Chapter **12 Circles**

Exercise 12

1. (*i*) Let O be the centre of the circle and let P be a point 20 cm away from the centre and PB be a tangent to the circle at point B.

Join OB.

Then, radius $OB = 5$ cm and $OP = 20$ cm.

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact and PB is a tangent at B and OB is the radius through B, therefore $OB \perp PB$.

In right \triangle OBP, we have

 $OB² + PB²= OP²$ [By Pythagoras' Theorem]

$$
\Rightarrow (5 \text{ cm})^2 + PB^2 = (20 \text{ cm})^2
$$

$$
\Rightarrow PB^2 = (400 - 25) \text{ cm}^2
$$

$$
\Rightarrow PB^2 = 375 \text{ cm}^2
$$

 \Rightarrow PB = $5\sqrt{15}$ cm.

 (*ii*) Let PT be the tangent to the circle with centre at 0. We join OT. We have

Also, \angle OTP = 90°

[\because PT is the tangent and OT is the radius]

We have
$$
OP = 29 \text{ cm}
$$
 [Given]

∴ From \triangle OPT, by Pythagoras' theorem, we have $OP^2 = \triangle T^2 + TP^2$

$$
OP2 = OT2 + TP2
$$

\n
$$
\Rightarrow TP2 = OP2 - OT2
$$

\n
$$
= (OP + OT) (OP - OT)
$$

\n
$$
= (29 + 20) (29 - 20)
$$

\n
$$
= 49 \times 9
$$

\n
$$
\therefore TP = \sqrt{49 \times 9}
$$

$$
= 7 \times 3 = 21
$$

 ∴ Required length of the tangent from P to the circle is **21 cm**.

2. Since the tangent at any point of a circle is perpendicular to the radius through the point of contact and AB is a tangent at B and OB is the radius through B, therefore $OB \perp AB$.

In right $\triangle OBA$, we have

3. Given that arc PQ = arc PR

∴ Chord PQ = Chord PR

 Let AB be a tangent to the circle with centre at O at the point P.

But these are alternate angles.

∴ QR \parallel PB

4. Given that lines AB and CD are the two tangents to the circle with centre at O, through an external point P.

Let these two lines touch the circle at T_1 and T_2 . To prove that OP is the internal bisector of ∠APD, i.e.

$$
\angle APO = \angle DPO
$$

Construction: We join OT_1 and OT_2 . In \triangle OPT₁ and \triangle OPT₂, we have

$$
\angle OT_1P = \angle OT_2P = 90^\circ
$$

 $OT₁ = OT₂$ [Radii of the same circle]

and the hypotenuse OP is common.

\n- ∴ By RHS congruence criterion, we have\n
$$
\triangle OPT_1 \cong \triangle OPT_2
$$
\n
$$
\angle T_1PO = \angle T_2PO
$$
\n
\n- i.e.
$$
\angle APO = \angle DPO
$$
\n
\n

Hence, proved.

5. (*i*) Let O be the common centre of the two concentric circles. Let the chord AC of length 8 cm touch the smaller circle at T. Then T is the mid-point of the

Since AC is a tangent to the smaller circle at T,

$$
\therefore \qquad \angle \text{OTA} = 90^\circ.
$$

- ∴ In \triangle OTA, we have OA = radius of the larger circle
- $= 5$ cm and $AT = 4$ cm.
- ∴ By Pythagoras' theorem, we have

$$
OT = \sqrt{OA^2 - AT^2}
$$

$$
= \sqrt{25 - 16}
$$

$$
= \sqrt{9}
$$

$$
= 3
$$

 Hence, the required radius of the smaller circle is **3 cm**.

 (*ii*) Let O be the common centre of two concentric circles. Let the chord AB of length 46 cm touch the smaller circle of radius *r* cm at the point M. Then M is the mid-point of the chord AB. We join OM and OB. Then,

OM = 7 cm, OB = *r* cm, MB = $\frac{1}{2}AB = \frac{1}{2} \times 46$ cm =

23 cm and ∠OMB = 90° .

∴ In OBM, we have by Pythagoras' theorem,

$$
OB2 = OM2 + MB2
$$

\n
$$
\Rightarrow r2 = 72 + 232
$$

\n
$$
= 49 + 529
$$

\n
$$
= 578
$$

\n
$$
\therefore r = \sqrt{578} = 17\sqrt{2}
$$

Hence, the required value of *r* is $17\sqrt{2}$ cm.

6. (*i*) Let O be the common centre of two concentric circles. Let AB be a chord of the bigger circle, which touches the smaller circle at M. Then M is the mid-point of AB and ∠OMB = 90° .

We join OM and OB. Then,

 $OM =$ radius of the smaller circle $= 2.5$ cm and $OB =$ radius of the bigger circle = 6.5 cm. Let $AB = x$ cm

Then
$$
MB = \frac{1}{2}AB = \frac{1}{2} \times x = \frac{x}{2}
$$
 ...(1)

∴ From ∆OMB, we have, by Pythagoras' theorem,

 $OB^2 = OM^2 + MB^2$

$$
\Rightarrow \qquad 6.5^2 = 2.5^2 + \frac{x^2}{4} \qquad \qquad \text{[From (1)]}
$$

$$
\Rightarrow \frac{x^2}{4} = 6.5^2 - 2.5^2
$$

= (6.5 + 2.5) (6.5 - 2.5)
= 9 × 4
= 36

$$
\Rightarrow x^2 = 36 \times 4
$$

= 144

$$
\Rightarrow x = \sqrt{144}
$$

= 12

 Hence, the required length of the chord of the larger circle is **12 cm**.

(*ii*) Let O be the common centre of two concentric circle

of radius is
$$
\frac{18 \text{ cm}}{2} = 9 \text{ cm}
$$
 and $\frac{30 \text{ cm}}{2} = 15 \text{ cm}$.

Let AB be a chord of the bigger circle, touching the smaller circle at M. Then M is the mid-point of AB and $∠\text{OMB} = 90^\circ$.

We join OM and OB.

Then $OM = 9$ cm and $OB = 15$ cm [Given] Let $AB = x$ cm

Then

$$
MB = \frac{x}{2} \text{ cm} \qquad ...(1)
$$

∴ From ∆OMB, by Pythagoras' theorem, we get

$$
OB^2 = OM^2 + MB^2
$$

$$
\Rightarrow \qquad 15^2 = 9^2 + \frac{x^2}{4}
$$
 [From (1)]

$$
\Rightarrow \qquad \frac{x^2}{4} = 15^2 - 9^2
$$

$$
= (15 + 9) (15 - 9)
$$

$$
= 24 \times 6
$$

$$
= 144
$$

$$
\therefore \qquad \frac{x}{2} = 12
$$

$$
\Rightarrow \qquad x = 24
$$

Hence, the required length of the chord AB is **24 cm**.

 (*iii*) Let AB be a chord of the larger of the two concentric circles with radius *a* and *b* respectively such that $a > b$

 Here, radius of bigger circle = *a* Radius of smaller circle = *b*

 Similarly from ΔOBD

7. Given that O is the common centre of two concentric circles. PS and PT are two tangents to the smaller circle drawn from an external point P on the bigger circle, touching the smaller circle at the points Q and R respectively. Given that $PR = 5$ cm.

 Since, PR and PQ are two tangents to the smaller circle, drawn from an outside point P, we have

$$
PQ = PR = 5 \text{ cm}
$$
\n
$$
2PQ = 2PR
$$
\n
$$
= 2 \times 5 \text{ cm}
$$
\n
$$
= 10 \text{ cm}
$$
\n
$$
\Rightarrow \qquad PS = 10 \text{ cm}
$$

 Since Q and R are two mid-points of the chords PS and PT respectively.

Hence, the required length of the chord PS is **10 cm**.

8. Given that O is the common centre of two concentric circles of radii 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D. Let BD produced intersect the bigger circle at P. To find the length of AP.

We join OD.

Then D is the mid-point of PB and \angle ODB = 90°. Now, $OD =$ radius of the smaller circle $= 8$ cm [Given] $OB =$ radius of the bigger circle = 13 cm [Given]

∴ From ∆ODB, we have by Pythagoras' theorem,

$$
OB2 = OD2 + DB2
$$

\n⇒ 13² = 8² + DB²
\n⇒ DB² = 169 - 64 = 105 ...(1)
\n∴ PB² = (2DB)² = 4DB²
\n= 4 × 105 [From (1)]
\n= 420 ...(2)

Ircles

© Ratna Sagar

3Circles 3 Now, $\angle APB = 90^{\circ}$ [: angle in a semi-circle is 90°] ∴ From ∆APB, we have by Pythagoras' theorem,

$$
AB2 = AP2 + PB2
$$

\n
$$
\Rightarrow (2OB)2 = AP2 + 420
$$
 [From (2)]
\n
$$
\Rightarrow (2 \times 13)2 = AP2 + 420
$$

\n
$$
\Rightarrow 4 \times 169 - 420 = AP2
$$

\n
$$
\Rightarrow AP2 = 676 - 420 = 256
$$

\n
$$
\therefore AP = \sqrt{256} = 16
$$

∴ The required length of AP is **16 cm**.

9. Given that O is the centre of two concentric circles of radii 8 cm and 5 cm. From an external point P, two tangents PA and PB are drawn to the circle, touching them at A and B respectively. Given that $AP = 15$ cm.

To find the length of BP.

Clearly, \angle OAP = 90° = \angle OBP.

∴ From ∆OAP, we have by Pythagoras' theorem,

$$
OP2 = AP2 + OA2
$$

= 15² + 8² = 225 + 64
= 289 ...(1)

Again, from \triangle OBP, we have by Pythagoras' theorem,

$$
BP2 = OP2 - OB2
$$

= 289 - 5² [From (1)]
= 289 - 25
= 264
∴ BP = $\sqrt{264}$ ≈ 16.25

Hence, the required length of BP is **16.25 cm (approx.)**.

10. (*i*) We know that the lengths of the tangents drawn from an external point to a circle are equal

 (*ii*) Given that PA and PB are tangents to a circle from an external point P. CD is another tangent touching the circle at Q and cutting PA and PB at C and D respectively.

Given that $PA = 12$ cm, $QC = QD = 3$ cm. To find PC + PD We have $PC = PA - CA$ $= 12 - OC$ $= 12 - 3$ $= 9$ Similarly, $PD = PB - BD$ $= 12 - QD$ $= 12 - 3$ $= 9$ Hence, $PC + PD = 9 + 9 = 18$

Hence, the required length of PC + PD is **18 cm**.

11. We know that the lengths of tangents drawn from an external point to a circle are equal.

Hence, **TA + AR = TB + BR**

12. (*i*) Given that PA and PB are two tangents drawn from an external point P to a circle with centre at O, touching it at A and B respectively. At another point E on the same circle, a third tangent CD is drawn cutting PA and PB at C and D respectively.

Given that $PA = 10$ cm.

© Ratna Saq

To find the perimeter $CP + DP + CD$ of $\triangle PCD$. Required perimeter of $\triangle PCD$

$$
= CP + DP + CD
$$

= (PA – CA) + (PB – DB) + CE + ED
= PA + PB – CA – DB + CA + DB
[\because CE = CA and ED = DB]
= 2PA [\because PA = PB]
= 2 × 10 cm
= 20 cm

 (*ii*) We know that the lengths of tangents drawn from an external point to a circle are equal.

$$
\begin{array}{c}\n\therefore \quad PA = PB \quad \text{[Tangents from P]} \\
\text{CE} = \text{CA} \quad \text{[Tangents from C]} \\
\text{DE} = \text{DB} \quad \text{[Tangents from D]} \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\therefore \quad (1) \\
\text{D} \quad \text{[Tangents from D]}\n\end{array}
$$

Perimeter of APCD

$$
= PC + CD + PD
$$
\n
$$
= PC + CE + DE + PD
$$
\n
$$
= PC + CA + DB + PD
$$
\n[Using (1)]\n
$$
= PA + PB
$$
\n[Using (1)]\n
$$
= PA + PA
$$
\n[Using (1)]\n
$$
= 2PA
$$

$$
= 2PA
$$

$$
= 2 \times 14 \text{ cm} = 28 \text{ cm}
$$

Hence, perimeter of
$$
\triangle PCD = 28
$$
 cm

(*iii*) In $\triangle PAB$, we have

 $PA = PB$ [Tangents from an external point to a circle are equal] \angle ∠PBA = ∠PAB = *x* (say) [Angles opposite equal sides of a triangle] Also, ∠APB + ∠PBA + ∠PAB = 180°[Sum of angles of a triangle] \Rightarrow 60° + *x* + *x* = 180° \Rightarrow 2*x* = 180° – 60° \Rightarrow 2*x* = 120° \Rightarrow $x = 60^{\circ}$ \angle PAB = ∠PBA = ∠APB = 60° \Rightarrow \triangle PAB is an equilateral triangle. \therefore AB = PA = PB = 5 cm Hence, AB = **5 cm.**

13. Since the tangent at any point of a circle is perpendicular to the radius through the point of contact and PA is a tangent at A and OA is the radius through A, therefore $OA \perp PA.$

 \Rightarrow ∠OAP = 90° …(1)

 We know that tangents from an external point to a circle are equal.

So,
$$
PB = PA
$$

 ∠PAB = ∠PBA [Angles opposite equal sides PA and PB of $\triangle PAB$] ...(2)

In $\triangle PAB$, we have

 $\angle AOB = ?$ Radius of a circle is perpendicular to the tangent at the point of contact OA ⊥ PA

$$
\angle
$$
OAP = 90°
\n
$$
\angle
$$
PAB +
$$
\angle
$$
OAB = 90°
\n
$$
\angle
$$
OAB = 90° - 50° = 40°

 Now In ΔOAB

$$
OA = OB
$$
 (radius)
∴ $\angle OAB = \angle OBA = 40^{\circ}$
 $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$
 $\angle AOB + 40^{\circ} + 40^{\circ} = 180^{\circ}$
 $\angle AOB = 100^{\circ}$

15.

AB is the diameter
\n∠AOQ = 58°
\n∠ATQ = ?
\n∠AOQ + ∠BOQ = 180° (Linear pair)
\n58° + ∠BOQ = 180°
\n∠BOQ = 122°
\nIn ΔBOQ
\nOB = OQ (radius)
\n∴ ∠OBQ = OQB
\nNow
\n∠BOQ + ∠OB + ∠OBQ = 180°
\n122° + 2∠OQB = 180°
\n∠OQB =
$$
\frac{180°-122°}{2} = \frac{58°}{2} = 29°
$$

\n∠OQB + ∠OQT = 180° (Linear pair)
\n∠OQT = 180° - 29° = 151°
\nIn quadrilateral OATQ
\n∠OAT + ∠ATQ + ∠QQT + ∠AOQ = 360°
\n90° + ∠ATQ + 151° + 58° = 360°
\n∠ATQ = 61°
\n16. ∠ \angle CAB = 30°
\n∠PCA = ?
\nP
\nTotal
\nIn ΔOAC
\nOA = OC
\n∴ ∠OAC = ∠OCA = 30°
\nRadius of a circle is perpendicular to the tangent at the point of contact
\n∴ OCL PQ
\n∴ ∠OCP = 90°
\n∠OCP = 90°
\n∠QCP = 90°

 $30^{\circ} + \angle PCA = 90^{\circ}$ ∠**PCA = 60º**

17. We are given \angle QPT = 60°

$$
\angle QPT + \angle QPX = 180^{\circ}
$$
 (Linear Pair)
\n
$$
\angle QPX = 180^{\circ} - \angle QPT
$$

\n
$$
= 180^{\circ} - 60^{\circ}
$$

\n
$$
= 120^{\circ}
$$

\nNow
$$
\angle PRQ = \angle QPX = 120^{\circ}
$$

(Alternate Segment Theorm)

18. Given that AB is a chord of a circle with centre at O and AOC is a diameter of the circle. AT is a tangent to the circle at A.

We join BC.

To prove that \angle BAT = \angle ACB.

Let $\angle BAT = \theta$ …(A) Then $\angle BAC = 90^\circ - \theta$... (1) [$\because \angle CAT = 90^\circ$] Also, $\angle ABC = 90^{\circ}$ [\because Angle is a semicircle is 90°] ∴ ∠ACB + ∠BAC = 90°

[Angle-sum property of a triangle]

$$
\therefore \angle ACB = 90^{\circ} - \angle BAC = 90^{\circ} - (90^{\circ} - \theta)
$$

[From (1)]

∴ From (A) and (B),

 $\angle ACB = \angle BAT = \theta$ …(3)

Hence, proved.

19. Given that PA is a tangent to a circle with centre at O, touching the circle at A. AO is joined and produced to cut the circle at B. Then AB is diameter of the circle. Given that ∠POB = 115°. To find ∠APO.

Since PA is a tangent and OA is a radius of the circle,

$$
\therefore \qquad \angle PAO = 90^{\circ} \qquad \qquad \dots (1)
$$

Also,
$$
\angle POA = \angle AOB - \angle POB
$$

= $180^\circ - 115^\circ$

$$
= 65^{\circ} \qquad \qquad \ldots (2)
$$

Now, in $\triangle APO$, we have

$$
\angle APO + \angle AOP + PAO = 180^{\circ}
$$

[By angle sum property of a triangle]

$$
\Rightarrow \angle \text{APO} + 65^{\circ} + 90^{\circ} = 180^{\circ} \qquad \text{[From (1) and (2)]}
$$

$$
\Rightarrow \angle \text{APO} = 180^{\circ} - 90^{\circ} - 65^{\circ}
$$

$$
= 180^{\circ} - 155^{\circ}
$$

$$
=25^{\circ}
$$

which is the required measure of ∠APO.

Ratna Sa

20. Given that PQ and PR are two tangents drawn from an external point P, to a circle with centre at O such that ∠RPQ = 30°.

RS is a chord drawn parallel to the tangent PQ.

SQ is joined. To find ∠RQS.

