CHAPTER **6 Triangles**

© Ratna Sagar

Triangles | -**1**Triangles

or
$$
(10x - 7) = 0
$$

\n \Rightarrow $x = \frac{7}{10}$
\n3. (i) $\frac{AD}{DB} = \frac{4}{4.5} = \frac{8}{9}$ and $\frac{AE}{EC} = \frac{8}{9}$
\n \therefore $\frac{AD}{DB} = \frac{AE}{EC}$
\n \therefore $DE \parallel BC$ [By the conv. of BPT]
\n(ii) $\frac{AD}{DB} = \frac{4.2}{12.6} = \frac{1}{3}$ and $\frac{AE}{EC} = \frac{5.1}{11.9} = \frac{3}{7}$
\n \therefore $\frac{AD}{DB} \neq \frac{AE}{EC}$
\n \therefore DE is not parallel to BC.
\n(iii) $\frac{AD}{DB} = \frac{AD}{AB - AD} = \frac{3.5}{17.5 - 3.5} = \frac{3.5}{14} = \frac{1}{4}$

and
$$
\frac{AE}{EC} = \frac{AE}{AC - AE} = \frac{4.2}{21 - 4.2} = \frac{4.2}{16.8} = \frac{1}{4}
$$

\n
$$
\therefore \frac{AD}{DB} = \frac{AE}{EC}
$$

∴ **DE is parallel to BC**.

(*iv*)
$$
\frac{AD}{DB} = \frac{5.6}{9.6} = \frac{7}{12}
$$

and $\frac{AE}{EC} = \frac{AC - EC}{EC} = \frac{10.8 - 4.5}{4.5} = \frac{6.3}{4.5} = \frac{7}{5}$
∴ $\frac{AD}{DB} \neq \frac{AE}{EC}$

∴ **DE is not parallel to BC**.

4. Given that in ∆ABC, D and E are points on AB and AC respectively such that $AD = 6$ cm, $DB = 9$ cm, $AE = 8$ cm and $EC = 12$ cm. To find ∠ABC, if $\angle ADE = 48^\circ$.

In ∆ABC, we see that $\frac{AD}{DB} = \frac{6}{9} = \frac{2}{3}$

and $\frac{AE}{EC} = \frac{8}{12} = \frac{2}{3}$. ∴ $\frac{AD}{DB} = \frac{AE}{EC}$

∴ DE || BC [By the converse of basic proportionally theorem] Now, ADB is a transversal to parallel lines DE and BC.

∴ ∠ABC = alternate ∠ADE = 48°

D \angle \qquad E

 \overline{B} c

Hence, the required ∠ABC = 48°

5. A

 $AD \times EC = AE \times DB$ \Rightarrow $\frac{AD}{DB} = \frac{AE}{EC}$

> Thus, in ∆ABC, DE divides the sides AB and AC in the same ratio.

By the converse of BPT, we have

6.

 DE ∥ **BE** $\angle A = \angle B$ [Given] ∴ $CA = CB$ … (1) [Sides opp. equal ∠s of a ∆] $AP = BQ$ [Given] ... (2) Subtracting equation (2) from equation (1), we get $CA - AP = CB - BQ$ \Rightarrow CP = CQ … (3) Dividing sides of equation (3) and equation (2), we get $\frac{CP}{AP} = \frac{CQ}{BQ}$ A B ์
ด P C

Thus, in ∆CAB, PQ divides the sides CA and CB in the same ratio.

∴ By the converse of BPT, we have

But $BD = CE$ (Given) ... (2) $AD = AE$ [Using (1) and (2)] ... (3) Adding the corresponding sides of equation (3) and equation (2), we get

$$
AD + BD = AE + CE
$$

 $AB = AC$ Hence, ∆**ABC is an isosceles triangle**.

