NaOH} & \longrightarrow & \operatorname{Fe(OH)}_3 \downarrow + 3\operatorname{NaCl} \\ \operatorname{Fe}^{3+} + 3\operatorname{NaOH} & \longrightarrow & \operatorname{Fe(OH)}_3 \downarrow + 3\operatorname{Na^+} \end{array}$

Note: For more examples, pl. refer to the page 59 of the book.

Action of alkalis on amphoteric metals

Hot and concentrated caustic alkalis (NaOH, KOH) react with amphoteric metals like aluminium, zinc and lead to liberate hydrogen gas.

 $2AI + 2NaOH + 2H_2O _ A \qquad 2NaAIO_2 + 3H_2\uparrow$ (conc.) $Zn + 2NaOH \qquad aluminate$ $A \qquad Na_2ZnO_2 + H_2\uparrow$ (conc.) $Pb + 2NaOH \qquad A \qquad Na_2PbO_2 + H_2\uparrow$ (conc.) $A \qquad Na_2PbO_2 + H_2\uparrow$ sodium zincate

Action of alkalis on amphoteric metal oxides

Hot and concentrated alkalis also react with amphoteric metal oxides to form salt and water. Δ

$$ZnO + 2NaOH \longrightarrow Na_2ZnO_2 + H_2O$$

sodium zincate

Al2O₃ + 2NaOH
$$\longrightarrow$$
 2NaAlO₂ + H₂O
sodium meta aluminate

EDUCATION, OUR MISSION

Action of alkalis on amphoteric metal hydroxides

$Zn(OH)_2 + 2NaOH \longrightarrow$	$Na_2ZnO_2 + 2H_2O$ sodium zincate
$Al(OH)_3 + NaOH \longrightarrow$	$NaAlO_2 + 2H_2O$ sodium meta aluminate
$Pb(OH)_2 + 2NaOH \longrightarrow$	$Na_2PbO_2 + 2H_2O$ sodium plumbite
$Zn(OH)_2 + 2KOH \longrightarrow$	$K_2ZnO_2 + 2H_2O$
	potassium zincate
$Pb(OH)_2 + 2NaOH \longrightarrow$	Na ₂ PbO ₂ + 2H ₂ O potassium plumbite
$Zn(OH)_2 + 2KOH \longrightarrow$	$K_2ZnO_2 + 2H_2O$ potassium zincate
$Pb(OH)_2 + 2KOH \longrightarrow$	$K_2PbO_2 + 2H_2O$
	potassium plumbite

Note: The oxides and hydroxides of zinc, aluminium and lead being amphoteric can react with both acids as well as bases to form salt and water.

- $ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$ zinc chloride $Zn(OH)_2 + 2HCl \longrightarrow ZnCl_2 + 2H_2O$
 - $ZnO + 2NaOH \longrightarrow Na_2ZnO_2 + H_2O$ sodium zincate

 $Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$

SUMMARY

1. Action of sodium hydroxide on metallic salts

Ion	Salt	Reaction involved	Colour of precipitate	Solubility of precipitate in excess of NaOH
Ca ²⁺	CaCl ₂	CaCl ₂ + 2NaOH → Ca(OH) ₂ ↓ + 2NaCl Calcium hydroxide	White	Insoluble
Fe ²⁺	FeSO ₄	FeSO ₄ + 2NaOH → Fe(OH) ₂ ↓ + Na ₂ SO ₄ Ferrous or iron(II) hydroxide	Dirty green	Insoluble
Fe ³⁺	FeCl ₃	FeCl ₃ + 3NaOH → Fe(OH) ₃ ↓ + 3NaCl Iron(III) hydroxide	Reddish brown	Insoluble
Cu ²⁺	CuSO ₄	CuSO ₄ + 2NaOH → Cu(OH) ₂ ↓ + Na ₂ SO ₄ Copper hydroxide	Light (pale) blue	Insoluble
Zn ²⁺	ZnSO ₄	$ZnSO_4 + 2NaOH \longrightarrow Zn(OH)_2 \downarrow + Na_2SO_4$ Zinc hydroxide	White gelatinous	Soluble due to zincate formation Zn(OH) ₂ + 2NaOH \rightarrow Na ₂ ZnO ₂ + 2H ₂ O
Pb ²⁺	Pb(NO ₃) ₂	Pb(NO ₃) ₂ + 2NaOH → Pb(OH) ₂ ↓ + 2NaNO ₃ Lead hydroxide	Chalky white	Soluble due to plumbite formation Pb(OH) ₂ + 2NaOH \rightarrow Na ₂ PbO ₂ + 2H ₂ O
NHŢ	NH ₄ NO ₃	$NH_4NO_3 + NaOH \longrightarrow NH_3^{\uparrow} + H_2O + NaNO_3$	No ppt but NH ₃ gas is evolved	NH ₃ turns moist red litmus blue