 Construction: We join QO and produce it to cut SR at T. Then $QOT \perp SR$ and T is the mid-point of the chord SR. Now, since the lengths of two tangents drawn from an external point P to a circle are equal.

 ∴ PQ = PR ∴ $∠PQR = ∠PRO$ Since $∠\text{OPR} = 30^\circ$ ∴ ∠PQR + ∠PRQ = $180^\circ - 30^\circ = 150^\circ$ ∴ $∠POR = ∠PRO$ $= 75^{\circ}$ Now, since OQ is a radius and QP is a tangent through Q on the circle, $\angle TQP = 90^\circ$. ∴ $\angle TQR = \angle TQP - \angle PQR$ $= 90^{\circ} - 75^{\circ}$ $= 15^{\circ}$ …(1)

Now, in ∆SQT and ∆RQT, we have QT \perp SR.

∠QTS = ∠QTR = 90°

TS = TR and TQ is common.

∴ By SAS congruence criterion

 Δ SOT ≅ Δ ROT ∴ $\angle TQS = \angle TQR$ [By CPCT] ∴ $\angle TQS = 15^\circ$ [From (1)] …(2) Hence, $\angle RQS = 2 \angle TQR = 2 \times 15^{\circ}$ [From (1)] $= 30^{\circ}$

Hence, the required measure of ∠RQS is 30°.

21. Given that P is an external point on the diameter AOB produced of a circle with centre at O, such that the tangent PC to the circle at a point C on it makes an angle of 110° with the line segment AC. Hence, \angle PCA = 110°.

To find ∠CBA.

 Construction: We join CO. Now, since AB is a diameter of the circle, hence

$$
\angle ACB = 90^{\circ}
$$

$$
\angle PCB = \angle PCA - \angle ACB
$$

$$
= 110^{\circ} - 90^{\circ}
$$

$$
= 20^{\circ}
$$

∴ $∠CAB = ∠PCB = 20°$

[∠PCB is the angle between the tangent PC to the circle and its chord CB]

Now, in $\triangle ABC$, we have

$$
\angle ACB = 90^{\circ} \text{ and } \angle CAB = 20^{\circ}
$$

\n
$$
\therefore \angle CBA = 180^{\circ} - (\angle AOB + \angle CAB)
$$

\n[By angle sum property of $\triangle ABC$]
\n
$$
= 180^{\circ} - (90^{\circ} + 20^{\circ})
$$

\n
$$
= 180^{\circ} - 110^{\circ} = 70^{\circ}
$$

\nwhich is the required measure of $\angle CBA$

which is the required measure of ∠CBA.

22. Given that PA and PB are two tangents to a circle with centre at O. These two tangents touch the circle at A and B. AO and AB are joined.

To prove that ∠APB = 2∠OAB

Let \angle PAB = θ

 Then since PA and PB are two tangents to the circle with centre at O, drawn from an external point P.

$$
\therefore \qquad \qquad \text{PA} = \text{PB}
$$
\n
$$
\angle \text{PBA} = \angle \text{PAB} = \theta
$$

∴ In Δ PAB,

$$
\angle APB = 180^\circ - 2\theta
$$

[Angle sum property of $\triangle PAB$]

$$
= 2(90^{\circ} - \theta) \qquad \qquad \dots (1)
$$

 Now, since OA is a radius of the circle and PA is a tangent at A from an outside point P of the circle,

$$
\therefore \quad \angle OAP = 90^{\circ}
$$

$$
\therefore \angle OAB = \angle OAP - \angle PAB = 90^{\circ} - \theta \quad ...(2)
$$

From (1) and (2), we see that

∠APB = 2∠OAB

Hence, proved.

 We know that the lengths of tangents drawn from an external point to a circle are equal.

or

$$
\therefore \qquad \qquad \text{TP} = \text{TQ}
$$

In $\triangle TPO$, $TP = TO$ \Rightarrow ∠TQP = TPQ …(1) [Angles opposite to equal sides] ∠TQP + ∠TPQ + ∠PTQ = 180 $^{\circ}$ [Angle sum property] \Rightarrow 2∠TPQ + ∠PTQ = 180° [Using (1)] \Rightarrow ∠PTQ = 180° – 2∠TPQ …(2) We know that, a tangent to a circle is perpendicular to the radius through the point of contact, $OP \perp PT$,

$$
\therefore \angle OPT = 90^{\circ}
$$
\n
$$
\Rightarrow \angle OPQ + \angle TPQ = 90^{\circ}
$$
\n
$$
\Rightarrow \angle OPQ = 90^{\circ} - \angle TPQ
$$
\n
$$
\Rightarrow \angle \angle OPQ = 2(90^{\circ} - \angle TPQ)
$$
\n
$$
= 180^{\circ} - 2\angle TPQ \qquad \dots (3)
$$

From (2) and (3), we get

∠PTQ = 2∠OPQ

Hence, proved.

23. Given that PT and PS are two tangents to a circle with centre at 0, drawn from an external point P. We join PO, OT and OS. Given that \angle OPT = 30°.

To find reflex ∠TOS.

Now, in \triangle OPT and \triangle OPS,

we have $TP = PS$, $OT = OS$ [Radii of the same circle] and OP is common.

∴ By SSS congruence criterion,

$$
\triangle OPT \cong \triangle OPS
$$
\n
$$
\therefore \angle OPS = \angle OPT = 30^{\circ}
$$
\n
$$
\therefore \angle SPT = 2\angle OPT
$$

 $= 2 \times 30^{\circ} = 60^{\circ}$

Now, since

$$
\angle
$$
OTP + \angle OSP = 90° + 90° = 180°,

$$
\therefore \quad \angle \text{TOS} + \angle \text{SPT} = 180^{\circ}
$$

$$
\Rightarrow \qquad \angle \text{TOS} = 180^\circ - 60^\circ = 120^\circ
$$

$$
\therefore \qquad \text{Reflex } \angle \text{TOS} = 360^\circ - 120
$$

$$
= 240^{\circ}
$$

which is the required measure of reflex ∠TOS.

24. In APOT and APOS, we have

 PT = PS [Length of tangents drawn from an external point to a circle are equal] $PO = PO$ [Common] OT = OS [Radii of a circle] \therefore \triangle POT \cong \triangle POS [By SSS congruence] \Rightarrow ∠OPT = ∠OPS \Rightarrow 30° = ∠OPS

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

 \ ∠OTP = ∠OSP = 90° …(1) In DOTP, we have ∠OTP + ∠TOP + ∠OPT = 180° [Sum of angles of a triangle] ⇒ 90° + TOP + 30° = 180° [Using (1)] ⇒ ∠TOP = 180° – (90° + 30°)

 $= 180^{\circ} - 120^{\circ} = 60^{\circ}$...(2) Similarly \angle SOP = 60° …(3) Now, \angle TOS = \angle TOP + \angle SOP

 $= 60^{\circ} + 60^{\circ}$ [Using (2) and (3)]

$$
\Rightarrow \qquad \angle \text{TOS} = 120^{\circ}
$$

 Now, In ΔSOT

$$
\angle
$$
OST + \angle OTS + \angle TOS = 180°

$$
\angle
$$
OST + \angle OTS = 180^o - \angle TOS

$$
= 180^{\circ} - 120 = 60^{\circ}
$$

Now \angle OST = \angle OTS

 $($ \therefore OT = OS isosceles triangle)

$$
2\angle \text{OST} = 2\angle \text{OTS} = 60^{\circ}
$$

$$
\angle
$$
OST = \angle OTS = 30°

Hence proved.

25. Since radius of a circle is perpendicular to the tangent at the point of contact

$$
\frac{1}{\sqrt{3x+7y}}
$$

 ∴ OA ⊥ AP and OB ⊥ PB ∴ \angle OAP = \angle OBP = 90°

Now in quadrilateral PAOB

$$
\angle P + \angle O + \angle A + \angle B = 360^{\circ}
$$

(2x + 3)[°] + (3x + 7)[°] + (90[°] + 90[°]) = 360[°]
5x + 10 = 360 - 180
5x = 180 - 10
5x = 170
x = 34

26. \angle \angle TPO = 70 $^{\circ}$

Join OT and OQ.

 Radius of a circle is perpendicular to the tangent at the point of contact

 We know that angle subtended at the centre is twice the angle subtended at the circle

 ∴ ∠QOT = 2∠TRQ \angle TRQ = $\frac{\angle QOT}{2}$ = $\frac{110}{2}$ ° ∠**TRQ = 55º**

27. Join OT and let it intersect PQ at M.

In \triangle OPT and \triangle OQT, we have $OP = OQ$ [Radii of a circle]

From (2) and (3), we get

TM is the perpendicular bisector of PQ.

$$
\therefore \qquad \text{MP} = \text{MQ} = \frac{1}{2} \text{ PQ}
$$
\n
$$
= \frac{1}{2} \times 8 \text{ cm} = 4 \text{ cm} \qquad \qquad \dots (4)
$$

In right ΔPMO , we have

 $MP² + OM² = OP²$ [By Pythagoras' Theorem] ⇒ $(4 \text{ cm})^2 + (\text{OM})^2 = (5 \text{ cm})^2$

$$
(4 \text{ cm})^2 + (\text{OM})^2 = 0
$$

⇒ $OM^2 = (25 - 16)$ cm² = 9 cm²

 \Rightarrow OM = 3 cm

In right Δ PMT, we have

$$
TP2 = MP2 + MT2 [By Pythagoras' Theorem]
$$

\n
$$
\Rightarrow TP2 = (4 cm)2 + MT2 [Using (4)] ... (5)
$$

\nSince the tangent at any point of a circle is perpendicular to the radius through the point of contact and TP is a

to the radius through the point of contact and TP is a tangent at P and OP is the radius through P, therefore OP \perp TP \Rightarrow ∠OPT = 90°.

In right \triangle OPT, we have

$$
(OT)2 = OP2 + TP2
$$
 [By Pythagoras' Theorem]
(MO + MT)² = OP² + TP²

$$
\Rightarrow \quad \text{OM}^2 + \text{MT}^2 + 2\text{MO (MT)} = \text{OP}^2 + \text{TP}^2
$$

$$
\Rightarrow 9 \text{ cm}^2 + \text{MT}^2 + 2(3 \text{ cm}) \text{ (MT)}
$$

$$
= (5 \text{ cm})^2 + 16 \text{ cm}^2 + \text{MT}^2 \qquad \text{[Using (5)]}
$$

$$
\Rightarrow \qquad MT = \frac{(25 + 16 - 9)}{6} \text{ cm}
$$

$$
= \frac{41 - 9}{6} \text{ cm} = \frac{32}{6} \text{ cm} = \frac{16}{3} \text{ cm}
$$

Substituting MT = $\frac{16}{3}$ cm in (5), we get

$$
TP2 = (4 cm)2 + \left(\frac{16}{3} cm\right)^{2}
$$

$$
= \left(16 + \frac{256}{9}\right) cm^{2}
$$

$$
\Rightarrow TP2 = \frac{144 + 256}{9} cm^{2} = \frac{400}{9} cm^{2}
$$

$$
\Rightarrow TP = \frac{20}{3} cm
$$

28. Given that P is the mid-point of arc QR of a circle with centre at O and AB is a tangent to the circle at P. To prove that $QR \parallel PB$.

Circles **9**Circles $\overline{}$ $\overline{9}$

 But these two angles are alternate angles between the line AB and chord QR. Hence, QR \parallel PB.

Hence, proved.

- **29.** Given that AOB is a diameter of a circle with centre at O. C is a point on the circle such that the chord AC makes an angle of 30° with the diameter AB, i.e. $\angle BAC = 30^{\circ}$.
	- CD is a tangent to the circle at C, which cuts AB produced at D. To prove that $BC = BD$.

 Since, BC is a chord of the circle and CD is a tangent to the circle at C,

∴ $\angle BCD = \angle BAC = 30^\circ$. Also, $\angle ACB = 90^\circ$

[∴ Angle is a semicircle is 90°]

\n- ∴
$$
\angle ABC = 180^{\circ} - (\angle BAC + \angle ACB)
$$
\n- $= 180^{\circ} - (30^{\circ} + 90^{\circ})$
\n- $= 180^{\circ} - 120^{\circ}$
\n- $\angle CBD = 180^{\circ} - \angle ABC$
\n- $= 180^{\circ} - 60^{\circ}$
\n- $= 120^{\circ}$
\n- ∴ In $\triangle BCD$, we have $\angle BCD = 30^{\circ}$ and $\angle CBD = 120^{\circ}$
\n- ∴ $\angle BDC = 180^{\circ} - (30^{\circ} + 120^{\circ})$ [Angle sum property of a triangle] $= 180^{\circ} - 150^{\circ}$
\n- $= 30^{\circ}$
\n

Hence, proved.

∴ $∠BCD = ∠BDC$ ∴ BC = BD

30. Given that PA and PB are tangents to a circle from an outside point P such that PA = 10 cm and ∠APB = 60° . To find the length of the chord AB.

We know that $PB = PA = 10 \text{ cm}$ ∴ In $\triangle PAB$,

$$
\angle PAB = \angle PBA = \frac{180^\circ - 60^\circ}{2} = 60^\circ
$$

∴ \triangle PAB is an equilateral triangle.

 ∴ AB = PB = PA = **10 cm** which is the required length of AB.

31. (*i*) Given that two tangents PA and PB are drawn to a circle with centre O from an external point P. OP, AB and OA are joined.

 $OA =$ radius of the circle = 6 cm [Given]

Also, $AM = MB = 4.8$ cm [Given] To find the length of PA.

Since M is the mid-point of the chord AB,

∴ OM ⊥ AB.

 Also, since OA is a radius and AP is a tangent to the circle,

∴ $∠PAO = 90°$

Let $AP = x$ and $PM = y$

From Δ OAM, we have by Pythagoras' theorem,

- $OA^2 = OM^2 + AM^2$ \Rightarrow 36 = OM² + 4.8² \Rightarrow OM² = 36 – 4.8² $= 36 - 23.04$ $= 12.96$ ∴ OM = $\sqrt{12.96}$ = 3.6 …(1) Now, from \triangle APM, we have $AP^2 = AM^2 + PM^2$ ⇒ $x^2 = 4.8^2 + y^2$ …(2) Also, from $\triangle APO$, we have $PO^2 = OA^2 + AP^2$ \Rightarrow $(PM + OM)^2 = OA^2 + AP^2$ \Rightarrow $(y + 3.6)^2 = 36 + x^2$ \Rightarrow *y*² + 7.2*y* + 12.96 = 36 + 4.8² + *y*² [From (1)]
	- $7.2y + 12.96 = 36 + 23.04$ $7.2y = 36 + 23.04 - 12.96$ $= 36 + 10.08$ $= 46.08$

$$
y = \frac{46.08}{7.2} = \frac{4608}{72} = 6.4 \dots (3)
$$

∴ From (2) and (3), we have

$$
x^{2} = 4.8^{2} + 6.4^{2}
$$

$$
= 23.04 + 40.96 = 64
$$

$$
\therefore \qquad x = \sqrt{64} = 8
$$

Hence, the required length of PA is 8 cm.

- (*ii*) Given that PQ is a chord of length 8 cm of a circle with centre at O and radius = 5 cm. Tangents at P and Q intersect each other at T. Let OT intersect PQ at M. OP and OQ are joined. Given that $OP = OQ = 5$ cm. Now, OP is a radius and PT is a tangents, at P.
- © Ratna Sagar

$$
\therefore
$$
 PO ⊥ PT. Similarly, OQ ⊥ QT. Now, in \triangle OPT and \triangle OQT, we have

$$
OP = OQ,
$$

$$
\angle OPT = \angle OQT = 90^{\circ}
$$

and OT is common

∴ From (3) and (4), we get

$$
y^2 = 16 + \left(\frac{16}{3}\right)^2
$$

$$
= \frac{144 + 256}{9} = \frac{400}{9}
$$

$$
\therefore \qquad y = \sqrt{\frac{400}{9}} = \frac{20}{3}
$$

Hence, the required length of PT is $\frac{20}{3}$ **cm**.

 (*iii*) Given that PQ is a chord of a circle with centre at O. PT and QT are two tangents to the circle intersecting each other at an outside point T. OP and OT are joined. Let OT intersect PQ at R. Then R will be the mid-point of the chord PQ and OR ⊥ PQ.

Given that $PQ = 4.8$ cm, radius $OP = 3$ cm Let $TP = TQ = y$ cm and $RT = x$ cm Then, from \triangle POT, since ∠OPT = 90°, hence by Pythagoras' theorem, we have $OT² = OP² + PT²$ \Rightarrow $(RT + OR)^2 = 3^2 + y^2$ ⇒ $(x + OR)^2 = 9 + y^2$ …(1) Now, from \triangle OPR, we have \angle PRO = 90°, OP = 3 cm and PR = $\frac{4.8}{2}$ cm = 2.4 cm and $RT = x$ cm. ∴ By Pythagoras' theorem, we have $TP^2 = RT^2 + PR^2$ \Rightarrow $y^2 = x^2 + 2.4^2$ $= x^2 + 5.76$ …(4) ∴ From (3) & (4), we get $(x + 1.8)^2 = 9 + x^2 + 5.76$ \Rightarrow $x^2 + 3.6x + 3.24 = 14.76 + x^2$ \Rightarrow 3.6*x* = 14.76 – 3.24 = 11.52 \Rightarrow $x = \frac{11.52}{3.6}$ $\frac{.52}{.6} = 3.2$...(5) ∴ From (4) and (5), we get $y^2 = 3.2^2 + 5.76$ $= 10.24 + 5.76$ $= 16$ ∴ $y = \sqrt{16} = 4$

Hence, the required length of the tangent TP is **4 cm**.

32. Given that a circle is inscribed in a triangle ABC touching AB, BC and AC at P, Q and R respectively such that $AB = 10$ cm, $AR = 7$ cm and $CR = 5$ cm.

$$
_{11}^+
$$

11Circles

To find the length of BC.

