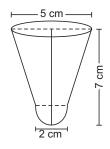

## WORKSHEET 1

## CHAPTER 15 – SURFACE AREAS AND VOLUMES


1. The shape of a glass (*tumbler*) is usually in the form of

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                      | Glass                                                                   |                                                        |                                  |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul><li>(a) a cylinder</li><li>(c) a cone</li></ul>                                                                                                                                                                   |                                                                      | <ul><li>(<i>b</i>) frustum of a c</li><li>(<i>d</i>) a sphere</li></ul> | one                                                    |                                  |      |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If each edge of a contract ( <i>a</i> ) 25%                                                                                                                                                                           | ube is increased by ( <i>b</i> ) 105%                                | 50%, the percentag<br>(c) 125%                                          | e increase in the<br>( <i>d</i> ) 200%                 | surface area is                  |      |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total surface area ( <i>a</i> ) 144 cm <sup>3</sup>                                                                                                                                                                   | of a cube is 216 cm <sup>2</sup><br>( <i>b</i> ) 196 cm <sup>3</sup> | , its volume is (c) $212 \text{ cm}^3$                                  | ( <i>d</i> ) 216 cm <sup>3</sup>                       |                                  |      |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If a solid right circu<br>then the radius of<br>( <i>a</i> ) 6 cm                                                                                                                                                     | •                                                                    | 4 cm and base radio<br>(c) 8 cm                                         | us 6 cm is melted<br>( <i>d</i> ) 12 cm                | and recast in the shape of a sph | ere, |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If the volume of a (a) $4168 \text{ cm}^2$                                                                                                                                                                            | hemisphere is 19404<br>( <i>b</i> ) 4062 cm <sup>2</sup>             | 4 cm <sup>3</sup> , then the tota<br>(c) 4000 cm <sup>2</sup>           | l surface area of<br>( <i>d</i> ) 4158 cm <sup>2</sup> | the hemisphere is                |      |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The ratio between ( <i>a</i> ) 4 : 9                                                                                                                                                                                  | volumes of two sph<br>(b) 5:6                                        | neres is 8 : 27. What<br>(c) 8 : 5                                      | is the ratio betw $(d) 9:4$                            | veen their surface area?         |      |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The length of the diagonal of a cube is $6\sqrt{3}$ cm. Its total surface area is                                                                                                                                     |                                                                      |                                                                         |                                                        |                                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a) 216 cm <sup>2</sup>                                                                                                                                                                                               | (b) 150 $\rm cm^2$                                                   | (c) 188 cm <sup>2</sup>                                                 | ( <i>d</i> ) 66 cm <sup>2</sup>                        |                                  |      |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Find the volume of                                                                                                                                                                                                    | f the largest right ci                                               | rcular cone that car                                                    | n be cut out from                                      | a cube of edge 4.2 cm.           |      |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A heap of rice is in the form of a cone of diameter 9 m and height 3.5 m. Find the volume of the rice. How much canvas cloth is needed to just cover the heap?                                                        |                                                                      |                                                                         |                                                        |                                  |      |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prove that the surface area of a sphere is equal to the curved surface area of the circumscribed cylinder.                                                                                                            |                                                                      |                                                                         |                                                        |                                  |      |
| 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A solid metallic sphere of diameter 21 cm is melted and recast into a number of smaller cones, each of diameter 7 cm and height 3 cm. Find the number of cones so formed.                                             |                                                                      |                                                                         |                                                        |                                  |      |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A toy is in the form of a cone mounted on a hemisphere of radius 3.5 cm. The total height of the toy is 15.5 cm. Find the total surface area and volume of the toy.                                                   |                                                                      |                                                                         |                                                        |                                  |      |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The height of a cone is 30 cm. A small cone is cut off at the top by a plane parallel to the base. It is volume be $\frac{1}{27}$ of the volume of the given cone, at what height above the base is the section made? |                                                                      |                                                                         |                                                        |                                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                      |                                                                         |                                                        |                                  |      |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Three solid metallic spheres of radii 3 cm, 4 cm and 5 cm respectively are melted to form a single solid sphere. Find the diameter of the resulting sphere.                                                           |                                                                      |                                                                         |                                                        |                                  |      |
| 15. A wooden article was made by scooping out a hemisphere from each ends of a solid cylinder. If the height of the cylinder is 20 cm, and radius of the base is 3.5 cm, find the total surface area of the article.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                       |                                                                      |                                                                         |                                                        |                                  |      |
| Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ıe:                                                                                                                                                                                                                   |                                                                      |                                                                         | Teacher                                                | 's signature:                    |      |
| Class: X Date: Dat |                                                                                                                                                                                                                       |                                                                      |                                                                         |                                                        |                                  |      |

- 16. How many spherical bullets can be made out of a solid cube of lead whose edge measures 44 cm, each bullet being 4 cm in diameter?
- 17. Find the volume of frustum of cone, the area of whose ends are 40  $m^2$  and 10  $m^2$  and height is 9 metres.
- 18. An open metal bucket is in the shape of a frustum of a cone, mounted on a hollow cylindrical base made of the same metallic sheet. The diameters of two circular ends of the bucket are 45 cm and 25 cm, the total vertical height of the bucket is 30 cm and that of the cylindrical base is 6 cm. Find the area of the metallic sheet used to make the bucket. Also find the volume of water the bucket can hold. [Do not take into account the handle of the bucket]



- 19. A tent consists of frustum of a cone, surmounted by a cone. If the diameters of the upper and lower circular ends of the frustum be 14 m and 26 m respectively, the height of the frustum be 8 m and the slant height of the surmounted conical portion be 12 m, find the area of the canvas required to make the tent. (Assume that the radii of the upper circular end of the frustum and the base of surmounted conical portion are equal)
- 20. A shuttlecock used for playing badminton has the shape of a frustum of a cone mounted on a hemisphere as shown in the figure. The external diameters of the frustum are 5 cm and 2 cm and the height of the entire shuttlecock is 7 cm. Find its external surface area.



© Ratna Sagar

## ANSWERS

## WORKSHEET 1

**1.** (*b*) Frustum of a cone **2.** (*c*) 125% **3.** (*d*) 216 cm<sup>3</sup> **4.** (*a*) 6 cm **5.** (*d*) 4158 cm<sup>2</sup>

6. (a) 4:9 7. (a)  $216 \text{ cm}^2$  8.  $19.4 \text{ cm}^3$  9.  $74.25 \text{ m}^3$ ,  $80.61 \text{ m}^2$  11. 126 12.  $214.5 \text{ cm}^2$ 

13. 20 cm 14. 12 cm 15. 544 cm<sup>2</sup> 16. 2541 17. 210 m<sup>3</sup> 18. 3822.5 cm<sup>2</sup>, 23.73 L (approx.)

19.  $\frac{6248}{7}$  m<sup>2</sup> 20. 74.26 cm<sup>2</sup> (approx.)