WORKSHEET **2**

CHAPTER 2 - WORK, ENERGY AND POWER

A. Tick (\checkmark) the correct option.

1.	In MKS system, the unit	n MKS system, the unit of work is					
	a. erg.	b. Joule.	c. Newton.	d. kg m ² s ⁻² .			
2.	Nork done by gravity on a body moving upwards is						
	a. positive.	b. negative.	c. Zero.	d. none of these.			
3.	the displacement is zero, then work done is equal to						
	a. Zero.	b. $F \times S$.	c. <i>F/S</i> .	d. none of these.			
4.	The rate of doing work is known as						
	a. displacement.	b. work done.	c. power.	d. force.			
5.	1 electron volt is equivale	ent to					
	a. $1.6 \times 10^{-19} \text{ J}$	b. $1.6 \times 10^{19} \text{ J}$	c. $0.16 \times 10^{-19} \text{ J}$	d. 1.6 J			
B.	Fill in the blanks.						
1.	The unit of energy in CGS system is erg where 1 J is equal to						
2.	Work done is when the displacement is in the direction opposite to the applied force.						
3.	is said to be done only when the force acting on the body produces motion, in the direction						
	of the force applied.						
4.	Work done by the frictional force is						
5.	The energy possessed by a body by virtue of its motion is called						
C.	State whether the following statements are true or false.						
1.	The energy stored in matter is called the chemical energy.						
2.	Solar cell converts light energy to heat energy.						
3.	Pendulum has only potential energy when it is on the extreme positions.						
4.	The sum total energies of all kinds in an isolated system always remains constant.						
5.	Electric generator converts mechanical energy into heat energy.						
D.	Match the following.						
1.	Erg		$3.6 \times 10^3 \mathrm{J}$				
2.	Watt-hour		$3.6 \times 10^{6} \mathrm{J}$				
3.	Calorie		10 ⁻⁷ J				
4.	ilowatt-hour $1.6 \times 10^{-19} \mathrm{J}$						
5.	Electron volt		4.18 J				

© Ratna Sagar

Teacher's signature:

Date:

Chapter 2 – Work, Energy and Power

_

1

E. Answer the following questions.

Very short answer questions

- 1. What is the relationship between SI and CGS units of work?
- 2. Define power.

Short answer questions

- 1. State the work energy theorem.
- 2. What are the different forms of kinetic energy?

Long answer questions

- 1. Derive the relationship between kinetic energy and linear momentum.
- 2. A man drops a 5 kg stone from the top of 10 m ladder. What is its kinetic energy when it reaches the ground? What is its speed just before it hits the ground? (Take $g = 9.8 \text{ m/s}^2$)

ANSWERS

WORKSHEET 2

A. Tick (✓) the correct option.								
1. d	2. b	3. a	4. C	5. a				
B. Fill in the blanks.								
1. 10 ⁷ ergs	2. negative	3. Force	4. negative	5. kinetic energy				
C. State whether the following statements are true or false.								
1. T	2. F	3. T	4. T	5. F				
D. Match the following.								
1. Erg		10 ⁻⁷ J						
2. Watt-hour		$3.6 \times 10^3 \mathrm{J}$						
3. Calorie		4.18 J						
4. Kilowatt-hour		$3.6 \times 10^6 \mathrm{J}$						
5. Electron volt		1.6×10^{-19} J	ſ					

E. Answer the following questions.

Very short answer questions

- 1. 1 Joule = 10^7 erg
- 2. The rate of doing work is known as the power.

Short answer questions

- 1. According to this theorem, the work done by the net force on the body is equal to the change in the kinetic energy of the body.
- 2. There are following three forms of kinetic energy:
 - i. Translational kinetic energy
 - ii. Rotational kinetic energy
 - iii. Vibrational kinetic energy

Long answer questions

1. Let

m = mass of the body

$$v =$$
 velocity of the body

 \therefore linear momentum of the body,

$$p = mv \text{ or } v = \frac{p}{m}$$
 ...(i)

and kinetic ener

kinetic energy of the body $= \frac{1}{2}mv^2$...(ii)

© Ratna Sagar

Substituting the value of v from equation (i) in equation (ii), we get

$$K = \frac{1}{2}m\left(\frac{p}{m}\right)^{2}$$

$$K = \frac{p^{2}}{2m}$$
Mass of stone = 5 kg
Height of the ladder = 10 m
Initial velocity = 0
 $v^{2} = u^{2} + 2gS$
 $v^{2} = 0 + 2$ (9.8) (10)
 $v^{2} = \frac{196}{\sqrt{196}}$
= 14 m/s
Kinetic energy = $\frac{1}{2}mv^{2}$
 $= \frac{1}{2} \times 5 \times 14 \times 14$
= 490 J

or

2.

b Chapter 2 – Work, Energy and Power

© Ratna Sagar