 Since from an external point A, two tangents AP and AR are drawn, hence, we have

$$
AP = AR = 7 \text{ cm}
$$
 [Given]

Similarly, we have

 $BO = BP = AB - AP$ $= (10 - 7)$ cm = 3 cm …(1) Also, $CQ = CR = 5$ cm [Given] ...(2) Hence, $BC = BO + CO$

Hence, the required length of BC is
$$
8 \text{ cm}
$$
.

33. Since the lengths of the tangents from an external point to a circle are equal

 $= (3 + 5)$ cm $= 8$ cm

Let
$$
QM = x
$$
 cm ... (2)
\nThen, $RM = QR - QM = (8 - x)$ cm
\n $\Rightarrow RN = (8 - x)$ cm [Using (1)] ... (3)
\n $PN = PR - RN = [12 - (8 - x)]$ cm
\n $= (4 + x)$ cm
\n $\Rightarrow PL = (4 + x)$ cm [Using (1)] ... (4)
\nNow $PQ = PL + QL = PL + QM$ [Using (1)]
\n $\Rightarrow 10$ cm = $(4 + x + x)$ cm [Using (2) and (4)]
\n $\Rightarrow 10$ cm = $(4 + 2x)$ cm
\n $2x = 6 \Rightarrow x = 3$
\n $\therefore QM = x$ cm = 3 cm
\n $RN = (8 - x)$ cm
\n $= (8 - 3)$ cm = 5 cm [Using (3)]
\nand $PL = (4 + x)$ cm = $(4 + 3)$ cm
\n $= 7$ cm [Using (4)]
\nHence, $QM = 3$ cm, $RN = 5$ cm and $PL = 7$ cm.

34. (*i*) Since, the lengths of tangents from an exterior point to a circle are equal.

$$
= \frac{1}{2} (AB + BC + AC) + r
$$

$$
= \frac{1}{2} (Perimeter of \triangle ABC) \times r
$$

Hence, area ($\triangle ABC$) = $\frac{1}{2}$ (Perimeter of $\triangle ABC$) × *r*

35. (*i*) Given that ABC is a triangle in which ∠B = 90° , $BC = 4.8$ cm and $AB = 14$ cm. A circle with centre at O is inscribed in the triangle. Let the radius of the circle be *r* cm.

To find *r*.

 Construction: We join OA, OB and OC. We draw OM⊥AB, ON ⊥ BC and OP ⊥ AC where OM = ON = OP $= r$ cm.

From $\triangle ABC$, we have by Pythagoras' theorem,

$$
AC = \sqrt{AB^2 + BC^2}
$$

\n
$$
= \sqrt{14^2 + 15^2} \text{ cm}
$$

\n
$$
= \sqrt{196 + 2304} \text{ cm}
$$

\n
$$
= \sqrt{2500} \text{ cm}
$$

\n
$$
= 50 \text{ cm}
$$

\nNow, area of $\triangle ABC = \frac{1}{2}AB \times BC$
\n
$$
= \frac{1}{2} \times 14 \times 48 \text{ cm}^2
$$

\n
$$
= 336 \text{ cm}^2 \qquad ...(1)
$$

\nArea of $\triangle OAB = \frac{1}{2} \times AB \times OM$
\n
$$
= \frac{1}{2} \times 14 \times r = 7 r \text{ cm}^2 \qquad ...(2)
$$

\nArea of $\triangle OBC = \frac{1}{2} \times BC \times ON$
\n
$$
= \frac{1}{2} \times 48 \times r \text{ cm}^2
$$

\n
$$
= 24 r \text{ cm}^2 \qquad ...(3)
$$

\nand area of $\triangle AOC = \frac{1}{2} \times AC \times OP$
\n
$$
= \frac{1}{2} \times 50 \times r \text{ cm}^2
$$

 $= 25 r \text{ cm}^2$ …(4)

Now, $ar(\Delta ABC) = ar(\Delta OAB) + ar(\Delta OBC) + ar(AOC)$

$$
\Rightarrow 336 = (7r + 24r + 25r)
$$

[From (1), (2), (3) and (4)]

$$
\Rightarrow 56r = 336
$$

$$
\Rightarrow \qquad \qquad r = \frac{336}{56} = 6
$$

Hence, the required value of *r* is **6 cm**.

(*ii*) In right $\triangle ABC$, we have

$$
AC2 = AB2 + BC2 [By Pythagoras' Theorem]
$$

\n
$$
\Rightarrow AC2 = (24 cm)2 + (10 cm)2
$$

$$
= 676 \text{ cm}^2
$$

\n
$$
\Rightarrow \text{AC} = 26 \text{ cm} \qquad ...(1)
$$

Join OA, OB and OC.

 Let the tangents AB, BC and CA touch the circle at D, E and F respectively.

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

 \therefore OD \perp AB, OE \perp BC and OF \perp AC.

⇒ OD, OE and OF are the altitudes of $\triangle ABO$, $\triangle BOC$, ΔCOA respectively.

Now,ar(AABC) = ar(AABB) + ar(ABOC) + ar(ACOA)
\n
$$
\Rightarrow \frac{1}{2} BC \times AB = \frac{1}{2} AB \times OD + \frac{1}{2} BC \times OE
$$
\n
$$
+ \frac{1}{2} AC \times OF
$$
\n
$$
\Rightarrow \frac{1}{2} BC \times AB = \frac{1}{2} AB \times x + \frac{1}{2} BC \times x
$$
\n
$$
+ \frac{1}{2} CA \times x [OD = OE = OF = x, radii\nof inscribed circle]\n
$$
\Rightarrow \frac{1}{2} \times 10 \text{ cm} \times 24 \text{ cm} = \frac{1}{2} \times 24 \text{ cm} \times x + \frac{1}{2} \times 10 \text{ cm}
$$
\n
$$
\times x + \frac{1}{2} \times 26 \text{ cm} \times x [Using (1)]
$$
\n
$$
\Rightarrow 120 \text{ cm}^2 = x (12 + 5 + 13) \text{ cm}
$$
\n
$$
\Rightarrow 120 \text{ cm}^2 = 30x \text{ cm}
$$
\n
$$
\Rightarrow x = \frac{120 \text{ cm}^2}{30 \text{ cm}} = 4 \text{ cm}
$$
\nHence, $x = 4 \text{ cm}$.
$$

© Ratna Sagar

13Circles

 (*iii*) Given that ABC is a triangle such that ∠ABC = 90°, $BC = 6$ cm and $AB = 8$ cm.

 A circle with centre at O and radius *r* cm is inscribed in $\triangle ABC$.

 OL, OM and ON are drawn perpendicular to AB, BC and CA respectively.

∴ $OL = OM = ON = r$ cm.

OA, OB and OC are joined.

Now, from $\triangle ABC$, we have by Pythagoras' theorem,

$$
AC = \sqrt{AB^2 + BC^2}
$$

\n
$$
= \sqrt{8^2 + 6^2} \text{ cm}
$$

\n
$$
= \sqrt{64 + 36} \text{ cm}
$$

\n
$$
= \sqrt{100} \text{ cm}^2
$$

\n
$$
= 10 \text{ cm}
$$

\n
$$
\therefore \text{ Area of } \triangle ABC = \frac{1}{2} BC \times AB
$$

\n
$$
= \frac{1}{2} \times 6 \times 8 \text{ cm}^2
$$

\n
$$
= 24 \text{ cm}^2 \qquad ...(1)
$$

\nAlso,
\n
$$
ar(\triangle OAB) = \frac{1}{2} AB \times r
$$

\n
$$
= \frac{1}{2} \times 8 \times r \text{ cm}^2
$$

\n
$$
= 4 r \text{ cm}^2 \qquad ...(2)
$$

\n
$$
ar(\triangle OBC) = \frac{1}{2} \times BC \times r
$$

\n
$$
= \frac{1}{2} \times 6 r \text{ cm}^2
$$

\n
$$
= 3r \text{ cm}^2 \qquad ...(3)
$$

\nand
\n
$$
ar(\triangle OCA) = \frac{1}{2} AC \times r
$$

$$
= \frac{1}{2} \times 10r \text{ cm}^2
$$

$$
= 5r \text{ cm}^2 \qquad ...(4)
$$

Now, $ar(\Delta ABC) = ar(\Delta OAB) + ar(\Delta OBC) + ar(OCA)$ ⇒ $24 = 4r + 3r + 5r$

[From (1), (2), (3) and (4)]

 \Rightarrow 12*r* = 24

$$
\Rightarrow \qquad \qquad r = \frac{24}{12} = 2
$$

Hence, the required value of *r* is **2 cm**.

36. Given that ABCD is a quadrilateral such that AB = 6 cm, $BC = 7$ cm and $CD = 4$ cm. A circle is inscribed within this quadrilateral touching its sides AB, BC, CD and DA at P, Q, R and S respectively. To find the length of AD. Since A is an external point to the circle and AP and AS are two tangents to the circle from A, hence AS = AP.

Hence, the required length of AD is **3 cm**.

37. Since the length of tangents from an external point to a circle are equal

 \therefore AP = AS = *x* (say) [Tangents from A] ...(1) $BP = BQ$ [Tangents from B] ...(2) $CR = CQ$ [Tangents from C] ...(3) $DR = DS$ [Tangents from D] ...(4) $BP = AB - AP = (18 - x)$ cm $BQ = (18 - x)$ cm [Using (2)] ...(5) $CQ = BC - BQ$ $=[27 - (18 - x)]$ cm [Using (5)] $=(27 - 18 + x)$ cm $=(9 + x)$ cm …(6)

$$
CR = (9 + x) \text{ cm} \qquad \text{[Using (3) and (6)]} ... (7)
$$
\n
$$
DR = CD - CR
$$
\n
$$
= [12 - (9 + x)] \text{ cm} \qquad \text{[Using (7)]}
$$
\n
$$
= (12 - 9 - x) \text{ cm} \qquad ... (8)
$$
\n
$$
DS = (3 - x) \text{ cm} \qquad \text{[Using (4) and (8)]}
$$
\n
$$
AD = AS + DS
$$
\n
$$
= [x + (3 - x)] \text{ cm} \qquad \text{[Using (1)]}
$$
\n
$$
AD = 3 \text{ cm}
$$

Hence, **AD = 3 cm**.

- **38.** Since the lengths of tangents from an external point to a circle are equal
	- \therefore AP = AS [Tangents from A] ...(1) $BQ = BP = 27$ cm [Tangents from B] ...(2) $CQ = CR$ [Tangents from C] ...(3) $DS = DR$ [Tangents from D] ...(4) $CR = CQ = CB - BQ$ $= (38 - 27)$ cm $= 11$ cm [Using (2)] ...(5) $DS = DR = DC - CR$ $= (25 - 11)$ cm [Using (5)]

 Since, the tangent at any point on a circle is perpendicular to the radius through the point of contact

 \angle ∠OSD = ∠ORD = 90° …(5) In quadrilateral OSDR, we have

∠OSD = ∠ORD = ∠SDR = 90°

 \ ∠SOR = 90° [Sum of angles of a quadrilateral is 360°]

 ⇒ Each angle of quadrilateral OSDR is a right angle. Also adjacent sides DR and DS are equal. [From (4)]

⇒ Quadrilateral OSDR is a square

 \Rightarrow OS = OR = DS = DR [Sides of a square] \Rightarrow $r = 14$ cm [Using (6)]

$$
\Rightarrow \qquad \qquad r = 14 \text{ cm}
$$

Hence, *r* = **14 cm.**

39. Given that from an external point T, three tangents TP, TQ and TR are drawn to two circles with centres O_1 and $O₂$, touching each other externally at the point P so that TP is a common tangent to the two circles.

To prove that TQ = TR

 We know that the lengths of two tangents drawn from an external point to a circle are equal.

Hence,
$$
TQ = TP
$$
 ...(1)

 Since, these are two tangents drawn from an external point T to the circle with centre O_1 .

Similarly,
$$
TP = TR
$$
 ...(2)

 Since these are two tangents drawn from T to the circle with centre $O₂$.

$$
\therefore
$$
 From (1) and (2), we have

 $TQ = TR$

Hence, proved.

40. Let EF intersect PQ and GH at X and Y respectively. Since the lengths of tangents from an external point to a circle are equal

From (1) and (2), we get $XP = XQ$.

and from (3) and (4) , we get $YG = YH$.

 Hence, the common tangent at C bisects the common tangents PQ and GH.

41. Given that AB and CD are two common tangents to two circles with centres at O_1 and O_2 respectively, intersecting each other at E.

To prove that $AB = CD$.

15
Circles **15**

 Since EA and EC are two tangents drawn from an external point E to the circle with centre O_1 . Hence, we have $EA = EC$ …(1) Similarly, $EB = ED$ …(2) Adding (1) and (2), we have $EA + EB = EC + ED$ \Rightarrow AB = CD Hence, proved. **42**. We have radius of bigger circle = 13 cm and radius of smaller circle = 8 cm

Join AE

Also, $AE \perp BE$ [since angle in a semicircle is 90^o] ∴ BD² = OB² – OD² [By Pythagoras' Theorem] $= 169 - 64$ $BD^2 = 105$ $BD = \sqrt{105}$ ∴ BE = $2BD = 2\sqrt{105}$ Now in ΔAED $AE^2 + DE^2 = AD^2$ …(1) and in ΔAEB $AE^2 = AB^2 - BE^2$ (∴ AB = AOB = $2 \times 13 = 26$) $=(26)^2 - (2\sqrt{105})^2$ $= (676) - (4 \times 105)$ $= 676 - 420$ $= 256$ ∴ $AE = 16$ Putting the value of AE in eq. (1) $AE^2 + DE^2 = AD^2$ $256 + 105 = AD^2$ $AD^2 = 361$ AD = **19 cm** \angle PBT = 30[°] $\sqrt{30^\circ}$ $\sf B$

 \overline{A}

 Join OP Let the radius of the circle be *r* $OP = OB = OA = r$ (radius) ∠POA = 2∠PBA (angle subtended at the centre is twice the angle subtended at the circle) ∴ \angle POA = 2 × 30° = 60° Radius of a circle is perpendicular to the tangent at the point of contact ∴ OP ⊥ PT \angle OPT = 90 $^{\circ}$ In ΔOPT ∠OPT + ∠PTO + ∠POA = 180º $90^{\circ} + \angle$ PTO + $60^{\circ} = 180^{\circ}$ ∠PTO = 30º In ΔOPA ∠POA = 60º ∴ OA = OP ∴ $∠OPA = ∠OAP$ ∠OAP + ∠OPA + ∠POA = 180º $2\angle$ OAP + 60 $^{\circ}$ = 180 $^{\circ}$ \angle OAP = 60 $^{\circ}$ ∠OAP = ∠OPA = 60º Now In ΔBPA and ΔTPO ∠PBA = ∠PTO (30º) PA = PO ∠PAO = ∠POT (60º) ∴ \triangle BPA ≅ \triangle TPO ∴ $BA = OT$ [By CPCT] $OT = BA = 2r$ $OT = OA + AT$ $2r = r + AT$ $AT = r$ $\frac{\text{BA}}{\text{AT}}$ $\frac{BA}{AT} = \frac{2r}{r} = \frac{2}{1}$ 1 $BA : AT = 2 : 1$

Prove $BA : AT = 2 : 1$

44. Given that ABC is a triangle with ∠ABC = 90°. A circle with centre at O is drawn with AB as a diameter intersecting the hypotenuse AC at P. A tangent PQ is drawn at P intersecting BC at Q. To prove that Q is the mid-point of BC , i.e. $BQ = QC$.

Construction: We join BP.

Ratna Sa

16

 Let ∠BAC = *x*. Then $\angle ACB = 90^\circ - x$ [$\because \angle ABC = 90^\circ$] Then $\angle BPQ = \angle BAC = x$ [\therefore Angles in alternate segments are equal] Now, ∠ACB = $90^{\circ} - x$ …(1) Also, $\angle APB = \angle BPC = 90^{\circ}$ [∴ Angle in a semicircle is 90°] ∴ ∠QPC = 90° – ∠BPQ = 90° – *x* …(2) ∴ From (1) and (2), we have ∠QPC = ∠ACB = ∠PCQ ∴ $PQ = QC$ …(3) But $QP = BQ$ …(4) [: Tangents drawn from an external point of a circle are equal] ∴ From (3) and (4), we get

Hence, proved.

45. Given that DABC is a right-angled triangle in which $\angle A = 90^\circ$ and $AB = 6$ cm, $AC = 8$ cm.

 $BQ = QC$

∴ By Pythagoras' theorem,

We have
$$
BC = \sqrt{AC^2 + AB^2}
$$

$$
= \sqrt{8^2 + 6^2} \text{ cm}
$$

$$
= \sqrt{64 + 36} \text{ cm}
$$

$$
= \sqrt{100} \text{ cm}
$$

$$
= 10 \text{ cm}
$$

Let r cm be the radius of the incircle with centre at O , touching the sides BC, AB and AC at P, Q and R. To find the area of the shaded region.

Now, area of
$$
\triangle ABC = \frac{1}{2} AB \times AC
$$

\n
$$
= \frac{1}{2} \times 6 \times 8 \text{ cm}^2
$$
\n
$$
= 24 \text{ cm}^2 \qquad \qquad ...(1)
$$
\nAgain, $\text{ar}(\triangle OBC) = \frac{1}{2} BC \times r$
\n
$$
= \frac{1}{2} \times 10r \text{ cm}^2
$$

$$
=5r \text{ cm}^2 \qquad \qquad \dots (2)
$$

$$
ar(\triangle OBA) = \frac{1}{2} AB \times r
$$

$$
= \frac{1}{2} \times 6r \text{ cm}^2
$$

$$
= 3r \text{ cm}^2 \qquad \dots (3)
$$

and
$$
\text{ar}(\Delta \text{OAC}) = \frac{1}{2} \text{AC} \times r
$$

$$
= \frac{1}{2} \times 8r \text{ cm}^2
$$

$$
= 4r \text{ cm}^2 \qquad \dots (4)
$$

$$
\therefore \text{ From (1), (2) and (3), we have}
$$

 $ar(\Delta OBC) + ar(\Delta OBA) + ar(\Delta OAC) = 24$ ⇒ $(5r + 3r + 4r) = 24$ \Rightarrow 12*r* = 24 \Rightarrow $r = \frac{24}{12} = 2$

Hence, the radius of the in circle is 2 cm.

