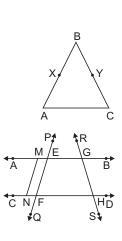
WORKSHEET 5

CHAPTER 5 - INTRODUCTION TO EUCLID'S GEOMETRY

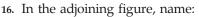

- 1. It is known that x + y = 10 and that x = z. Show that z + y = 10.
- 2. In the given figure, we have AB = BC, BX = BY. Show that AX = CY.
- 3. In the adjoining figure, name:
 - (*i*) six points
 - (*ii*) five line segments
- (iii) four rays
- (iv) four lines
- (v) four collinear points.
- 4. (*i*) How many lines can pass through a given point?
 - (ii) In how many points can two distinct lines at the most intersect?
- 5. (i) Given two points P and Q, how many line segments do the determine.
 - (ii) Name the line segment determined by the three collinear points P, Q and R.
- 6. In the given figure, X and Y are the mid-points of AC and BC and AX = CY. Show that AC = BC.

7. In the given figure,
$$BX = \frac{1}{2}AB$$
, $BY = \frac{1}{2}AC$ and $AB = BC$. Show that $BX = BY$.

- 8. Ram and Ravi have the same weight. If the each gains weight by 2 kg, how will their new weights be compared?
- 9. Solve the equation a 15 = 25 and state which axiom do you use here.
- 10. Which of the following statements are true or false?
 - (*i*) A line segment has no definite length.
 - (ii) A ray has no end point.
 - (*iii*) A line has a definite length.
 - (iv) A line AB is the same as line BA.
- 11. In the given figure, if $\angle 1 = \angle 3$, $\angle 2 = \angle 4$ and $\angle 3 = \angle 4$, then write the relation between $\angle 1$ and $\angle 2$, using Euclid's axiom.

Chapter 5 – Introduction to Euclid's geometry 1

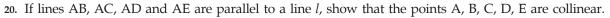
Name:		Teacher's signature:	
Class: IX		Date:	
(© Ratna	Sagar	

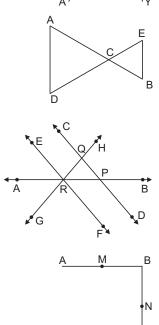


- 12. Check whether the given system of axioms is consistent or inconsistent.
 - (*i*) Things which are equal to the same thing are equal to one another.
 - (ii) If equals are added to equals, the wholes are equal.
 - (iii) Things which are double of the same thing are equal to one another.

13. In the adjoining figure, show that length AH > length of AB + BC + CD.

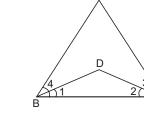
14. In the given figure, AC = XD, C is the mid-point of AB and D is the mid-point of XY. Show that AB = XY.


15. In the given figure, AC = DC and CB = CE. Show that AB = DE.


- (i) Two pairs of intersecting lines and their corresponding points of intersection.
- (ii) Three concurrent lines and their points of intersection.
- (*iii*) Three rays
- (iv) Two line segments
- 17. In the given figure,
 - (*i*) AB = BC, M in the mid-points of AB and N is the mid-point of BC. Show that AM = NC.
 - (*ii*) BM = BN, M is the mid-point of AB and N is the mid-point of BC. Show that AB = BC.
- 18. Fill in the blanks so as to make the following statements true:
 - (*i*) Two distinct points in a plane determine a line.
 - (ii) Two distinct in a plane cannot have more than one point in common.
 - (iii) Given a line and a point, not on the line, there is one and only line which passes through the given point and is to the given line.
 - (iv) A line separates a plane into parts namely the and the itself.

Chapter 5 – Introduction to Euclid's geometry

_ 2 19. In the given figure, $\angle ABC = \angle ACB$ and $\angle 3 = \angle 4$. Show that $\angle 1 = \angle 2$.


© Ratna Sagar

۱c

BCDEFGH

Δ

	ANSWERS		
WORKSHEET 5			
3. (<i>i</i>) A, B, C, D, E, F	(<i>ii</i>) $\overline{\text{EG}}$, $\overline{\text{FH}}$, $\overline{\text{EF}}$, $\overline{\text{GH}}$, $\overline{\text{MN}}$		
(<i>iii</i>) $\overrightarrow{\text{EP}}$, $\overrightarrow{\text{GR}}$, $\overrightarrow{\text{GB}}$, $\overrightarrow{\text{HD}}$	$(iv) \stackrel{\longleftrightarrow}{AB}, \stackrel{\longleftrightarrow}{CD}, \stackrel{\longleftrightarrow}{PQ}, \stackrel{\longleftrightarrow}{RS} \qquad (v) M, E, G, B$		
4. (i) Infinitely many	(ii) One		
5. (<i>i</i>) One	(ii) PQ, QR, PR		
8. The weight of Ram and Ravi gain equal by using Euclid's second axiom.			
9. Euclid's second axiom has been used here.			
10. (<i>i</i>) False (<i>ii</i>) False	(<i>iii</i>) False (<i>iv</i>) True		
11. ∠1 = ∠2			
12. Consistent			
16. (i) $\{ \overrightarrow{\text{EF}}, \overrightarrow{\text{GH}}, R \}, \{ \overrightarrow{\text{AB}}, \overrightarrow{\text{CD}}, P \}$	$(ii) \stackrel{\longleftrightarrow}{AB}, \stackrel{\longleftrightarrow}{EF}, \stackrel{\longleftrightarrow}{GH}, R$		
$(iii) \overrightarrow{\text{RB}} , \ \overrightarrow{\text{RH}} , \ \overrightarrow{\text{RG}}$	$(iv) \ \overline{\mathrm{RQ}}, \ \overline{\mathrm{RP}}$		
18. (i) unique (iii) perpendicular, perpendicular	(<i>ii</i>) lines (<i>iv</i>) three, two half planes, line		

© Ratna Sagar