

CHAPTER 5 – ARITHMETIC PROGRESSIONS

	1. In an AP if $a = -2$. (<i>a</i>) -4.5	5, $d = 0$, $n = 107$, th (b) 2.5	en a_n will be (c) -2.5	(<i>d</i>)	5.4			
	2. How many terms (<i>a</i>) 30	of two digits are div (b) 31	visible by 3? (c) 40	(<i>d</i>)	29			
	3. The sum of first fiv (<i>a</i>) 24	(<i>b</i>) 36 ve terms of the AP	: 3, 7, 11, 15, is (c) 55	(<i>d</i>)	85			
	4. If the sum of an A (<i>a</i>) 4	P is $3n^2 - n$, then its (b) 2	s first term is (c) 3	(<i>d</i>)	5			
	5. The sum of all 2-d (<i>a</i>) 1040	igit numbers divisib (b) 945	ole by 5 is (c) 1255	(<i>d</i>)	1365			
	6. The 20th term from (<i>a</i>) 168	n the end of the AP (b) 155	3, 8, 13,, 253 is(c) 148	(<i>d</i>)	158			
	 7. The sum of first <i>p</i> (<i>a</i>) 3<i>a</i> 	terms of an AP is (a (b) a	$ap^2 + bp$). What is the (c) $2a$	ne co (d)	box of the AP? $5a + b$			
	8. The sum of first 10(a) 4050	00 natural numbers (b) 5550	is (c) 5050	(<i>d</i>)	1050			
9. How many numbers lie between 10 and 600 which when divided by 3 leave a remainder 23								

- 10. Find the 20th term of the AP: 1, 5, 9, 13, 17, ...
- 11. Find the sum of first 15 multiples of 8.
- 12. The first and last terms of an AP are 4 and 81 respectively. It the common difference is 7, how many terms are there in the AP and what is their sum?
- 13. Find the sum of first hundred even natural numbers which are divisible by 5.
- 14. The sum of the first *n* terms of an AP is given by $S_n = (3n^2 n)$, find its *n*th term.
- 15. In an AP, the first term is 22, *n*th term is –11 and sum to first *n*th terms is 66. Find *n* and *d* common difference.
- 16. In an AP, the sum of first *n* terms is $\left(\frac{3n^2}{2} + \frac{5n}{2}\right)$. Find the 25th term.
- 17. Find the sum of all 3-digit numbers which are multiplies of 7.
- 18. If (x + 2), 2x, (2x + 3) are three consecutive terms of an AP, find the value of x.
- 19. In an AP, the first term is 2, the last term is 29 and sum of the terms is 155. Find the common difference of the AP.
- 20. Find the sum of the following:

$$\left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+\dots$$
 up to *n* terms.

Name:			Teacher's signature:
Class:	X		Date:
	C	Ratna	Sagar

ANSWERS

WORKSHEET 1

1.	(c) – 2.5	2. (<i>a</i>)	30 3	. (c) 55	4. <i>(b)</i> 2	5. (b) 945	6. (d) 158	7. (c) 2a	8. (<i>c</i>) 5050	
9.	197	10. 77	11. 960	12. 12,	510 13.	50500	14. (6 <i>n</i> – 4)	15. <i>n</i> = 12, <i>d</i> =	= -3 16. 76	5
17.	70336	18. <i>x</i> =	5 19	. 3 20.	$\frac{1}{2}(n-1)$					

© Ratna Sagar