∴ Required area of the shaded region

= area of
$$
\triangle ABC
$$
 – area of the circle
= $(24 - \pi2^2)$ cm²
= $(24 - 4 \times 3.14)$ cm²
= $(24 - 12.56)$ cm²
= 11.44 cm²

46. (*i*) Given that ABC is a triangle which circumscribes a circle with centre at O and radius 4 cm such that it touches the sides BC, CA and AB of the triangle ABC at D, E and F respectively.

Given that $BD = 6$ cm and $CD = 8$ cm *Construction*: We join OD, OE and OF. Also, we join OA, OB and OC. Then $OD = OE = OF = 4$ cm, $BF = BD = 6$ cm and $CE = CD = 8$ cm. Let $AF = AE = x$ cm. To find the length of the sides AB and AC of \triangle ABC. We have $a = BC = (6 + 8) \text{ cm} = 14 \text{ cm} \dots (1)$ $b = AC = (8 + x)$ cm …(2) and $c = AB = (6 + x)$ cm ...(3) ∴ Semi-perimeter of the triangle is given by $S = \frac{1}{2}(14 + 8 + x + 6 + x)$ cm $= (14 + x)$ cm ∴ Area of ∆ABC

 $= \sqrt{s(s-a)(s-b)(s-c)}$ [By Heron's formula]

$$
= \sqrt{(14+x)(14+x-14)(14+x-8-x)(14+x-6-x)}
$$

[From (1), (2) and (3)]

$$
= \sqrt{(14+x)x \times 6 \times 8}
$$

$$
= 4\sqrt{42x + 3x^2}
$$
...(1)

Also, area of $\triangle ABC$

 $= ar(\Delta OAB) + ar(\Delta OAC) + ar(\Delta OBC)$

$$
= \left\{ \frac{1}{2} \times (6 + x) \times 4 + \frac{1}{2} (8 + x) \times 4 + \frac{1}{2} (6 + 8) \times 4 \right\} \text{ cm}^2
$$

\n
$$
= (12 + 2x + 16 + 2x + 28) \text{ cm}^2
$$

\n
$$
= 4x + 56
$$

\n
$$
= 4(x + 14)
$$

\n∴ From (1) and (2), we have
\n
$$
4\sqrt{42x + 3x^2} = 4(x + 14)
$$

\n
$$
\Rightarrow 42x + 3x^2 = (x + 14)^2
$$

\n
$$
= x^2 + 28x + 196
$$

\n
$$
\Rightarrow 2x^2 + 14x - 196 = 0
$$

\n
$$
\Rightarrow x^2 + 7x - 98 = 0
$$

\n
$$
\Rightarrow x(x + 14) - 7(x + 14) = 0
$$

\n
$$
\Rightarrow (x - 7) (x + 14) = 0
$$

\n∴ Either
\n
$$
x - 7 = 0 \Rightarrow x = -14
$$

\n⇒
$$
x = -14
$$

which is absurd, since *x* cannot be negative.

∴ We have *x* = 7

 Hence, the required length of the sides AB and AC are respectively $(6 + 7)$ cm = **13 cm** and $(8 + 7)$ cm = **15 cm**.

(*ii*) Let AB and AC touch the circle at E and F respectively. Since the length of tangents drawn from an external point to a circle are equal

 $\begin{bmatrix} \text{B} \\ \text{B} \end{bmatrix}$ = BD = 8 cm [Tangents from B] ...(1)
CF = DC = 6 cm [Tangents from C] $AE = AF = x \text{ cm (say)}$ [Tangents from A] \therefore AB = AE + BE = (*x* + 8) cm, $AC = AF + CF$ $=(x + 6)$ cm [Using (1)] ...(2) $\overline{}$

Join OE and OF.

Then $OD = OE = OF = 4 \text{ cm}$ [radii of incircle]

Join OA, OB and OC.

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \qquad \text{OE } \perp \text{ AB, OD} \perp \text{BC and OF} \perp \text{AC}
$$

⇒ OE, OD and OF are altitudes of $\triangle AOB$, $\triangle BOC$ and $\triangle AOC$ respectively.

Now, $ar(\triangle ABC) = ar(\triangle AOB) + ar(\triangle BOC) + ar(\triangle AOC)$ \Rightarrow 84 cm² = $\frac{1}{2}$ AB × OE + $\frac{1}{2}$ BC × OD + $\frac{1}{2}$ AC × OF

$$
\Rightarrow 84 \text{ cm}^2 = \frac{1}{2} \text{AB} \times 4 \text{ cm} + \frac{1}{2} \text{BC} \times 4 \text{ cm} + \frac{1}{2} \text{AC} \times 4 \text{ cm}
$$

[Using (3)]

⇒ 84 cm² =
$$
\frac{1}{2}
$$
 × 4 (AB + BC + CA)
\n⇒ 84 cm² = $\frac{1}{2}$ × 4 [(x + 8) + (8 + 6) + (6 + x)] cm

 [Using (2)] ⇒ 84 cm² = 2 (2*x* + 28) cm

$$
\Rightarrow \quad 84 \text{ cm}^2 = 4 \text{ } (x + 14) \text{ cm}^2
$$

 \Rightarrow 21 = *x* + 14

$$
\Rightarrow \qquad \qquad x = 21 - 14 = 7
$$

$$
AB = (x + 8)
$$
 cm = (7 + 8) cm = 15 cm

$$
AC = (x + 6) \text{ cm} = (7 + 6) \text{ cm} = 13 \text{ cm}
$$

Hence, **AB = 15 cm, AC = 13 cm.**

 (iii) Given that $\triangle ABC$ circumscribes a circle with centre at O and radius 3 cm, touching the sides BC, CA and AB of $\triangle ABC$ at the points D, E and F respectively such that $BD = 6$ cm and $DC = 9$ cm. Given that ar($\triangle ABC$) $= 54$ cm².

 Construction: We join OA, OB, OC, OD, OE and OF. To find the lengths of AB and AC.

We have
$$
BF = BD = 6 \text{ cm}
$$

and $CE = CD = 9 \text{ cm}$...(1)
Let $AF = AE = x \text{ cm}$

 ∴ Lengths of AB and AC are respectively (6 + *x*) cm and $(9 + x)$ cm.

Now,

 $ar(\triangle ABC) = ar(\triangle OBC) + ar(\triangle OAC) + ar(\triangle OAB)$

$$
\Rightarrow 54 = \frac{1}{2} BC \times 3 + \frac{1}{2} AC \times 3 + \frac{1}{2} AB \times 3
$$

$$
= \frac{1}{2} \times (6+9) \times 3 + \frac{1}{2} \times (9+x) \times 3 + \frac{1}{2} \times (6+x) \times 3
$$

© Ratna Sagar

…(3)

$$
54 \times \frac{2}{3} = 15 + 9 + x + 6 + x
$$

$$
\Rightarrow 36 = 2x + 30
$$

$$
\Rightarrow 2x = 6
$$

$$
\Rightarrow x = 3
$$

 ∴ The required lengths of AB and AC are respectively (6 + 3) cm and (9 + 3) cm, i.e., **9 cm** and **12 cm**.

 (iv) Given that ΔPQR circumscribes a circle with centre at O and radius 8 cm, touching the sides QR, RP and PQ at the points T , S and U respectively such that $QU =$ $QT = 14$ cm and $RS = RT = 16$ cm.

Let $PU = PS = x$ cm.

Given that $ar(\Delta PQR) = 336$ cm² ...(1)

To find the lengths of PQ and PR.

 Construction: We join OQ, OR, OP, OT, OS and OU We have

 $QR = (14 + 16)$ cm = 30 cm,

 $PQ = (14 + x)$ cm

and $PR = (x + 16)$ cm.

Now, $ar(\Delta PQR) = ar(\Delta OQR) + ar(\Delta OPR) + ar(\Delta OPQ)$

 \Rightarrow 336 = $\frac{1}{2} \times \text{QR} \times 8 + \frac{1}{2} \times \text{PR} \times 8 + \frac{1}{2} \times \text{PQ} \times 8$ $= 4(QT + RT) + 4(RS + PS)$ $+4(OU + PU)$ $= 4(14 + 16) + 4(16 + x) + 4(14 + x)$ \Rightarrow 84 = 30 + 16 + *x* + 14 + *x* $= 60 + 2x$ \implies 84 – 60 = 2*x*

 \Rightarrow $x = \frac{24}{2} = 12$ ∴ $PQ = 14 + 12 = 26$ and $PR = 16 + 12 = 28$

> Hence, the required length of PQ and PR are respectively **26 cm** and **26 cm**.

47. Given that P and Q are two points on a circle with centre at O such that OP \perp OQ. Two tangents at P and Q meet each other at an external points T. PQ and OT are joined. To prove that PQ and OT intersect each other at a point R such that PQ and OT bisect each other at R at right angles.

 Since, OP is the radius and PT is a tangent to the circle at P,

i.e. two adjacent sides TP and TQ are equal.

Hence, the \parallel gm OPTQ is a square with diagonals OT and PQ.

 We know that two diagonals of a square bisect each other at right angles. Hence, OT and PQ bisect each other at R at right angles, i.e. $RO = RT$ and $PR = RQ$.

Also,
$$
\angle
$$
PRO = \angle ORQ = 90[°]

Hence, proved.

48. Given that AB and CD are two common tangents to two circles with centres at O and O′, intersecting each other at E. To prove that O, E and O′ are collinear.

Construction: We join OA and O′D.

Let $\angle AOE = x$

 ∠OAE = 90° ∴ ∠AEO = $90^{\circ} - x$ …(1)

In $\triangle AOE$, AEO' is an exterior angle.

$$
\angle AEO' = 180 - \angle AEO
$$

$$
= 180^{\circ} - 90^{\circ} + x
$$

$$
= 90^{\circ} + x \qquad \qquad ...(2)
$$

∴ From (1) and (2), we have

∠AEO + ∠AEO′ = 90° + 90° = 180°

But E is the point of intersection of two tangents.

- ∴ O, E and $O¹$ lie on the same line, i.e. these three points are collinear.
- **49.** Given that two circles with centres A and B and radii 4 cm and 9 cm respectively touch each other externally. Let

19

PQ be a common tangent to the two circles where P and Q are the points of contact on the two circles respectively. We join AP and BQ. Then, $AP = 4$ cm and $AP \perp PQ$ and $BQ = 9$ cm and $BQ \perp PQ$.

Also, \angle AMQ = 90°.

Hence, AM \parallel PQ and AP \parallel QM.

 ∴ The opposite sides of the quadrilateral are parallel and each of its angles is 90°.

∴ The quadrilateral is a rectangle or a square.

Now, $BM = BQ - MQ$

$$
= (9 - 4) \text{ cm} = 5 \text{ cm} \qquad \qquad ...(1)
$$

 Now, since the two circles touch each other externally, hence, distance between their centre = sum of their radii

$$
AB = (4 + 9) \text{ cm} = 13 \text{ cm}
$$
...(2)

 ∴ In right-angled triangle AMB, we have by Pythagoras' theorem,

$$
AM = \sqrt{AB^{2} - BM^{2}}
$$

= $\sqrt{13^{2} - 5^{2}}$ cm [From (1) and (2)]
= $\sqrt{144}$
= 12 cm ...(3)

 Hence, the adjacent sides of the quadrilateral are 12 cm and 14 cm. Since these sides are unequal hence, the figure APQM is a rectangle.

(i) From (1) $BM = 5$ cm and from (3), we have

(ii) $PQ = AM = 12$ cm.

 Hence, the required lengths of BM and PQ are respectively **5 cm** and **12 cm**.

50. Given that AB and CD are two common tangents to two circles of unequal radii. Let the centres of these circles be O and O′.

To prove that $AB = CD$

 Construction: We join, OA, OC, O′B and O′D. We now draw $O'M \perp OA$ and $O'N \perp OC$.

∴ The figures ABO′M and CDO′N are rectangles.

[∵ ABCD is a rectangle]

Ratna Sar

∴ $AB = CD$ [From (3) and (4)] Hence, proved.

Check your understanding

MULTIPLE-CHOICE QUESTIONS

For Basic and Standard Levels

1. (*b*) **14 cm**

 Since the tangent at any point on the circle is perpendicular to the radius through the point of contact and PT is a tangent T and OT is the radius through T , \therefore OT \perp PT. In right \triangle OTP, we have $OP²$ [By Pythagoras' Theorem]

$$
OT^2 + PT^2 =
$$

 $OT² = OP² - PT²$

$$
= (25 \text{ cm})^2 - (24 \text{ cm})^2
$$

$$
= (625 - 576) \text{ cm}^2 = 49 \text{ cm}^2
$$

$$
\Rightarrow \qquad \text{OT} = 7 \text{ cm}
$$

$$
\Rightarrow
$$
 radius = 7 cm

$$
Diameter = 2 \times radius
$$

$$
= 2 \times 7
$$
 cm = 14 cm.

2. *(b)*
$$
45^{\circ}
$$

 $PA \perp OA$ (Refer to MCQ 1)

In right
$$
\Delta
$$
OAP, we have

$$
OA^2 + PA^2 = OP^2
$$
 [By Pythagoras' Theorem]

$$
\Rightarrow (3\sqrt{2} \text{ cm})^2 + P A^2 = (6 \text{ cm})^2
$$

\n
$$
\Rightarrow P A^2 = (36 - 18) \text{ cm}^2
$$

\n
$$
= 18 \text{ cm}^2
$$

\n
$$
\Rightarrow P A = \sqrt{18} \text{ cm}
$$

\n
$$
= 3\sqrt{2} \text{ cm}
$$

\nNow, in $\triangle OAP$, we have $OA = PA$
\n
$$
\therefore \angle APO = \angle AOP = x^\circ
$$
 (say)
\n
$$
\triangle APO = \angle AOP = (OP - 190^\circ) \text{ Form of angles}
$$

Also ∠APO + ∠AOP + ∠OAP = 180 $^{\circ}$ [Sum of angles of a triangle]

$$
\Rightarrow \angle APO + \angle APO + 90^{\circ} = 180^{\circ}
$$

$$
\Rightarrow 2\angle APO = 180^{\circ} - 90^{\circ}
$$

$$
\Rightarrow \qquad \qquad 2\angle APO = 90^{\circ}
$$

$$
\Rightarrow \angle APO = 45^{\circ}
$$

3. (*c*) **Infinite**

 A circle can have infinite number of tangents because there are infinite number of points on a circle. Each

of these tangents has a parallel tangent at the end of the diameter drawn through the point of contact.

So, a circle can have **infinite** parallel tangents.

4. (*b*) **15 cm**

$$
\Rightarrow \angle OPB = 90^{\circ}
$$

\n
$$
\angle OPQ = \angle OPB - \angle QPB
$$

\n
$$
\Rightarrow \angle OPQ = 90^{\circ} - 50^{\circ} = 40^{\circ}
$$

\n
$$
\angle OQP = \angle OPQ = 40^{\circ}
$$
 [Angles opposite equal sides
\nOQ and OP of $\triangle OPQ$]
\nIn $\triangle OPQ$, we have
\n
$$
\angle OQP + \angle OPQ + \angle POQ = 180^{\circ}
$$
 [Sum of angles
\nof a triangle]
\n
$$
\Rightarrow 40^{\circ} + 40^{\circ} + \angle POQ = 180^{\circ}
$$

$$
\Rightarrow \angle POQ = 180^\circ - (40^\circ + 40^\circ) = 100^\circ
$$

7. (*c*) **80°**

 PA and PB are tangents at the end of radii OA and OB such that $∠AOB = 100^\circ$.

$$
OA \perp PA
$$
 and $OB \perp PB$ [Refer to MCQ 1]

In quadrilateral OAPB, we have

$$
\angle
$$
PAO + \angle AOB + \angle OBP + \angle APB

= 360° [Sum of angles of a quadrilateral]

$$
\Rightarrow 90^{\circ} + 100^{\circ} + 90^{\circ} + \angle APB = 360^{\circ}
$$

$$
\Rightarrow \angle APB = 360^\circ - (90^\circ + 100^\circ + 90^\circ) = 80^\circ
$$

8. (*c*) **40°**

 \angle CBA = 90° [Angle in a semicircle]

In
$$
\triangle ABC
$$
, we have
\n $\angle ACB + \angle CBA + \angle CAB$
\n= 180^o [Sum of angles of triangle]
\n $\Rightarrow 40^{\circ} + 90^{\circ} + \angle CAB = 180^{\circ}$

$$
\Rightarrow \angle CAB = 180^\circ - (40^\circ + 90^\circ)
$$

= 50° \qquad \qquad ...(1)

$$
OA \perp AT
$$
 [Refer to MCQ 1]

$$
\rightarrow \angle OAT = 90^{\circ}
$$

$$
\angle
$$
 OAT = \angle OAB + \angle BAT
= \angle CAB + \angle BAT
 \Rightarrow 90^o = 50^o + \angle BAT [Using (1)]

 \Rightarrow \angle BAT = 90° – 50° = 40°

9. (a)
$$
30^{\circ}
$$

120° ^Q ^R ^O P

 $OQ \perp QP$ [Refer to MCQ 1] \Rightarrow OQP = 90° …(1) ∠OQP + ∠OPQ = 120 $^{\circ}$ [Exterior angle = Sum of interior opposite angles] \Rightarrow 90° + ∠OPQ = 120° [Using (1)]

 \Rightarrow ∠OPQ = 120° – 90°

$$
\Rightarrow \angle OPQ = 30^{\circ}
$$

21

© Ratna Sa

11. (*b*) **40°**

∠ABQ = ∠BQR = 70° [Alt. ∠s*,* AB || PQR] …(1)

Let QO meet AB at C.