2. Action of ammonium hydroxide on metallic salts

Ion	Salt	Reaction involved	Colour of precipitate	Solubility of precipitate in excess of NH4OH
Ca ²⁺	Ca(NO ₃) ₂	No precipitate formation takes place	No precipitate	No change as concentration of OH ⁻ ions is low and cannot precipitate Ca(OH) ₂
Fe ²⁺	FeSO ₄	$FeSO_4 + 2NH_4OH \longrightarrow Fe(OH)_2 \downarrow + (NH_4)_2SO_4$	Dirty green	Insoluble
Fe ³⁺	FeCl ₃	FeCl ₃ + 3NH ₄ OH → Fe(OH) ₃ ↓ + 3NH ₄ Cl	Reddish brown	Insoluble
Zn ²⁺	ZnSO ₄	$ZnSO_4 + 2NH_4OH \longrightarrow Zn(OH)_2\downarrow + (NH_4)_2SO_4$	White gelatinous	Soluble due to tetramine zinc complex formation $Zn(OH)_2 + 4NH_4OH \rightarrow$ $[Zn(NH_3)_4] (OH_2) + 4H_2O$
Рb ²⁺	Pb(NO ₃) ₂	$Pb(NO_3)_2 + 2NH_4OH \longrightarrow Pb(OH)_2 \downarrow + 2NH_4NO_3$	White	Insoluble

3. Action of alkalis on amphoteric metals

Metal + Alkali -----> Salt + Hydrogen gas

Metal	Alkali (hot and concentrated)	Reaction involved
Zn	NaOH	$Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2^{\uparrow}$ sodium zincate
Zn	КОН	$Zn + 2KOH \longrightarrow K_2ZnO_2 + H_2^{\uparrow}$ potassium zincate
Al	NaOH + H ₂ O	$2AI + 2NaOH + 2H_2O \longrightarrow 2NaAIO_2 + 3H_2^{\uparrow}$ sodium aluminate

4. Action of alkalis on amphoteric metal oxides and hydroxides:

Metal oxide + Alkali ----- Salt + H₂O

Oxide	Alkali	Reaction involved
ZnO	NaOH	$ZnO + 2NaOH \longrightarrow Na_2ZnO_2 + H_2O$
РЬО	NaOH	$PbO_2 + 2NaOH \longrightarrow Na_2PbO_3 + H_2O$
Al ₂ O ₃	NaOH	$AI_2O_3 + 2NaOH \longrightarrow 2NaAIO_2 + H_2O$

Metal hydroxide + Alkali \longrightarrow Salt + H₂O

	Reaction involved
NaOH	$Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$
NaOH	$Pb(OH)_2 + 2NaOH \longrightarrow Na_2PbO_2 + 2H_2O$
NaOH	$AI(OH)_3 + NaOH \longrightarrow NaAIO_2 + 2H_2O$
кон	$AI(OH)_3 + KOH \longrightarrow KAIO_2 + 2H_2O$
	NaOH NaOH NaOH KOH

5. The oxides and hydroxides of certain metals like zinc and aluminium exhibit both basic and acidic behaviour and are called **amphoteric**. The oxides and hydroxides of zinc react with hot caustic alkali to form **zincates**. The oxide and hydroxides of aluminium forms **aluminates** while those of lead form **plumbites** when treated with caustic alkalis.