8. In ∆ABC, EF || BA

[$\because EF \parallel DA$, opp. sides of a $\parallel gm$]

∴

 $rac{\text{CF}}{\text{FA}} = \frac{\text{CE}}{\text{EB}}$ $\frac{\text{CE}}{\text{EB}} \qquad \qquad \text{[By BPT]} \, \dots \, \text{(1)}$ In $\triangle ABC$, ED \parallel CA [\because ED \parallel FA, opp. sides of a \parallel gm]

$$
\frac{BD}{DA} = \frac{BE}{EC}
$$
\n⇒
$$
\frac{AD}{BD} = \frac{CE}{EB}
$$
 [Taking reciprocals]
\nFrom (1) and (2), we get
\n
$$
\frac{CF}{FA} = \frac{AD}{BD} \left[\text{Each is equal to } \frac{CE}{EB} \right]
$$
\n9. In $\triangle ABC$, $DE \parallel AC$
\n
$$
\frac{BD}{DA} = \frac{BE}{EC}
$$
\n
\n
$$
\therefore \frac{BD}{DA} = \frac{BE}{EC}
$$
 [By BPT] ... (1)
\nIn $\triangle ABE$, $DF \parallel AE$
\n
$$
\therefore \frac{BD}{DA} = \frac{BE}{FE} \left[\text{By BPT} \right] ... (2)
$$
\nFrom (1) and (2), we get
\n
$$
\frac{BE}{EC} = \frac{BE}{FE} \left[\text{Each is equal to } \frac{BD}{DA} \right]
$$
\n⇒
$$
\frac{BF + FE}{EC} = \frac{BE}{FE}
$$
\n⇒
$$
\frac{(4+5) \text{ cm}}{\text{EC}} = \frac{4 \text{ cm}}{5 \text{ cm}}
$$
\n⇒
$$
EC = \frac{9 \times 5}{4} \text{ cm} = 11.25 \text{ cm}
$$
\n10. In $\triangle CAB$, $DE \parallel AB$

⇒ $\frac{AC}{DC} = \frac{DC}{CF}$ \Rightarrow **DC² = CF × AC 11.** (*i*) In ∆FAD, EB || DA [\because CB || DA, Opp. sides of a ||gm] A B F E

∴

D C $\frac{FE}{ED} = \frac{FB}{BA}$ [By BPT] \dots (1) ⇒ $\frac{\text{DE}}{\text{EF}} = \frac{\text{AB}}{\text{BF}}$ [Taking reciprocals] ⇒ $\frac{DE}{EF} = \frac{DC}{BF}$

[\therefore AB = DC, Opp. sides of a $||gm]$ $[From (1)]$

(i)
$$
\frac{FE}{ED} = \frac{FB}{BA}
$$

$$
\Rightarrow \frac{FE}{ED} + 1 = \frac{FB}{BA} + 1
$$

$$
\Rightarrow \frac{FE + ED}{ED} = \frac{FB + BA}{BA}
$$

$$
\Rightarrow \frac{DF}{DE} = \frac{AF}{AB}
$$

$$
\Rightarrow \frac{DF}{DE} = \frac{AF}{DC}
$$

[$\because AB = DC$, Opp. sides of a $||gm]$

12. ABCD is a quadrilateral in which AB \parallel DC. ∴ ABCD is a trapezium.

Since the diagonals of a trapezium divide each other proportionally,

$$
\frac{AO}{OC} = \frac{BO}{OD}
$$
\n
\n⇒
$$
\frac{3x - 19}{x - 3} = \frac{x - 4}{4}
$$
\n
\n⇒
$$
12x - 76 = x^2 - 3x - 4x + 12
$$
\n
\n⇒
$$
x^2 - 19x + 88 = 0
$$
\n
\n⇒
$$
(x - 11) (x - 8) = 0
$$
\n
\n⇒
$$
x = 11
$$
\n
\nor
$$
(x - 8) = 0
$$
\n
\n⇒
$$
x = 8
$$

A B F $D \leftarrow \rightarrow \infty$ C

$$
\therefore \quad \frac{\text{CD}}{\text{DA}} = \frac{\text{CE}}{\text{EB}} \quad \text{[By BPT]} \dots \text{ (1)}
$$
\nIn $\triangle \text{CDB}$, \quad \text{FE} \parallel \text{DB}

$$
\therefore \qquad \qquad \frac{\text{CF}}{\text{FD}} = \frac{\text{CE}}{\text{EB}} \qquad \qquad \text{[By BPT]} \dots \text{ (2)}
$$

