
WORKSHEET 1

CHAPTER 2 - POLYNOMIALS

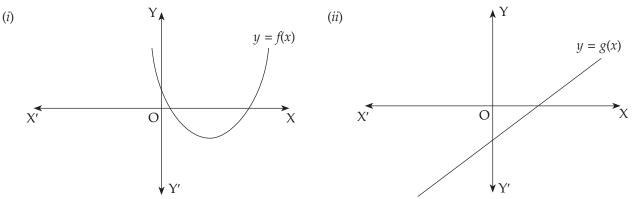
- 1. Find the zeroes of the quadratic polynomial $2x^2 11x + 15$ and verify the relation between the zeroes and its coefficients.
- 2. If two zeroes of the polynomial $f(x) = x^4 6x^3 26x^2 + 138x 35$ are $2 + \sqrt{3}$ and $2 \sqrt{3}$, find other zeroes.
- 3. If α and β are the zeroes of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate:

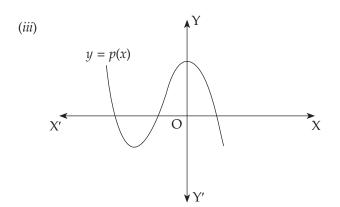
(i)
$$\alpha^2 + \beta^2$$
 (ii) $\alpha^3 + \beta^3$ (iii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ (iv) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

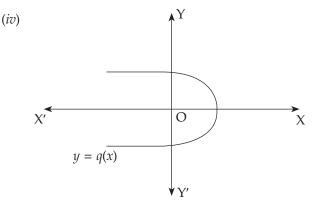
- 4. Find the zeroes of the polynomial $f(x) = x^3 5x^2 2x + 24$, if it is given that the product of its two zeroes is 12.
- 5. What must be added to the polynomial $f(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$?
- 6. The graph of a polynomial f(x) is as shown below. Write the number of real zeroes of f(x).

- 7. If $f(x) = x^3 + x^2 ax + b$ is divisible by $x^2 x$, then write the values of *a* and *b*.
- 8. Find the zeroes of the quadratic polynomial $f(x) = abx^2 + (b^2 ac)x bc$ and verify the relationship between the zeroes and its coefficients.
- 9. If α and β are the zeroes of the polynomial $f(x) = x^2 + 5x + k$ such that $\alpha \beta = 1$, find the value of k.
- 10. Find the zeroes of the polynomial $f(x) = x^3 12x^2 + 39x 28$, if it is given that the zeroes are in A.P.
- 11. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time and product of its zeroes as 3, -1 and -3 respectively.
- 12. By applying division algorithm, prove that the polynomial $g(x) = x^2 + 3x + 1$ is a factor of the polynomial $f(x) = 3x^4 + 5x^3 7x^2 + 2x + 2$.
- 13. Find the values of *a* and *b* so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.
- 14. Divide $5x^3 13x^2 + 21x 14$ by $3 2x + x^2$ and verify division algorithm.
- 15. If the polynomial $x^4 + 2x^3 + 8x^2 + 12x + 18$ is divided by another polynomial $x^2 + 5$, the remainder comes out to be px + q. Find the values of p and q.
- 16. Find a quadratic polynomial whose zeroes are $\frac{2}{3}$ and $\frac{-1}{4}$. Verify the relation between the coefficients and the zeroes of the polynomial.

Image: Second Second


Name:		
Class:	Х	


Teacher's signature:


Date:

- 17. Find the zeroes of the polynomial $f(x) = x^3 5x^2 16x + 80$, if its two zeroes are equal in magnitude but opposite in sign.
- 18. Obtain all zeroes of the following polynomials:
 - (*i*) $f(x) = 2x^4 + x^3 14x^2 19x 6$, if two of its zeroes are -2 and -1.
 - (*ii*) $f(x) = x^3 + 13x^2 + 32x + 20$, if one of its zeroes is -2.
 - (*iii*) $f(x) = x^4 3x^3 x^2 + 9x 6$, if two of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$.
 - (iv) $f(x) = 2x^3 + x^2 6x 3$, if two of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$.
- 19. Divide the following polynomials f(x) by the polynomials g(x) and find the remainders:
 - (i) $f(x) = 14x^3 5x^2 + 9x 1;$ (ii) $f(x) = 6x^3 + 11x^2 - 39x - 65;$ (iii) $f(x) = 9x^4 - 4x^2 + 4;$ (iv) $f(x) = 30x^4 + 11x^3 - 82x^2 - 12x + 48;$ $g(x) = 3x^2 + x - 1$
- 20. If each of the following graphs is the graph of a polynomial, then identify which one corresponds to a linear polynomial and which one corresponds to a quadratic polynomial:

© Ratna Sagar

ANSWERS

WORKSHEET 1			
1. 3, $\frac{5}{2}$	2. 7, – 5		
3. (i) $\frac{b^2 - 2ac}{a^2}$ (ii) $\frac{3abc - b^3}{a^3}$ (iii) $\frac{3abc - b^3}{a^2c}$	$(iv) \ \frac{b^2 - 2ac}{ac}$		
4. 3, 4, -2	5. $x - 2$		
6. 3	7. $a = 2, b = 0$		
8. $\frac{-b}{a}$, $\frac{c}{b}$	9. $k = 6$		
10. 1, 4, 7	11. $k (x^3 - 3x^2 - x + 3), k$ is any non-zero real number		
13. $a = 1, b = 7$	14. quotient = $5x - 3$, remainder = -5		
15. $p = 2$ and $q = 3$	16. $12x^2 - 5x - 2$		
17. 4, -4 and 5			
18. (i) $-1/2$, 3, -2 , -1 (ii) -10 , -1 , -2 (iii) $-\sqrt{3}$, $\sqrt{3}$, 1, 2 (iv) $-\sqrt{3}$, $\sqrt{3}$, $-1/2$			
19. (<i>i</i>) 4 (<i>ii</i>) $-38x - 60$ (<i>iii</i>) $-x + 4$ (<i>iv</i>) 0			
20. (<i>i</i>) quadratic polynomial	(<i>ii</i>) linear polynomial		
(iii) neither linear nor quadratic polynomial	(<i>iv</i>) quadratic polynomial		

© Ratna Sagar