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \text{OQ} \perp \text{QR}
$$
\n
$$
\Rightarrow \angle \text{OQR} = 90^{\circ}
$$
\n
$$
\Rightarrow \angle \text{CQR} = 90^{\circ}
$$
\n
$$
\therefore \angle \text{CQR} = 90^{\circ}
$$
\n
$$
\therefore \text{(2)}
$$
\n
$$
\angle \text{CQB} = \angle \text{CQR} - \angle \text{BQR}
$$
\n
$$
= 90^{\circ} - 70^{\circ}
$$
\n[Using (2)]\n
$$
\Rightarrow \angle \text{CQB} = 20^{\circ}
$$
\n
$$
\therefore \text{(3)}
$$
\nIn \triangle BCQ, we have

∠CQB + ∠CBQ + ∠QCB = 180 $^{\circ}$ [Sum of angles of a triangle] \Rightarrow 20° + 70° + ∠QCB = 180°[Using (1) and (3)]

$$
\Rightarrow 20^\circ + 70^\circ + \angle QCB = 180^\circ \text{[Using (1)]}
$$

$$
\Rightarrow \angle QCB = 90^\circ
$$

 \Rightarrow OC \perp AB

 Since perpendicular drawn from the centre of the circle to a chord bisects the chord

$$
\therefore
$$
 OC bisects AB

$$
\Rightarrow \quad AC = BC \quad ...(4)
$$

In right $\triangle QCA$ and right $\triangle QCB$, we have

$$
AC = BC
$$
 [Using (4)]
\n
$$
CQ = CQ
$$
 [Common]
\n
$$
\therefore \quad \triangle QCA \cong \triangle QCB
$$
 [By SAS congruence]
\n
$$
\Rightarrow \angle CQA = \angle CQB
$$
 [CPCT]
\n
$$
\Rightarrow \angle CQA = 20^{\circ}
$$
 [Using (3)] ... (5)
\n
$$
\angle AQB = \angle CQA + \angle CQB
$$
 [Using (5) and (3)]
\n
$$
\Rightarrow \angle AQB = 40^{\circ}
$$

12. (*b*) $x = 35^\circ$, $y = 55^\circ$

In $\triangle PQO$ and $\triangle PRO$, we have

 PQ = PR [Lengths of tangents from an external point to a circle are equal]

 \Rightarrow 35° = *x*

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \angle OQP = 90^{\circ} \qquad ...(1)
$$

In $\triangle OQP$, we have

∠OQP + ∠QPO + ∠POQ = 180 $^{\circ}$ [Sum of angles of a triangle] $90^\circ + 35^\circ + y = 180^\circ$ [Using (1)]

⇒
$$
y = 180^\circ - (90^\circ + 35^\circ)
$$

\n⇒ $y = 180^\circ - (90^\circ + 35^\circ)$
\n= $180^\circ - 125^\circ = 55^\circ$

Hence, $x = 35^{\circ}$, $y = 55^{\circ}$.

13. (b)
$$
100^{\circ}
$$

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \angle OAT = 90^{\circ} \text{ and } \angle OBT = 90^{\circ} \qquad ...(1)
$$

$$
\triangle OTB \cong \triangle OTA \qquad \qquad [By SSS congruence]
$$

[Refer to solution of Q. 14]

$$
\therefore \angle OTB = \angle OTA \qquad [CPCT] \dots (2)
$$

\n
$$
\Rightarrow \angle OTB = 40^{\circ}
$$

\nIn quadrilateral OATB, we have
\n
$$
\angle OAT + \angle ATB + \angle OBT + \angle AOB = 360^{\circ}
$$

\n[Sum of angles of a quadrilateral]
\n
$$
\Rightarrow 90^{\circ} + (\angle OTA + \angle OTB) + 90^{\circ} + \angle AOB = 360^{\circ}
$$

\n
$$
\Rightarrow 90^{\circ} + (40^{\circ} + 40^{\circ}) + 90^{\circ} + \angle AOB = 360^{\circ} \text{ [Using (2)]}
$$

\n
$$
\Rightarrow \angle AOB = 360^{\circ} - (90^{\circ} + 40^{\circ} + 40^{\circ} + 90^{\circ})
$$

\n
$$
= 360^{\circ} - 260^{\circ} = 100^{\circ}
$$

14. (*d*) **8 cm**

Join OP and OC.

Then, $OP = 3$ cm and $OC = 5$ cm.

 Since, the tangent at any point on a circle is perpendicular to the radius through the point of contact and BPC is tangent to the smaller circle at P and OP is the radius through the point of contact P.

In right \triangle OPC, we have

$$
OC^2 = OP^2 + PC^2
$$
 [By Pythagoras' Theorem]

$$
\Rightarrow (5 \text{ cm})^2 = (3 \text{ cm})^2 + \text{PC}^2
$$

$$
\Rightarrow \qquad PC^2 = (25 - 9) \text{ cm}^2 = 16 \text{ cm}^2
$$

$$
\Rightarrow \qquad PC = 4 \text{ cm}
$$

 Since a perpendicular from the centre of a circle to a chord bisects it

 \therefore In the larger circle OP bisects BPC

$$
\therefore \quad BC = 2 \, PC = 2 \times 4 \, cm = 8 \, cm
$$

15. (*d*) **10 cm**

 Since the lengths of tangents drawn from an external point to a circle are equal

 Since the lengths of tangents drawn from an external point to a circle are equal

<u>Robert State (State State Sta</u> Perimeter of APQR

$$
= PQ + QR + PR
$$

= PA + QA + QC + RC + RB + PB
= (4 + 6 + 6 + 5 + 5 + 4) cm [Using (1), (2)
and (3)]

 $= 30$ cm

o∠ – P

C

 $A \searrow Q \nearrow B$

 Since the lengths of tangents drawn from an external point to a circle are equal

18. (*a*) **18**

 Since the lengths of tangents drawn from an external point to a circle are equal

© Ratna Sagar

23

21. (*a*) **6 cm**

 Since the lengths of tangents drawn from an external point to a circle are equal

Adding the corresponding sides of (1) and (2), we get

 $PD + QB = PA + QA = PQ$

20. (*d*) **34 units**

 Since the lengths of tangents drawn from an external point to a circle are equal

Perimeter of quadrilateral ABCD

 $= AB + BC + CD + DA$ $= (AP + PB) + BC + (CR + DR) + (DS + AS)$ $= [(2 + 4) + 10 + (6 + 5) + (5 + 2)]$ units [Using (5), (6) and (7)] $= 34$ units

 Since the lengths of tangents drawn from an external point to a circle are equal

22. (*b*) $x = 100^{\circ}, y = 85^{\circ}$

 Since, the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre

 \therefore $x + 80^{\circ} = 180^{\circ}$ and $y + 95^{\circ} = 180^{\circ}$ ⇒ $x = 100^{\circ}$ and $y = 180^{\circ} - 95^{\circ} = 85^{\circ}$ Hence, $x = 100^{\circ}$, $y = 85^{\circ}$.

23. (*c*) **60 cm2**

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact.

- \therefore OB \perp AB
- \Rightarrow ∠ABO = 90°

In right $\triangle ABO$, we have

 $AB^2 + OB^2 = AO^2$ [By Pythagoras' Theorem]

O

5 cm

B

13 cm

C

A

$$
\Rightarrow \quad AB^2 + (5 \text{ cm})^2 = (13 \text{ cm})^2
$$

 \Rightarrow AB² = (169 – 25) cm² $= 144$ cm²

 \Rightarrow AB = 12 cm ...(1) In $\triangle ABO$ and $\triangle ACO$, we have

 AB = AC [Lengths of tangents from an external point to a circle are equal]

OA = OA [Common]
\nOB = OC [Radii of a circle]
\n∴ ΔABO ≅ ΔACO
\n⇒
$$
ar(ΔABO) = ar(ΔACO)
$$
 ...(2)
\n $ar(ΔABO) = \frac{1}{2} AB \times OB$
\n $= \frac{1}{2} \times 12 \text{ cm} \times 5 \text{ cm}$ [Using (1)]

$$
\Rightarrow \quad \text{ar}(\Delta \text{ABO}) = 30 \text{ cm}^2 \tag{3}
$$

$$
\therefore \quad \text{ar}(\Delta \text{ACO}) = 30 \text{ cm}^2 \qquad \text{[Using (2)]} \dots (4)
$$
\n
$$
\text{ar quad ABCC} = \text{ar}(\Delta \text{ABO}) + \text{ar}(\Delta \text{ACO})
$$
\n
$$
= 30 \text{ cm}^2 + 30 \text{ cm}^2 \text{ [Using (3) and (4)]}
$$

$$
= 60 \, \text{cm}^2
$$

24. (*b*) **2**

 XY and PQ are common tangents to two intersecting circles.

For Standard Level

25. (*a*) $3\sqrt{3}$ **cm**

In \triangle PAO and \triangle PBO, we have

 PA = PB [Lengths of tangents drawn from an external point to a circle are equal] OA = OB [Radii of a circle] $OP = OP$ [Common]

 \therefore \triangle PAO \cong \triangle PBO [By SSS congruence]

In right \triangle OAP, we have

$$
\tan 30^\circ = \frac{3}{AP} \text{ cm}
$$

$$
\Rightarrow \frac{1}{\sqrt{3}} = \frac{3 \text{ cm}}{AP}
$$

$$
\Rightarrow AP = 3\sqrt{3} \text{ cm}
$$

26. (*a*) **Isosceles**

 $\angle ACB = 90^{\circ}$ [Angle in a semicircle] ...(1) In $\triangle ACB$, we have ∠CAB + ∠ACB + ∠OBC $= 180^\circ$ [Sum of angles of a triangle] \Rightarrow 30° + 90° + ∠OBC = 180° [Using (1)] ⇒ $∠\text{OBC} = 60^{\circ}$ …(2) \Rightarrow ∠3 = 60° [Angles opposite to equal sides OB and OC of \triangle OBC] ...(3) ∠1 + ∠3 = ∠ACB \Rightarrow ∠1 + ∠3 = 90° [Using (1)] \Rightarrow ∠1 + 60° = 90° [Using (3)] \Rightarrow ∠1 = 30° …(4) Also $\angle 2 + \angle 3 = \angle$ OCD \Rightarrow ∠2 + ∠3 = 90° [OC \perp CD, Refer to MCQ 1] \angle ∠2 + ∠3 = ∠1 + ∠3 \Rightarrow ∠2 = ∠1 = 30° [Using (4)] ...(5) $\angle 2 + y = \angle OBC$ [Exterior angle = sum of interior opposite angles] $30^{\circ} + y = 60^{\circ}$ [Using (5) and (2)] \Rightarrow $y = 30^{\circ}$...(6) \therefore BC = BD [Sides opposite equal angles *y* and ∠2, using (5) and (6)]

 \therefore $\triangle BCD$ is an isosceles triangle.

27. (*b*) **4 cm**

In \triangle ACP and \triangle BCP, we have

- $CP = CP$ [Common]
- PA = PB [Lengths of tangents drawn from an external point to a circle are equal]

$$
\therefore \quad \triangle ACP \cong \triangle BCP \qquad \qquad [By SSS congruence]
$$

$$
\Rightarrow \angle APC = \angle BPC = \frac{90^{\circ}}{2} = 45^{\circ} \qquad \text{[CPCT]} ... (1)
$$

In \triangle ACP, we have

$$
\tan \text{APC} = \frac{\text{AC}}{\text{AP}} \implies \tan 45^\circ = \frac{4 \text{ cm}}{\text{AP}} \quad \text{[Using (1)]}
$$
\n
$$
\implies \qquad 1 = \frac{4 \text{ cm}}{\text{AP}} \implies \text{AP} = 4 \text{ cm}
$$

28. (*c*) $\frac{1}{2}$ **3**

25

 Since the tangent at any point on a circle is perpendicular to the radius through the point of contact

$$
\therefore \angle ATO = 90^{\circ} \qquad ...(1)
$$

$$
\angle AQO' = 90^{\circ} \qquad [Q'Q \perp AT, given] ... (2)
$$

 From (1) and (2), we get ∠ATO = ∠AQO′.

But these are corresponding angles.

∴ O'Q || OT
\nIn
$$
\triangle AOT
$$
, we have
\nO'Q || OT
\n∴ $\frac{AQ}{AT} = \frac{AO'}{AO}$ [By BPT]
\nAQ

$$
\Rightarrow \quad \frac{AQ}{AT} = \frac{r}{AP + PO} = \frac{r}{2r + r} = \frac{r}{3r} = \frac{1}{3}.
$$

29. (*b*) $\sqrt{127}$ cm

 Since, the tangent at any point on a circle is perpendicular to the radius through the point of contact and PA is a tangent to the bigger circle at A and OA the radius through the point of contact

$$
\therefore \qquad OA \perp PA \Rightarrow \angle OAP = 90^{\circ}
$$

In right $\triangle OAP$, we have

 $OP² = OA² + AP²$ [By Pythagoras' Theorem]

$$
\Rightarrow \qquad \text{OP}^2 = (6 \text{ cm})^2 + (10 \text{ cm})^2 = 136 \text{ cm}^2 \qquad \dots (1)
$$

 PB is a tangent to the smaller circle at B and OB is the radius through the point of contact B.

$$
\therefore \qquad \text{OB} \perp \text{BP} \Rightarrow \angle \text{OBP} = 90^{\circ}
$$

In right \triangle OBP, we have

 $OP² = OB² + BP²$ [By Pythagoras' Theorem] ⇒ 136 cm² = $(3 \text{ cm})^2$ + BP² [Using (1)] \Rightarrow BP² = (136 – 9) cm² = 127 cm²

$$
\Rightarrow \qquad \text{BP} = \sqrt{127} \text{ cm}
$$

30. (*a*) **8 cm**

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact and XPY is a tangent at P and OP is the radius through P,

$$
\therefore \qquad \text{OP} \perp \text{XPY} \implies \angle \text{XPO} = 90^{\circ} \qquad \qquad \dots (1)
$$

Let diameter PQ and chord AB intersect at M

 \angle XPO + \angle AMP = 180° [Co. int. angles, $XPY \parallel AB]$ \Rightarrow 90° + ∠AMO = 180° [Using (1)] \Rightarrow ∠AMO = 90° In right ΔOMA , we have $OM² + AM² = OA²$ [By Pythagoras' Theorem] \Rightarrow (3 cm)² + AM² = (5 cm)² [OM = PM – OP $= (8 - 5)$ cm $= 3$ cm] \Rightarrow AM² = (25 – 9) cm² \Rightarrow AM² = 16 cm² \Rightarrow AM = 4 cm

 Since the perpendicular from the centre of a circle to a chord bisects the chord

 \therefore OM bisects AB

$$
\Rightarrow \qquad AB = 2 AM = 2 \times 4 cm = 8 cm
$$

31. (*d*)
$$
AD = 7
$$
 cm, $BE = 5$ cm

 Since the lengths of tangents drawn from an external point to a circle are equal

32. (*d*) **5 cm**

 Let PQ, QR, SR and SP touch the circle at A, B, C and D respectively.

 Since the lengths of tangents drawn from an external point to a circle are equal

PA = PD [Tangents from P] ... (1)
\nQA = QB [Tangents from Q] ... (2)
\nRB = RC [Tangents from R] ... (3)
\nSC = SD [Tangents from S] ... (4)
\nLet PA = x cm
\nThen, QA = QB = (6.5 - x) cm [Using (2)]
\n
$$
\Rightarrow
$$
 RB = 7.3 - (6.5 - x) cm
\n= (0.8 + x) cm
\nBC = (0.8 + x) cm [Using (3)] ... (5)
\nPD = PA = x cm
\n \Rightarrow SD = (4.2 - x) cm
\n \Rightarrow SC = (4.2 - x) cm [Using (4)] ... (6)
\nRS = RC + SC
\n= [(0.8 + x) + (4.2 - x)] cm [Using (5)
\nand (6)]
\n \Rightarrow RS = 5 cm

33. (*d*) **65°, 50°, 65°**

 Since the lengths of tangents drawn from an external point to a circle are equal.

$$
\therefore \qquad \qquad PB = PA
$$

 ⇒ ∠PAB = ∠PBA [Angles opposite to equal sides of the $\triangle PAB$] $...(1)$

In $\triangle PAB$, we have

∠APB + ∠PAB + ∠PBA

= 180° [Sum of angles of a triangle]

O

50° C P 1 2

B

A

$$
\Rightarrow 50^{\circ} + \angle PBA + \angle PBA = 180^{\circ}
$$
 [Using (1)]

$$
\Rightarrow \qquad 2\angle PBA = 130^{\circ}
$$

$$
\Rightarrow \angle PBA = 65^{\circ}
$$

\n
$$
\angle CAB = \angle PBA = 65^{\circ}
$$
 [Alternate angles AC || PB] ...(2)

Join OA and OB.

In quadrilateral AOBP, we have

$$
\angle PAO + \angle PBO + \angle APB + \angle AOB
$$

= 360° [Sum of angles of
quadrilateral AOBP]

$$
\Rightarrow 90^{\circ} + 90^{\circ} + 50^{\circ} + \angle AOB = 360^{\circ}
$$

$$
\Rightarrow \angle AOB = 360^\circ - (90^\circ + 90^\circ + 50^\circ)
$$

$$
\triangle AOB = 360^\circ - (230^\circ)
$$

 \Rightarrow $\angle AOB = 130^\circ$

 2∠ACB = ∠AOB [Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]

$$
\Rightarrow \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 130^{\circ} = 65^{\circ} \qquad ...(3)
$$

In $\triangle ABC$, we have

$$
\angle CAB + \angle ACB + \angle ABC
$$

= 180° [Sum of angles of a triangle]

$$
\Rightarrow 65^{\circ} + 65^{\circ} + \angle ABC = 180^{\circ}
$$

$$
\Rightarrow \angle ABC = 180^{\circ} - (65^{\circ} + 65^{\circ}) = 50^{\circ}
$$

$$
\Rightarrow \angle ABC = 180^\circ - (65^\circ + 65^\circ) = 50^\circ \qquad \dots (4)
$$

So, the angles of the triangle are 65°, 50°, 65°

[Using (2), (4) and (3)]

Alternative Method: Use alternate segment theorem.

$$
34. (c) 30 cm
$$

Join OP.