From (1) and (2), we get

$$
\frac{CD}{DA} = \frac{CF}{FD}
$$
\n
$$
\Rightarrow \qquad \frac{DA}{DC} = \frac{FD}{CF} \qquad \text{[Taking reciprocals]}
$$

$$
\Rightarrow \frac{DA}{DC} + 1 = \frac{FD}{CF} + 1
$$

DA + DC = FD + CF

$$
\Rightarrow \qquad \frac{\text{DA} + \text{DC}}{\text{DC}} = \frac{\text{FD} + \text{CF}}{\text{CF}}
$$

Triangles | co **3**Triangles

13. ABCD is a quadrilateral in which

∴ ABCD is a trapezium. Since the diagonals of a trapezium divide each other proportionally,

$$
\Rightarrow \qquad (x-3) = 0
$$

$$
\Rightarrow \qquad x = 3
$$

From (1) and (2)

14. Join AC and let it intersect EF at G.

In
$$
\triangle ADC
$$
, $EG \parallel DC$ [.: $EF \parallel DC$]
\n.: $\frac{AE}{ED} = \frac{AG}{GC}$ [By BPT] ... (1)
\nIn $\triangle CBA$, $FG \parallel BA$ [.: $EF \parallel AB$]
\n.: $\frac{CF}{FB} = \frac{CG}{GA}$ [By BPT]
\n $\Rightarrow \frac{BF}{FC} = \frac{AG}{GC}$

[Taking reciprocals] … (2)

we have

$$
\frac{AE}{ED} = \frac{BF}{FC}
$$
 [Each is equal to $\frac{AG}{GC}$]

15. Given that ABCD is a trapezium in which AB \parallel DC. P and Q are two points on non-parallel sides AD and BC respectively of the trapezium ABCD such that $PQ \parallel DC \parallel AB$.

Also, given that $CQ = 15$ cm, $QB = 35$ cm and $PD = 18$ cm.

To find AD.
\n
$$
\therefore \text{ In the trapezium PQ} \parallel DC \parallel AB.
$$
\n
$$
\therefore \frac{AP}{PD} = \frac{QB}{QC}
$$
\n
$$
\Rightarrow \frac{AP}{18} = \frac{35}{15} = \frac{7}{3}
$$
\n
$$
= 3AP
$$
\n
$$
= 7 \times 18
$$
\n
$$
\Rightarrow AP = 42
$$
\n
$$
\therefore AP = AP + PD
$$
\n
$$
= 42 + 18
$$
\n
$$
= 60
$$

Hence, the required length of AD is 60 cm.

16.

$$
5x-7
$$

\n
$$
5x-7
$$

\n
$$
5x-7
$$

\n
$$
5x
$$

\n
$$
5x
$$

\n
$$
\frac{AE}{ED} = \frac{BF}{FC}
$$
 [Proved in Q14]
\n⇒
$$
5x^2 + 15x - 7x - 21 = 3x^2 + 7x
$$

\n⇒
$$
2x^2 + x - 21 = 0
$$

\n⇒
$$
(2x + 7) (x - 3) = 0
$$

\n⇒ Either
$$
(2x + 7) = 0
$$
,
\n
$$
x = -\frac{7}{2}
$$

\n(rejected. as length of line segment cannot be negative)

(rejected, as length of line segment cannot be negative) or $(x - 3) = 0$ \Rightarrow $x = 3$

17. Given that ABCD is a trapezium with $AB \parallel DC$ and AC and BD are its two diagonals intersecting each other at O such the POQ \parallel DC \parallel AB. To prove that OP = OQ.

In ∆ADC, OP || DC.