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \text{OQ} \perp \text{AD} \text{ and } \text{OP} \perp \text{AB}
$$
\n
$$
\Rightarrow \qquad \angle \text{OQA} = 90^{\circ} \text{ and } \angle \text{OPA} = 90^{\circ}
$$

Also
$$
\angle QAP = 90^{\circ}
$$
 [$\angle A = 90^{\circ}$, given]

So, in quadrilateral AQOP, each angle is 90° and

OQ = adjacent side OP [Radii of a circle]

$$
\therefore
$$
 Quadrilateral AQOP is square

$$
\therefore AP = OQ = 14 \text{ cm} \qquad ...(1)
$$

 Since the lengths of tangents drawn from an external point to a circle are equal.

 \therefore CS = CR = 23 cm [Tangents from C] $BP = BS = (39 - 23)$ cm

$$
= 16 \text{ cm} \qquad \text{[Tangents from B]} ... (2)
$$

$$
AB = AP + BP
$$

$$
= 14 \text{ cm} + 16 \text{ cm}
$$
 [Using (1) and (2)]

 \Rightarrow AB = 30 cm

35. (*d*) **90°**

 Draw XY the common tangent at P to the externally touching circles and let it intersect AB at C.

$\mathbf \odot$ Ratna Sa

 Since the lengths of tangents drawn from an external point to a circle are equal.

$$
CA = CP \text{ and } BC = CP
$$

\n∴ $\angle CPA = \angle CAP = x \text{ (say)}$
\nand $\angle CPB = \angle CBP = y \text{ (say)}$...(1)
\n[Angles opposite to equal sides]

In \triangle ABP, we have

∠BAP + ∠APB + ∠ABP

 = 180° [Sum of angles of a triangle] \Rightarrow ∠CAP + (∠CPA + ∠CPB) + ∠CBP = 180° ⇒ $x + (x + y) + y = 180^{\circ}$ [Using (1)] \Rightarrow 2*x* + 2*y* = 180° \Rightarrow $x + y = 90^{\circ}$ \Rightarrow ∠CPA + ∠CPB = 90° \Rightarrow ∠APB = 90°

36. (*a*) **9 cm**

 Given that two circles touch each other externally at T. QR is a common tangent to the two circles and P is a point on QR such that PT is a tangent to the two circles at T. To find the measure of QR.

 $= 9 \text{ cm}$

37. (*c*) **24 cm**

 Given that BC and BD are two tangents drawn from an external point B to a circle with centre at O and radius 9 cm. OB and OC are joined.

 $= (4.5 + 4.5)$ cm

$$
\therefore \angle OCB = 90^{\circ}
$$

∴ By Pythagoras' theorem, we have

BC =
$$
\sqrt{OB^2 - OC^2}
$$

\n= $\sqrt{15^2 - 9^2}$ cm
\n= $\sqrt{225 - 81}$ cm
\nAlso,
\nBD = BC = 12 cm
\n= $\sqrt{144}$ cm = 12 cm

Also,

$$
-12 \text{ cm}
$$

\n -12 cm
\n $BC + BD = (12 + 12) \text{ cm} = 24 \text{ cm}$

38. (*d*) **26 cm**

 Given that two circles, with centres at O and O′ and radii 3 cm and 5 cm touch each other externally. P and R are two external points such that PR passes through O and O′ and PT and RT′ are tangents at T and T′ respectively such that $PT = 4$ cm and $RT' = 12$ cm.

To find the length of PR.

Since the two circles touch each other externally,

 ∴ The distance between their centres is equal to the sum of their radii

i.e.
$$
OO' = (3 + 5) \text{ cm} = 8 \text{ cm}
$$
 ...(1)

Now, by Pythagoras' theorem, we have

$$
PO = \sqrt{PT^2 + OT^2}
$$

= $\sqrt{4^2 + 3^2}$ cm
= $\sqrt{25}$ cm
= 5 cm ...(2)

and $O'R = \sqrt{RT'^2 + O'T'^2}$ cm

$$
[\because \angle O'T'R = 90^\circ]
$$

$$
= \sqrt{12^2 + 5^2} \text{ cm}
$$

\n
$$
= \sqrt{144 + 25} \text{ cm}
$$

\n
$$
= \sqrt{169} \text{ cm}
$$

\n
$$
= 13 \text{ cm} \qquad ...(3)
$$

\nHence,
\n
$$
PR = PO + OO' + OR
$$

\n
$$
= (5 + 8 + 13) \text{ cm}
$$

Hence, P

[From (1), (2) and (3)]

39. (*b*) **AC = BC**

 Given that a circle is inscribed in a triangle ABC such that the sides AB, BC and CA touch the circle at P, R and Q respectively. It is also given that AP = PB.

 $= 26$ cm

To find a relation between two sides of the triangle.

We have $AP = PB = BR = AQ$ …(1) Now, $CQ = CR$ \Rightarrow CQ + AQ = CR + AQ = CR + AP $=$ CR + PB $= CR + BR$ [From (1)] \Rightarrow AC = BC

40. (*c*) $2\sqrt{3}$ cm

 Given that P is an external point to a circle with centre at O such that $OP = 4$ cm. A is a point on the circle such

that AP is a tangent to the circle at A. We join OA. Then \angle OAP = 90°.

Given that $OP = 4$ cm and \angle OPA = 30°. To find the length of AP. From \triangle OAP, we have

$$
AO = OP \sin 30^{\circ}
$$

$$
= 4 \times \frac{1}{2} \text{ cm} = 2 \text{ cm}
$$

∴ By Pythagoras' theorem, we have

$$
AP = \sqrt{OP^2 - OA^2}
$$

$$
= \sqrt{4^2 - 2^2} \text{ cm}
$$

$$
= \sqrt{12} \text{ cm}
$$

$$
= 2\sqrt{3} \text{ cm}
$$

- **SHORT ANSWER QUESTIONS** -

For Basic and Standard Levels

1. Prove that AB = CD

 Length of tangents drawn from an external point to a circle are equal

∴ $EA = EC$ (1)

$$
EB = ED
$$
 (2)

Adding equation (1) and (2), we get

$$
EA + EB = EC + CD
$$

∴ $AB = CD$

Hence, proved.

2. In \triangle OAP and \triangle OBP, we have

- $OP = OP$ [Common]
- PA = PB [Lengths of tangents drawn from an external point to a circle are equal]
- \therefore $\triangle OAP \cong \triangle OBP$ [By SSS congruence]

$$
\Rightarrow \angle \text{OPA} = \angle \text{OPB} = \frac{60^{\circ}}{2} = 30^{\circ} \qquad \text{[CPCT]} ... (1)
$$

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

 \therefore OA ⊥ AP \Rightarrow ∠OAP = 90°

In right $\triangle OAP$, we have

$$
\sin \angle \text{OPA} = \frac{\text{OA}}{\text{OP}}
$$
\n
$$
\Rightarrow \quad \sin 30^\circ = \frac{a}{\text{OP}}
$$
\n
$$
\Rightarrow \quad \frac{1}{2} = \frac{a}{\text{OP}}
$$
\n
$$
\Rightarrow \quad \text{OP} = 2a
$$
\nHence,
$$
\text{OP} = 2a
$$

3. Prove OT is a right bisector of line segment PQ

 Join OP and OQ Now In ΔOPT and ΔOQT

Hence OT is the right bisector of line segment PQ

4. Given that two circles touch each other internally at A. P is any point on the tangent AT at the point A of the two circles.

 Two tangents PC and PB are drawn from P to the two circles. To prove that PB = PC.

 From an external point P, two tangents PA and PC are drawn to the smaller circle.

$$
\therefore \qquad \qquad PA = PC \qquad \qquad \dots (1)
$$

 Again, two other tangents PA and PB are drawn from P to the bigger circle.

$$
\therefore \qquad \qquad \text{PB} = \text{PA} \qquad \qquad \dots (2)
$$

∴ From (1) and (2), we have PB = PC

Hence, proved.

5. Given that PQL and PRM are two tangents to a circle with centre O, drawn from an external point P of the circle.

 OQ, OR, OS, SQ and SR are drawn such that ∠SQL = 60° and ∠SRM = 50° .

To find the measure of ∠QSR.

Since $OQ \perp PL$ and $OR \perp RM$.

We have
$$
\angle OQS = \angle OQL - \angle SQL
$$

\n $= 90^{\circ} - 60^{\circ} = 30^{\circ}$...(1)
\nAlso, $\angle ORS = \angle ORM - \angle SRM$
\n $= 90^{\circ} - 50^{\circ} = 40^{\circ}$...(2)
\nAgain, since $OQ = OS = OR$
\n $= \text{radius of the same circle}$
\n $\therefore \angle OSQ = \angle OQS = 30^{\circ}$ [From (1)] ...(3)
\nand $\angle OSR = \angle ORS = 40^{\circ}$ [From (2)] ...(4)
\nHence, $\angle QSR = \angle OSQ + \angle OSR$
\n $= 30^{\circ} + 40^{\circ}$ [From (3) and (4)]
\n $= 70^{\circ}$
\nwhich is the required measure of $\angle QSR$.

6. In right ΔABC, we have $BC² = AC² + AB²$ [By Pythagoras' theorem] ⇒ $BC^2 = (8 \text{ cm})^2 + (6 \text{ cm})^2$ \Rightarrow BC² = 64 cm² + 36 cm² $= 100$ cm²

$$
\Rightarrow \qquad BC = 10 \text{ cm} \qquad ...(1)
$$

Join OA, OB and OC.

 Let the tangents AC, AB and BC touch the circle at D, E and F respectively.

 Since the tangents at any point of a circle is perpendicular to the radius through the point of contact.

∴ OD ⊥ AC, OE ⊥ AB and OF ⊥ BC

 \Rightarrow OD, OE and OF are the altitudes of ΔAOC , ΔBOA and $\triangle BOC$ respectively.

Now, $ar(\Delta ABC) = ar(\Delta AOC) + ar(\Delta BOA) + ar(\Delta BOC)$

$$
\frac{1}{2} \times AB \times AC = \frac{1}{2} \times AC \times OD + \frac{1}{2} \times AB \times OE + \frac{1}{2} \times BC \times OF
$$

$$
\frac{1}{2} \times AB \times AC = \frac{1}{2} \times AC \times x + \frac{1}{2} \times AB \times x + \frac{1}{2} \times BC \times x
$$

 $[OD = OE = OF = x$, radii of inscribed circle]

 $\frac{1}{2} \times 6$ cm $\times 8$ cm

$$
= \frac{1}{2} \times 8 \text{ cm} \times x + \frac{1}{2} \times 6 \text{ cm} \times x + \frac{1}{2} \times 10 \text{ cm} \times x
$$

[Using (1)]

$$
\Rightarrow \qquad 24 \text{ cm}^2 = x(4+3+5) \text{ cm}
$$

$$
\Rightarrow \qquad 24 \text{ cm}^2 = 12x \text{ cm}
$$

$$
\Rightarrow \qquad \qquad x = \frac{24 \text{cm}^2}{12 \text{cm}} = 2 \text{ cm}
$$

Hence, $x = 2$ cm.

7. Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \text{OC} \perp \text{ACB} \implies \angle \text{OCB} = 90^{\circ}
$$

In risk AOCB, we have

In right $\triangle OCB$, we have

 $OC² + CB² = OB²$ [By Pythagoras' Theorem]

$$
\Rightarrow \qquad r_1^2 + \left(\frac{AB}{2}\right)^2
$$

 $= r_2^2$ [Perpendicular from the centre of the circle to the chord bisects the chord and $OC \perp$ chord ACB of the larger circle]

$$
\Rightarrow \qquad r_1^2 + \left(\frac{c}{2}\right)^2 = r_2^2 \qquad \text{[AB = c, given]}
$$

$$
\Rightarrow \qquad r_1^2 + \frac{c^2}{4} = r_2^2 \Rightarrow 4r_1^2 + c^2 = 4r_2^2
$$

Hence, **4 ²**

 $r_2^2 = 4r_1^2 + c^2$

8. Given that $\triangle PQR$ is an isosceles triangle with equal sides PQ = PR = 12 cm, which is inscribed in a circle with centre at O and radius = 18 cm. QO and RO are joined. Then $OQ = OR = OP = 18$ cm.

To find the area of $\triangle PQR$. Let $QM = x$ cm and $OM = y$ cm Then from Δ OQM, since ∠QMO = 90° ∴ By Pythagoras' theorem, we have $QM^2 + OM^2 = OQ^2$ ⇒ $x^2 + y^2 = 18$ …(1) and from $\triangle PQM$, since, $QM = x$ cm $PM = (18 - y)$ cm and $PQ = 12$ cm Hence, by Pythagoras' theorem, we have $PQ^2 = PM^2 + OM^2$ ⇒ $12^2 = (18 - y)^2 + x^2$ ⇒ $x^2 + (18 - y^2) = 12^2$ …(2) ∴ Subtracting (2) from (1), we get $y^2 - (18 - y)^2 = 18^2 - 12^2$ ⇒ $(y + 18 - y)(y - 18 + y) = (18 + 12) (18 - 12)$ ⇒ $18(2y - 18) = 30 \times 6$ $⇒ 36y - 18^2 = 180$ ⇒ $y = \frac{18^2 + 180}{36}$ 2 + $=\frac{324+180}{36}=\frac{504}{36}=14$...(3) Hence, from (1), $x^2 = 324 - 14^2$ $= 324 - 196$ $= 128$ ∴ $x = 8\sqrt{2}$ …(4) Now, since PM is a median of $\triangle PQR$. ∴ $ar(\Delta PQR) = 2 ar(\Delta PQM)$

$$
= 2 \times \frac{1}{2}QM \times PM
$$

= QM \times PM = x \times (18 - y)
= 8\sqrt{2} \times (18 - 14) cm²
[From (3) and (4)]
= 32\sqrt{2} cm²

which is the required area of $\triangle PQR$.

9. Given that ABC is a triangle circumscribing a circle with centre at O and radius *r*. Let *a*, *b*, *c* be the lengths of the sides of \triangle ABC opposite to the vertices A, B and C respectively. Given that S is the area of DABC and *s* is the semi-perimeter of $\triangle ABC$, i.e.

$$
s = \frac{a+b+c}{2} \qquad \qquad \dots (1)
$$

To prove that S = *rs*.

Construction: We join OA, OB and OC.

We have

$$
ar(\triangle ABC) = ar(\triangle OBC) + ar(\triangle OAC) + ar(\triangle OAB)
$$

$$
= \frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr
$$

$$
\Rightarrow \qquad S = \frac{1}{2}(a+b+c)r = sr \qquad \text{[From (1)]}
$$

Hence, the result.

- VALUE-BASED QUESTIONS -

For Basic and Standard Levels

1. (*i*) Since the lengths of tangents drawn from an external point to a circle are equal

$$
\therefore \text{ AS} = AP
$$
\n
$$
= x \text{ m (say)}
$$
 [Tangents from A] ... (1)\n
$$
BP = BQ
$$
 [Tangents from B] ... (2)\n
$$
CR = CQ
$$
 [Tangents from C] ... (3)\n
$$
DR = DS
$$
 [Tangents from D] ... (4)\n
$$
BP = AB - AP = 5 \text{ m} - x \text{ m}
$$
\n
$$
= (5 - x) \text{ m}
$$
 [Using (1)]\n
$$
CQ = BC - BQ = [3 - (5 - x)] \text{ m}
$$
\n
$$
= (x - 2) \text{ m}
$$
 [Using (3)]\n
$$
DR = CD - CR = [6.8 - (x - 2)] \text{ m}
$$
\n
$$
= (8.8 - x) \text{ m}
$$
 [Using (3)]\n
$$
DS = (8.8 - x) \text{ m}
$$
 [Using (4)] ... (5)

31

Now,
$$
AD = AS + DS
$$

= $[x + (8.8 - x)]$ m [Using (1) and (5)]
 $\Rightarrow AD = 8.8$ m

Hence, AD = **8.8 m**

- *(ii)* Empathy and environment awareness.
- **2.** (*i*) Since the lengths of tangents drawn from an external point to a circle are equal

$$
\begin{aligned}\n\therefore \quad BE = BD = 30 \text{ m} \quad [\text{Tangents from B}] \dots (1) \\
\text{CF} = \text{CD} = 7 \text{ m} \quad [\text{Tangents from C}] \dots (2) \\
\text{AE} = \text{AF} = x \text{ m (say)}[\text{Tangents from A}] \dots (3) \\
\text{In right } \Delta BAC, \text{ we have}\n\end{aligned}
$$

 $AB^2 + AC^2 = BC^2$ [By Pythagoras' Theorem]

$$
\implies (30 + x)^2 + (x + 7)^2 = (37)^2
$$

$$
\Rightarrow 900 + x^2 + 60x + x^2 + 14x + 49 = 1369
$$

$$
\implies 2x^2 + 74x + 949 - 1369 = 0
$$

$$
\implies 2x^2 + 74x - 420 = 0
$$

$$
\implies x^2 + 37x - 210 = 0
$$

$$
\Rightarrow x^2 + 42x - 5x - 210 = 0
$$

$$
\Rightarrow x(x + 42) - 5(x + 42) = 0
$$

$$
\Rightarrow (x + 42) (x - 5) = 0
$$

$$
\Rightarrow
$$
 Either $x + 42 = 0$ or $x - 5 = 0$

$$
\Rightarrow x = -42 \text{ (Rejected) or } x = 5 \quad ...(4)
$$

AB = (30 + x)m

$$
= (30 + 5)m = 35 m
$$
 [Using (3) and (4)]
AC = (5 + 7)m = 12 m

- and $BC = (30 + 7)m = 37 m$
- In 28 seconds, the person jogs

$$
= (35 + 37 + 12)\,\mathrm{m} = 84\,\mathrm{m}
$$

$$
\therefore \quad \text{In 1 second the person jogs} = \frac{84}{28} \text{ m } = 3 \text{ m}
$$

Thus, his average speed of jogging is **3 m/s.**

(*ii*) Join OE and OF.