∴

∴ The triangles APO and ADC are similar.

$$
\frac{PO}{DC} = \frac{AP}{AD} \qquad ...(1)
$$

- Again, in ∆BCD, OQ || DC ∴ ∆BQO ∽ ∆BCD \Rightarrow $\frac{QO}{DC}$ $=\frac{BQ}{BC}$ $\dots(2)$
- But $\frac{AP}{AD} = \frac{BQ}{BC}$ $\frac{BQ}{BC}$ [: PQ || DC]

∴ From (1) and (2), we have

$$
\frac{PO}{DC} = \frac{QO}{DC}
$$

\n
$$
\Rightarrow \qquad PO = OQ
$$

18. In ∆ADC, we have

 $AE = ED$ [\because E is the mid-point of AD]

⇒

⇒

and $AF = FC$ [$:$ F is the mid-point of AC] $\frac{\text{AF}}{\text{FC}}$ $= 1$ … (2)

 $\frac{AE}{ED} = 1$... (1)

From (1) and (2), we get

$$
\frac{\overline{AE}}{\overline{ED}} = \frac{\overline{AF}}{\overline{FC}}
$$

Thus, in ∆ADC, EF divides the sides AD and AC in the same ratio.

∴ By the converse of Basic Proportionality Theorem, we have EF ∥ DC

For Standard Level

19. (*i*) In ∆DQC, PR || CQ [: PR || AC]

 $D \longrightarrow$ \overrightarrow{B} \overrightarrow{P}

In ADQC,
\n
$$
\frac{BR \parallel PQ}{BP} = \frac{DR}{RQ}
$$
 [.: BA \parallel PQ]
\n
$$
\Rightarrow \frac{BP}{BD} = \frac{RQ}{DR}
$$
 [Taking reciprocals]
\n
$$
\Rightarrow \frac{BP}{BD} + 1 = \frac{RQ}{DR} + 1
$$

\n
$$
\Rightarrow \frac{BP + BD}{BD} = \frac{RQ + DR}{DR}
$$

\n
$$
\Rightarrow \frac{DP}{BD} = \frac{DQ}{DR}
$$
...(2)

From (1) and (2), we get

$$
\frac{CD}{DP} = \frac{DP}{BD} \left[\text{Each is equal to } \frac{DQ}{DR} \right]
$$

\n
$$
\Rightarrow \qquad DP^2 = BD \times CD
$$

\n(ii)
$$
(12cm)^2 = BD \times CD
$$

\n
$$
\Rightarrow \qquad BD \times CD = 144 \text{ cm}^2
$$

20. In
$$
\triangle ABC
$$
, $DP \parallel BC$

∴

⇒

∴

[By BPT]

$$
\Rightarrow \qquad \frac{\text{EB}}{\text{DE} + \text{EB}} = \frac{\text{AP}}{\text{PC}}
$$

[.: AD = EB, given] ... (1)
In $\triangle ABC$,

$$
\frac{\text{QE}}{\text{BE}} = \frac{\text{BQ}}{\text{EQ}}
$$

[By BPT]

$$
\frac{BE}{EA} = \frac{BQ}{QC}
$$
 [By BPT]
EB = BQ

$$
\Rightarrow \frac{EB}{DE + AD} = \frac{BQ}{QC}
$$

$$
\Rightarrow \frac{EB}{DE + EB} = \frac{BQ}{QC}
$$

 $[: AD = EB, given] ... (2)$

From (1) and (2), we get
\n
$$
\frac{AP}{PC} = \frac{BQ}{QC}
$$
\n
$$
\Rightarrow \qquad \frac{CP}{PA} = \frac{CQ}{QB} \qquad \text{[Taking reciprocals]}
$$

Thus, in ∆ABC, PQ divides the sides CA and CB in the same ratio.

∴ By the converse of BPT, we have **PQ AB**

21. Join BD.

Triangles **5**Triangles $\overline{}$ $5\overline{)}$

Since P, Q, R, S are points of bisection of AB, BC, CD and DA respectively,

∴ PB = 2 AP, QB = 2 CQ, RD = 2 CR and SD = 2 AS In ∆ADB, we have

$$
\frac{\text{AS}}{\text{SD}} = \frac{\text{AS}}{2\text{AS}} = \frac{1}{2}
$$
\nand

\n
$$
\frac{\text{AP}}{\text{PB}} = \frac{\text{AP}}{2\text{AP}} = \frac{1}{2}
$$

Thus, in ∆ADB, PS divides the sides AD and AB in the same ratio.