 Since the tangent at any point of the circle is perpendicular to the radius through the point of contact

 \therefore OE \perp AB and OF \perp AC

$$
\Rightarrow
$$
 \angle OEA = 90° and \angle OFA = 90°

and ∠EAF = 90° [∠BAC = 90° , given] So, OEAF is a quadrilateral in which each angle is 90°

and adjacent sides
$$
OE = OF
$$
.

 \therefore Quadrilateral OEAF is a square.

$$
\therefore \qquad \text{OE} = \text{AE} = x \text{ m} = 5 \text{ m} \qquad \qquad \text{[Using (4)]}
$$

Hence, the radius of the circular garden is **5 m.**

(*iii*) Taking care of physical fitness.

3. (*i*) Angle between two consecutive radial roads

$$
= \frac{360^{\circ}}{8} = 45^{\circ}
$$

\n
$$
\Rightarrow \angle AOC = 45^{\circ}
$$

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \qquad CA \perp OA
$$

$$
\Rightarrow \angle CAO = 90^{\circ}
$$

In right Δ CAO, we have

$$
\cos 45^\circ = \frac{\text{OA}}{\text{OC}} = \frac{\text{OA}}{\text{OB} + \text{BC}}
$$

$$
\Rightarrow \frac{1}{\sqrt{2}} = \frac{15 \text{ m}}{15 \text{ m} + \text{BC}}
$$

$$
\Rightarrow 15 \text{ m} + \text{BC} = 15\sqrt{2} \text{ m}
$$

$$
\Rightarrow \qquad BC = (15\sqrt{2} - 15) \text{ m} = 15(\sqrt{2} - 1) \text{ m}
$$

$$
= 15 \times 0.414 \text{ m}
$$

$$
\Rightarrow \qquad BC = 6.21 \text{ m}
$$

Hence, the length of path BC = **6.21 m.**

(*ii*) Empathy and interpersonal relationship.

Unit Test 1

For Basic Level

1. (*a*) **6 cm**

⇒

 Tangents at the end of a diameter of a circle are parallel. So the distance between them is equal to the diameter or 2*r*. Hence, distance $= 2 \times 3$ cm $= 6$ cm.

2. (*a*) **90°**

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \angle \text{OTP} = 90^{\circ} \qquad \qquad \dots (1)
$$

© Ratna Sagar

32

In right
$$
\triangle
$$
OTP, we have
\n \angle OTP + $x + y = 180^{\circ}$
\n $\Rightarrow 90^{\circ} + x + y = 180^{\circ}$ [Using (1)]
\n $\Rightarrow x + y = 90^{\circ}$

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \angle OAP = \angle OBP = 90^{\circ} \qquad \qquad \dots (1)
$$

In quadrilateral APBO, we have

$$
\angle OAP + \angle APB + \angle PBO + \angle AOB
$$

$$
= 360^{\circ}
$$
 [Sum of angles of a quad]

$$
\Rightarrow 90^{\circ} + 80^{\circ} + 90^{\circ} + \angle AOB = 360^{\circ} \qquad \text{[Using (1)]}
$$

$$
\Rightarrow \angle AOB = 360^\circ - (90^\circ + 80^\circ + 90^\circ)
$$

⇒ $∠AOB = 360° - 260° = 100°$...(2)

 Since the angle subtended by the arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle

$$
\therefore \angle AOB = 2\angle AQB
$$

\n
$$
\Rightarrow 100^{\circ} = 2\angle AQB
$$
 [Using (2)]
\n
$$
\Rightarrow \angle AQB = 50^{\circ}
$$

$$
4. (a) 11
$$

3. (*d*) **50°**

 Since the lengths of tangents drawn from an external point to a circle are equal

$$
\therefore \quad \text{AQ} = \text{AR} \quad \text{[Tangents from A] ... (1)}
$$
\n
$$
\text{BQ} = \text{BP} \quad \text{[Tangents from B] ... (2)}
$$
\n
$$
\text{DR} = \text{DS} \quad \text{[Tangents from D] ... (3)}
$$

 $DR = DS = 5$ cm [Using (3)] $AR = AD - DR = (23 - 5)$ cm = 18 cm $AQ = 18$ cm [Using (1)] \Rightarrow BQ = (29 – 18) cm = 11 cm \Rightarrow BP = 11 cm $\overline{}$ J $[Using (2)]$

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

 \angle ∠OQB = ∠OPB = 90°

Also $\angle QBP = 90^\circ$ [$\angle ABC = 90^\circ$, given] So, each angle of quadrilateral OQBP is a right angle and its adjacent sides BQ and BP are equal [Using (4)].

Thus, quadrilateral OQBP is a square

$$
\therefore \qquad \text{OQ} = \text{BQ} = 11 \text{ cm}
$$

Hence, the radius of the circle (in cm) is 11.

5. (*d*) **55°**

 Given that a quadrilateral ABCD circumscribes a circle with centre at O such that ∠AOB = 125°. OD and OC are joined. To find the measure of ∠DOC. Let AB, BC, CD and DA touch the circle at P, Q, R and S respectively.

 AP and AS are two tangents to the circle from an external point A, hence, AP = AS.

 \angle OAP = \angle OAS = α (say) Similarly, $\angle OBA = \angle OBC = \beta$ (say) $∠OCQ = ∠OCD = γ$ (say) and $\angle ODC = \angle ODA = \delta$ (say) ∴ In ∆OAB, we have α + β + 125° = 180° \Rightarrow α + β = 180° – 125° = 55° …(1)

Now, in quadrilateral ABCD, we have

∠ABC + ∠BCD + ∠CDA + ∠DAB

 = sum of all the angles of the quadrilateral $= 360^{\circ}$

$$
\Rightarrow 2\alpha + 2\beta + 2r + 2\delta = 360^{\circ}
$$

\n
$$
\Rightarrow \alpha + \beta + r + \delta = 180^{\circ}
$$

\n
$$
\Rightarrow 55^{\circ} + r + \delta = 180^{\circ}
$$
 [Using (1)]
\n
$$
\therefore r + \delta = 180^{\circ} - 55^{\circ} = 125^{\circ}
$$
...(2)
\n
$$
\therefore \angle COD = 180^{\circ} - (r + \delta)
$$

$$
= 180^\circ - 125^\circ
$$
 [From (2)]

$$
= 55^\circ
$$

6. (c)
$$
90^{\circ}
$$

 Given that two circles touch each other externally at C. AB is a common tangent to the two circles. Let TL be a common tangent to the two circles at C where T is a point on AB.

To find
$$
\angle ACB
$$
,
\nWe have $TA = TC = TB$...(1)
\n \therefore In $\triangle ATC$, we have $\angle TAC = \angle TCA = \theta$ (say) ...(2)
\n $\therefore \angle ATC = 180^\circ - 2\theta$...(3)
\n $\therefore \angle BTC = 180^\circ - \angle ATC$
\n $= 180^\circ - (180^\circ - 2\theta)$
\n $= 2\theta$...(4) [From (3)]
\nNow, \therefore TC = TB

∴ In $\triangle TBC$, we have ∠TBC = ∠TCB $=\frac{180^{\circ}-1}{2}$ ° – ∠BTC $=\frac{180^{\circ}-2}{2}$ $[From (4)]$ $= 90^{\circ} - \theta$ …(5)

$$
\therefore \angle ACB = \angle TCA + \angle TCB
$$

= $\theta + 90^{\circ} - \theta$ [From (3) and (5)]
= 90°

7. (*d*) $\sqrt{125}$ cm

 Given that PT is a tangent from an external point P to a circle with centre at O , of radius 5 cm such that $PT =$ 10 cm. To find the distance PO.

 ∴ By Pythagoras' theorem, we have $OP² = OT² + PT²$ $= 5^2 + 10^2 = 125$

∴ OP = $\sqrt{125}$

Hence, the required distance OP is of measure $\sqrt{125}$ cm.

8. (*d*) **7.6 cm**

 Given that two circles touching each other externally at T has a common tangent QR touching the two circles at Q and R. The tangent at T meets QR at P. Given that PT = 3.8 cm.

To find the length of QR.

We have
$$
PQ = PT = PR = 3.8 \text{ cm}
$$
 ...(1)
\n $QR = QP + PR = 2QP = 2 \times 3.8 \text{ cm}$
\n $= 7.6 \text{ cm}$ [From (1)]

9. (*b*) **10 cm**

 Given that a triangle ABC circumscribes a circle which touches the sides BC, CA and AB of the triangle at D, E

and F respectively such that $AF = 4$ cm, $BF = 3$ cm and $AC = 11$ cm.

To find the length of BC.

We have $BD = BF = 3 \text{ cm}$...(1) $AE = AF = 4$ cm ...(2) ∴ $CD = CE = AC - AE = (11 - 4)$ cm [From (2)] $= 7 \text{ cm}$ …(3) ∴ $BC = BD + CD = (3 + 7) cm$ [From (1) and (3)] $= 10$ cm

10. (*d*) **120**

Given that a chord AB of a circle with centre at O subtends an angle 60° so that ∠AOB = 60° . The tangents AC and BC to the circle meet each other at a point C outside the circle. To find ∠ACB.

Now, $\angle ACB = 360^\circ - \angle AOB - \angle CAO - \angle CBO$...(1)

Now, \therefore OA \perp AC and OB \perp BC,

∠CAO = 90° , ∠CBO = 90° and ∠AOB = 60° [Given] Hence, from (1), we have

 $∠ACB = 360° - 60° - 90° - 90°$

 $[\cdot]$: The sum of four angles of the quadrilateral OACB is 360°]

$$
= 360^\circ - 240^\circ
$$

$$
= 120^\circ
$$

11. (*b*) **45°**

 Given that PQ is a tangent to a circle with centre at a point O on it such that ΔOPQ is an isosceles triangle. To find the measure of ∠OQP.

Since, \angle OPQ = 90° and \triangle OPQ is an isosceles triangle with $PQ = PO$,

$$
\angle PQO = \angle POQ
$$

=
$$
\frac{180^\circ - 90^\circ}{2} = 45^\circ.
$$

12. (*a*) **60 cm**²

 Given that PQ and PR are two tangents to a circle with centre at O, drawn from an outside point P such that $OP = 13$ cm.

Given that $OQ = OR =$ radius of the circle = 5 cm To find the area of the quadrilateral PQOR. From $ΔOPR$, we have $∠ORP = 90^\circ$. ∴ By Pythagoras' theorem, we have

$$
PR = \sqrt{OP^2 - OR^2}
$$

$$
= \sqrt{13^2 - 5^2} \text{ cm}
$$

$$
= \sqrt{169 - 25} \text{ cm}
$$

$$
= \sqrt{144} \text{ cm}
$$

$$
= 12 \text{ cm} = PQ
$$

Now, ar(quadrilateral PQOR) = $ar(\triangle$ OPR) + $ar(\triangle$ OPQ) $\dots(1)$

Now, from $\triangle PQR$, \therefore $\angle PRQ = 90^\circ$.

Hence, by Pythagoras' theorem, we have

$$
PR = \sqrt{PO^2 - OR^2}
$$

$$
= \sqrt{13^2 - 5^2} \text{ cm}
$$

$$
= \sqrt{169 - 25} \text{ cm}
$$

$$
= \sqrt{144} \text{ cm}
$$

$$
= 12 \text{ cm}
$$

$$
\therefore \text{ PQ} = PR = 12 \text{ cm}
$$

Hence, from (1), we get

 $ar(quadrilateral OQPR) = ar(\Delta OPR) + ar(\Delta OPQ)$

$$
= \frac{1}{2} \times RP \times OR + \frac{1}{2} \times QP \times OQ
$$

$$
= \left(\frac{1}{2} \times 12 \times 5 + \frac{1}{2} \times 12 \times 5\right) \text{ cm}^2
$$

$$
= (30 + 30) \text{ cm}^2
$$

$$
= 60 \text{ cm}^2
$$

13. (*a*) **20**

 Given that PA and PB are two tangents to a circle with centre at O such that ∠APB = 40° , where AB is the line segment joining A and B. OA is joined. To find the measure of ∠OAB. Since PA = PB.

∴ In $\triangle PAB$, we have

$$
\angle PAB = \angle PBA
$$

= $\frac{180^\circ - 40^\circ}{2} = 70^\circ$...(1)

$$
\angle BAO = \angle PAO - \angle PAB
$$

$$
= 90^{\circ} - 70^{\circ}
$$

[\therefore OA is the radius and PA is a tangent through A, hence ∠PAO = 90° and from (1) ∠PAB = 70°] $= 20^{\circ}$

14. (*c*) $2\sqrt{3}$ **cm.**

 Given that AT is a tangent to a circle with centre at O such that $OT = 4$ cm and $\angle OTA = 30^\circ$.

To find the length of AT.

Construction: We join AO.

From $\triangle ATO$, since ∠OAT = 90°.

AT

$$
\therefore \frac{A1}{OT} = \cos 30^{\circ}
$$

\n
$$
\Rightarrow \qquad AT = OT \cos 30^{\circ}
$$

\n
$$
= 4 \times \frac{\sqrt{3}}{2} \text{ cm}
$$

\n
$$
= 2\sqrt{3} \text{ cm}
$$

15. (*a*) **100°**

 Given that PR is a tangent to a circle with centre at O. PQ is a chord of the circle thorugh P such that ∠QPR = 50°. PO and QO are joined.

To find ∠POQ.

 Since, PR is a tangent and OP is radius of the circle, hence, ∠OPR = 90°

$$
\therefore \qquad \angle OPQ = 90^\circ - 50^\circ = 40^\circ \qquad \qquad \dots (1)
$$

$$
\frac{-}{35}
$$

35Circles

But
$$
\angle OPQ = \angle OQD
$$
 [:: OP = OQ]
= 40° ... (2)

$$
\therefore \qquad \angle POQ = 180^\circ - \angle OPQ - \angle OQP
$$

[Angle-sum property of a triangle] $= 180^{\circ} - 40^{\circ} \times 2$ [From (1) and (2)]

$$
=180^{\circ}-80^{\circ}
$$

 $= 100^{\circ}$

16. Let PT be the tangent from P to the circle with centre O. Then, $PT = 12$ cm

 $OP = 13$ cm. Let r be the radius of the circle. Then, $OT = r$.

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \qquad \text{OT} \perp \text{TP} \implies \angle \text{OTP} = 90^{\circ}
$$

In right \triangle OTP, we have

$$
OT^2 + PT^2 = OP^2
$$

 \Rightarrow $r^2 + (12 \text{ cm})^2 = (13 \text{ cm})^2$

$$
\Rightarrow \qquad r^2 = (169 - 144) \text{ cm}^2 = 25 \text{ cm}^2
$$

$$
\Rightarrow \qquad r = 5 \text{ cm}
$$

Hence, the radius of the circle is **5 cm.**

17.

 \angle ACO = ?

 Radius of a circle is perpendicular to the tangent at the point of contact

$$
OA ⊥ CA
$$

\n
$$
\angle OAC = 90^{\circ}
$$

\n
$$
\angle AOC + \angle BOC = 180^{\circ}
$$
 (Linear pair)
\n
$$
\angle AOC + 130^{\circ} = 180^{\circ}
$$

\n
$$
\angle AOC = 50^{\circ}
$$

 In ΔAOC

$$
\angle AOC + \angle ACO + \angle CAO = 180^{\circ}
$$

$$
50^{\circ} + \angle ACO + 90^{\circ} = 180^{\circ}
$$

$$
\angle ACO = 40^{\circ}
$$

18. Since the lengths of tangents drawn from an external point to a circle are equal

$$
\begin{array}{cc} & A \end{array}
$$

 \therefore AP = AR [Tangents from A] ...(1)

19. Given that PQ is a tangent to a circle with centre O, from an external point P. OP cuts the circle at T and ∠POR = 120°.

 S is a point on the circle. TS and SR are joined. To find ∠TSR + ∠QPT.

 We see that ∠TSR is an angle subtended by the arc RT on the circumference and ∠ROT is an angle subtended by the same arc RT on the same side.

$$
\therefore \angle \text{ROT} = 2\angle \text{TSR}
$$

$$
\Rightarrow \qquad 120^\circ = 2\angle \text{TSR}
$$

∴ $\angle 1 = \angle \text{TSR} = \frac{120^{\circ}}{2} = 60^{\circ}$...(1)

Now, in \triangle OPQ, we have

$$
\angle POQ = 180^\circ - 120^\circ
$$

[$\because \angle ROT + \angle POQ = 180^\circ$ and $\angle ROP = 120^\circ$]
= 60° ... (2)

Also,
$$
\angle OQP = 90^\circ ... (3)
$$

 $[\because$ OQ is a radius and PQ is a tangent at Q]

$$
\therefore \qquad \angle 2 = \angle QPO
$$

$$
= 180^{\circ} - (\angle POQ + \angle OQP)
$$

[Angle-sum property of DPOQ]

 $= 180^{\circ} - (60^{\circ} + 90^{\circ})$

[From (2) and (3)]

$$
=180^{\circ}-150^{\circ}
$$

$$
= 30^{\circ}
$$

$$
\therefore \qquad \angle 2 = \angle \mathbf{QPT} = 30^{\circ} \qquad \qquad \dots (4)
$$

∴ From (1) and (4), we have

$$
\angle
$$
TSR + \angle QPT = 60° + 30° = 90°.

which is the required measure of $\angle 1 + \angle 2$, i.e. \angle TSR + ∠QPT.

20. Given that an isosceles triangle ABC with AB = AC circumscribes a circle with centre at O. Let BC, AC and AB touch the circle at the points P, Q and R respectively.

To prove that the point P bisects BC , i.e. $BP = PC$.

[\therefore \triangle ABC is an isosceles triangle with AB = AC] Also, $AR = AQ$ …(2)

 $[\cdot]$: AR and AQ are two tangents from an external point A]

[\because These are tangents from an external point C] ∴ From (3), (4) and (5), we see that

 $BP = CP$

i.e. P bisects BC at P.

Hence, the result.

Unit Test 2

For Standard Level

1. (*b*) **32°**

 Given that the line AB is a tangent to a circle with centre at O, at the point P. PQ is a chord of the circle such that \angle APQ = 58°. QOR is a diameter of the circle such that QR produced intersect AP produced at B.

 To find the measure of ∠PQB. *Construction*: We join OP.

In \triangle OPQ, we have

$$
\angle
$$
OPA = 90°

[Since OP is a radius and APB is a tangent to the circle] ∴ ∠QPO = ∠OPA – ∠QPA

$$
= 90^{\circ} - 58^{\circ} = 32^{\circ} \qquad \qquad \dots (1)
$$

But since $OP = OO$

[Both are radius of the same circle]

$$
\angle PQB = \angle PQO = \angle QPO = 32^{\circ}
$$

$$
[From (1)]
$$

2. (b)
$$
4\sqrt{10}
$$

 Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

 \therefore OA \perp AP and OB \perp BP \Rightarrow ∠OAP = 90° and ∠OBP = 90°

In right $\triangle OAP$, we have

 $OP² = OA² + PA²$ [By Pythagoras' Theorem]

$$
\Rightarrow \qquad OP^2 = (5 \text{ cm})^2 + (12 \text{ cm})^2
$$

$$
= (25 + 144) \text{ cm}^2
$$

= 169 \text{ cm}^2 \t...(1)

In right \triangle OBP, we have

 \Rightarrow PB = $\sqrt{160}$ cm

 \Rightarrow PB = $4\sqrt{10}$ cm

Hence, the length of PB (in cm) is $4\sqrt{10}$.

3. *(b)*
$$
40^{\circ}
$$

 Given that PQR is a tangent to a circle at Q, with centre at O and AB is a chord of the circle parallel to PQR. QA and QB are joined.

Given that $∠BQR = 70^\circ$.

To find the measure of ∠AQB.

We have $\angle QAB = \angle BQR = 70^\circ$

[\therefore Angle in alternate segments are equal]

Also, ∠ABQ = alternate ∠BQR

[∵ AB
$$
\parallel
$$
 PR and QB is a transversal]
= 70°

∴ In \triangle ABQ,

 ∠AQB = 180° – (∠QAB + ∠QBA) [Angle-sum property of $\triangle AQB$] $= 180^{\circ} - (70^{\circ} + 70^{\circ})$ $= 180^{\circ} - 140^{\circ} = 40^{\circ}$

4. (*d*) **21 cm**

 Given that a circle with centre O is inscribed in a quadrilateral ABCD touching its sides AB, BC, CD and DA at P, Q, R and S respectively. The radius of the circle is 10 cm, BC $= 38$ cm, PB $= 27$ cm and AD \perp CD.

To find the length of CD.

Construction: We join OS, OR and SR.

 Since PB and BQ are tangents to the circle from an external point B, hence,

$$
BQ = PB = 27 \text{ cm} \qquad \qquad \dots (1)
$$

 Also since CQ and CR are two tangents to the circle from an external point C,

∴ $CR = CQ = BC - BQ$ $= (38 - 27)$ cm $= 11$ cm ...(2) Let $CD = x \text{ cm}$...(3)

∴ DR = CD – CR = $(x - 11)$ cm …(4)

[From (2) and (3)]

© Ratna Sagar

 DR and DS are two tangents to the circle from an external point D.

$$
DS = RD = (x - 11)
$$
 cm [From (4)] ... (5)

Now, since ∠SDR = 90° , hence, from \triangle SDR, we have by Pythagoras' theorem,

$$
RS2 = RD2 + DS2 = 2(x - 11)2 ...(6)
$$

[From (4) and (5)]

OS ⊥ AD and OR ⊥ RD.

∴ In quadrilateral OSDR, we have

$$
\angle
$$
OSD = \angle ORD = 90°

Also, given that \angle SDR = 90°.

∴ $∠SOR = 90°$

[Angle-sum property of a quadrilateral]

∴ In
$$
\triangle SOR
$$
, we have by Pythagoras' theorem,

\n
$$
SR^{2} = OS^{2} + OR^{2}
$$
\n
$$
= 10^{2} + 10^{2} = 200
$$
\n
$$
\therefore RS = \sqrt{200} = 10\sqrt{2}
$$
\n
$$
\therefore
$$
 From (6) and (7), we have\n
$$
200 = 2(x - 11)^{2}
$$
\n
$$
\Rightarrow (x - 11)^{2} = \frac{200}{2} = 100
$$
\n
$$
\therefore x - 11 = \pm \sqrt{100} = \pm 10
$$
\n
$$
\Rightarrow x = 11 + 10 = 21
$$
\nOr,

\n
$$
x = 11 - 10 = 1
$$
 which is absurd.\nSince,

\n
$$
CR = 11
$$
 cm [From (2)]\n
$$
\therefore x = CD = 1
$$
 cm is absurd.

Hence, $x = 21$

∴ Length of CD is 21 cm.

5. (*b*) **15 cm**

Join OQ

 Since, the tangent at any point of a circle is perpendicular to the radius through the point of contact

 \therefore OQ \perp PQS

 Since the perpendicular from the centre of a circle to a chord bisects the chord

∴ OQ bisects PS.

$$
\Rightarrow \qquad PQ = QS \qquad \qquad ...(1)
$$

 Since the lengths of tangents drawn from an external point to a circle are equal.

6. (*d*) **8 cm**

 Given that XY is a tangent to a circle with centre O and radius $OA = 5$ cm. Let the tangent XY touch the circle at A and AOB is a diameter of the circle. A chord CD at a distance of 8 cm from A is parallel to the tangent XAY and let CD cut AB at M. To find the length of CD.

Construction: We join OD.

Since XY is a tangent at A and AO is a radius,

$$
\therefore \angle OAY = 90^{\circ}.
$$

Also, since $XY \parallel CD$,

- ∴ $∠OMD = 90^\circ$.
- ∴ M is the middle point of CD.

Now, from ΔOMD, we have by Pythagoras' theorem,

$$
MD = \sqrt{OD^2 - OM^2}
$$

= $\sqrt{5^2 - (AM - AO)^2}$ cm
= $\sqrt{25 - (8 - 5)^2}$ cm
= $\sqrt{25 - 9}$ cm
= $\sqrt{16}$ cm
= 4 cm
= 2 × 4 cm
= 8 cm

7. (*d*) $3\sqrt{3}$ cm

 Given that TA and TB are two tangents to a circle with centre at O and radius 3 cm, drawn from an external point T such that $\angle ATB = 60^\circ$.

$$
= 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \quad ...(5) \text{ [From (4)]}
$$

AB = 2 × AM

$$
= 2 \times \frac{3\sqrt{3}}{2}
$$
 [From (5)]

$$
= 3\sqrt{3} \qquad \qquad \dots (6)
$$

Now, since in \triangle TAB, \angle ATB = \angle TBA = \angle TAB = 60°.

∴ ∆TAB is an equilateral triangle

$$
\therefore \qquad \text{AT} = \text{BT} = \text{AB} = 3\sqrt{3} \qquad \text{[From (6)]}
$$

- ∴ The length of each tangent is $3\sqrt{3}$ cm.
- **8.** Let $C(O, r)$ and $C(O', r')$ be the two circles such that $r = 11$ cm, $r' = 5$ cm and OO' = 20 cm. Let AB be one of the external common tangents.

Draw O′P \perp AO \Rightarrow ∠O′PA = ∠O′PO = 90° …(1) Since, the tangent at any point of the circle is perpendicular to the radius through the point of contact.

$$
\therefore \qquad OA \perp AB \text{ and } O'B \perp AB
$$

 \Rightarrow ∠OAB = 90° and ∠O′BA = 90° …(2) In quadrilateral ABO′P, we have

> \angle OAB = 90°, \angle O'BA = 90°

and
$$
\angle PO'B = 90^{\circ}
$$
 [Using (1) and (2)]

 \ Each angle of quad ABO′P is a right angle and its opposite sides are parallel.

∴ Quadrilateral ABO[']P is a rectangle

$$
\Rightarrow \qquad \text{PO}' = \text{AB} \qquad \qquad \dots (3)
$$

In right ∆OPO', we have

 $OP^2 + PO'^2 = OO'$ [By Pythagoras' Theorem]

 \Rightarrow [(11 – 5) cm]² + PO² = (20 cm)² \Rightarrow PO'² = 400 cm² – 36 cm² \Rightarrow PO'² = 364 cm² \Rightarrow PO' = $\sqrt{364}$ cm² \Rightarrow PO' = 19.1 cm (approx.) \therefore AB = 19.1 cm (approx.) [Using (3)]

Hence, AB = **19.1 cm (approx.)**

9. Given that two circles with centres at A and B and radii 3 cm and 4 cm respectively intersect at C and D such that AC and BC are tangents to the two circles at C. Centres A and B are joined. Also, CD is joined to cut AB at P. To find the length of the common chord CD.

39

 AC is a tangent to the circle with centre B and BC is a radius of this circle.

∴ $∠ACB = 90°$

∴ In ∆ABC, we have by Pythagoras' theorem,

$$
AB = \sqrt{AC^2 + BC^2}
$$

\n
$$
= \sqrt{3^2 + 4^2} \text{ cm}
$$

\n
$$
= \sqrt{25} \text{ cm} = 5 \text{ cm}
$$
 ...(1)
\nNow, let $AP = x \text{ cm}$...(2)
\n
$$
\therefore \text{ } PB = AB - AP = (5 - x) \text{ cm}
$$
 ...(3)

[From (1) and (2)]

 Now, since CD is a common chord of the circles with centre A and B, and AB is the line segment joining their centres,

∴ AB ⊥ CD.

∴ From (2) and (5), and from ∆ACP, we have by Pythagoras' theorem,

$$
AC2 = CP2 + AP2 = x2 + y2
$$

[From (2) and (5)]

$$
\Rightarrow \qquad 9 = x2 + y2 \qquad ...(6)
$$

Also, from $\triangle BCP$, we have by Pythagoras' theorem,

$$
BC2 = CP2 + PB2
$$

\n
$$
\Rightarrow 42 = y2 + (5 - x)2 \quad \text{[From (3) and (5)]}
$$

\n
$$
\Rightarrow 16 = (5 - x)2 + y2 \quad ...(7)
$$

\nSubtracting (6) from (7), we get
\n(5 - x)² - x² - 16 - 9 - 7

$$
(5 - x)2 - x2 = 16 - 9 = 7
$$

\n
$$
\Rightarrow (5 - x + x) (5 - x - 5) = 7
$$

\n
$$
\Rightarrow 5(5 - 2x) = 7
$$

\n
$$
\Rightarrow 10x = 25 - 7 = 18
$$

\n
$$
\therefore x = \frac{9}{5}
$$
...(8)

∴ From (6) and (8), we have

$$
y^{2} = 9 - x^{2}
$$

$$
= 9 - \left(\frac{9}{5}\right)^{2}
$$

$$
= 9 - \frac{81}{25}
$$

$$
= \frac{225 - 81}{25}
$$

$$
= \frac{144}{25}
$$

$$
y = \frac{12}{5}
$$

\n
$$
\therefore \qquad CD = 2CP
$$

\n
$$
= 2 \times y
$$

\n
$$
= \frac{12}{5} \times 2
$$

\n
$$
= \frac{24}{5}
$$

\n
$$
= 4.8
$$

 ∴ The required length of CD is **4.8 cm**. **10.** Join OC.

perpendicular to it is a tangent to the circle

 \therefore BE is tangent to the circle.

Hence, **EB touches the circle.**

11. Let AB, BC, CD and DA of the quadrilateral ABCD, touch the circle at P, Q, R and S respectively. Since the lengths of tangents drawn from an external point to a circle are equal

 $AY + AX = AY + (AS + DS + DX)$ \Rightarrow AY + AX = (AY + AP) + XS [Using (1)] \Rightarrow AY + AX = YP + XS \Rightarrow AY + AX = YR + XQ [Using (2) and (3)] \Rightarrow AY + AX = (CY – CR) + (CX + CQ) \Rightarrow AY + AX = CY – CQ + CX + CQ [Using (4)]

$$
\Rightarrow \quad AY + AX = CY + CX
$$

 \Rightarrow AY – CX = CY – AX Hence, **the difference between AY and CX is equal to**

the difference between CY and AX.

12. Since the tangent at any point of a circle is perpendicular to the radius through the point of contact

$$
\therefore \qquad \text{OD} \perp \text{BC} \text{ and } \text{OE} \perp \text{AC}
$$
\n
$$
\Rightarrow \qquad \angle \text{ODC} = 90^{\circ} \text{ and } \angle \text{OEC} = 90^{\circ}
$$
\nAlso \angle ECD = 90° [Given]

: In quadrilateral OECD, each angle is a right angle and adjacent sides OD and OE are equal (OD and OE are radii of the same circle).

So, quadrilateral OECD is a square.

Thus
$$
CD = CE = OE
$$
 or $OD = r$...(1)
\n
$$
\begin{bmatrix}\nC \\
y \\
z \\
z\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nC \\
y \\
z\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nC \\
y \\
z\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nC \\
z \\
z\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nC \\
z\n\end{bmatrix}
$$

 Since, the lengths of tangents drawn from an external point to a circle are equal.

 \therefore AE = AF [Tangents from A] ...(2) $BD = BF$ [Tangents from B] ...(3) $AE = AC - CE = b - r$ [Using (1)] $AF = b - r$ [Using (2)]

$$
BF = c - AF = c - b + r
$$

\n
$$
BD = c - b + r
$$
 [Using (3)] ... (4)
\nNow, BC = CD + BD
\n
$$
\Rightarrow a = r + c - b + r
$$
 [Using (1) and (4)]
\n
$$
\Rightarrow a + b = c + 2r
$$

\nHence, $2r + c = a + b$.
\n13. PQ = 17 cm
\nPR = 9 + x
\nRQ = x + 2

$$
\Delta PQR \text{ is right-angled triangle}
$$
\n∴
$$
PR^2 + RQ^2 = PQ^2
$$
\n
$$
(9 + x)^2 + (x + 2)^2 = (17)^2
$$
\n
$$
81 + x^2 + 18x + x^2 + 4 + 4x = 289
$$
\n
$$
2x^2 + 22x + 85 = 289
$$
\n
$$
2x^2 + 22x - 204 = 0
$$
\n
$$
x^2 + 11x - 102 = 0
$$
\n
$$
x^2 - 6x + 17x - 102 = 0
$$
\n
$$
x(x - 6) + 17(x - 6) = 0
$$
\n
$$
(x - 6)(x + 17) = 0
$$
\n
$$
x = 6 \text{ or } x = -17
$$

Since the radius of a circle cannot be negative

$$
\therefore \qquad \qquad x = 6 \text{ cm}
$$

14. Given that a triangle ABC circumscribes a circle with centre O and radius 2 cm such that the line segments BD and DC are of lengths 4 cm and 3 cm respectively. Given that $ar(\triangle ABC) = 21$ cm²

To find the length of AB and AC.

© Ratna Sagar

 Construction: We join AO, BO, CO, OD, OE and OF We have

 $ar(\triangle ABC) = ar(\triangle OBC) + ar(\triangle AOC) + ar(\triangle AOB)$

⇒
$$
21 = \frac{1}{2} BC \times OD + \frac{1}{2} AC \times OE + \frac{1}{2} AB \times OF
$$

$$
= \frac{1}{2} (4 + 3) \times 2 + \frac{1}{2} y \times 2 + \frac{1}{2} x \times 2
$$

$$
= 7 + x + y,
$$
where AB = x, AC = y and BC = (4 + 3) cm = 7 cm
∴
$$
x + y = 21 - 7 = 14
$$
 ...(1)
Now, AF = AB – BF
= AB – 4 = x – 4 ...(2)
And AE = AC – CE
= AC – 3 = y – 3 ...(3)
Now, from ∆AOF, we have
AO² = AF² + OF²
= (x – 4)² + 2² [From (2)]
= (x – 4)² + 4 ...(4)
Also, from ∆AOE, we have
AO² = AE² + OE²
= (y – 3)² + 2² [From (3)]
= (y – 3)² + 4 ...(5)

 Subtracting (4) from (5), we get $0 = (y - 3)^2 - (x - 4)^2$ $=(y-3+x-4)(y-3-x+4)$ $=(x + y - 7)(y - x + 1)$ ∴ Either $x + y - 7 = 0$ \Rightarrow $x + y = 7$ …(6) Or $y - x + 1 = 0$ $\Rightarrow x - y = 1$ …(7) From (1) and (6), we see that $7 = 14$ which is absurd.

Hence, we reject equation (6).

From (1) and (7), we get

$$
2x = 14 + 1 = 15
$$

$$
\Rightarrow \qquad x = \frac{15}{2} = 7.5
$$

and subtracting (7) from (1), we get

$$
2y = 14 - 1 = 13
$$
\n
$$
\therefore \qquad y = \frac{13}{2} = 6.5
$$

 Hence, the required lengths of AB and AC are **7.5 cm** and **6.5 cm** respectively.