∴ By the converse of BPT, $PS \parallel BD$ … (1)

In ∆CDB, we have

and $\frac{CQ}{QB} = \frac{CQ}{2CQ} = \frac{1}{2}$

Thus, in ∆CDB, QR divides the sides CB and CD in the same ratio.

 $rac{\text{CR}}{\text{RD}} = \frac{\text{CR}}{2 \text{ CR}} = \frac{1}{2}$

∴ By the converse of BPT,

$$
QR \parallel BD
$$
 ... (2)
From equations (1) and (2), we have

$$
PS \parallel BD
$$
 and $QR \parallel BD$

 \Rightarrow PS || QR Similarly, by forming diagonal AC, we can prove that SR ∥ PQ.

So, **PQRS is a parallelogram**.

22. In ∆ABC, PQ || BA

 $rac{CP}{PB} = \frac{CQ}{QA}$

∴

In ∆CBD,
 \therefore PR || BD
 $\frac{CP}{PB} = \frac{CR}{RD}$ ∴

From (1) and (2), we have $\frac{CQ}{QA} = \frac{CR}{RD}$ $\left[$ Each is equal to $\frac{CP}{PB}$ I

 $rac{CP}{PB} = \frac{CR}{RD}$

$$
\frac{CQ}{QA} = \frac{CR}{RD} \left[\text{Each is equal to } \frac{CP}{PB} \right]
$$

Thus, in \triangle CAD, QR divides the sides CA and CD in

[By BPT] \dots (1)

[By BPT] \dots (2)

the same ratio.

∴ By the converse of BPT,

$$
QR \parallel AD
$$

23. Join BD.

In ∆ABD, we have

$$
\frac{\text{AP}}{\text{PB}} = 1 \qquad \qquad \dots (1)
$$

and
$$
AQ = QD
$$

\n $\Rightarrow \frac{AQ}{QD} = 1$... (2)

From (1) and (2), we have

⇒

 $\frac{AP}{PB} = \frac{AQ}{QD}$ $rac{AQ}{OD}$

Thus, in ∆ABD, PQ divides the sides AB and AD in the same ratio.

∴ By the converse of BPT, PQ ∥ BD … (3) In ∆CBD, we have $CS = SR$

$$
\Rightarrow \frac{CS}{SB} = 1 \qquad \dots (4)
$$

and $CR = RD$

⇒ $\frac{CR}{RD} = 1$... (5)

From (4) and (5), we have

$$
\frac{\text{CS}}{\text{SB}} = \frac{\text{CR}}{\text{RD}}
$$

Thus, in ∆CBD, SR divides the sides CB and CD in the same ratio.

∴ By the converse of BPT, QR \parallel BD … (6) From (3) and (6), we have

$$
\mathrm{PQ} \parallel \mathrm{QR}
$$

Similarly, by considering triangles DAC and BAC, we can prove that

$$
\begin{array}{c}\n\text{QR} \parallel \text{AC} \text{ and } \text{PS} \parallel \text{AC} \\
\Rightarrow \qquad \text{QR} \parallel \text{PS}\n\end{array}
$$

So, PQRS is a quadrilateral in which the opposite sides are equal.

Hence, **PQRS is a parallelogram**.

$-$ **EXERCISE 6B** $-$

For Basic and Standard Levels

1. (i)
\n
$$
\frac{AB}{ED} = \frac{2.1 \text{ cm}}{4.2 \text{ cm}} = \frac{1}{2},
$$
\n
$$
\frac{AC}{EF} = \frac{4 \text{ cm}}{8 \text{ cm}} = \frac{1}{2}
$$
\nand
\n
$$
\frac{BC}{DF} = \frac{5 \text{ cm}}{10 \text{ cm}} = \frac{1}{2}
$$
\nClearly,
\n
$$
\frac{AB}{ED} = \frac{AC}{EF} = \frac{BC}{DF}
$$

$$
\therefore \quad \triangle ABC \sim \triangle EDF \quad \text{[SSS similarity]}
$$
\n
$$
\text{(ii)} \quad \angle P = \angle Z = 40^{\circ}, \angle R = \angle X = 95^{\circ},
$$
\nRemaining $\angle Q = \text{remaining } \angle Y = 45^{\circ}$

\n
$$
\triangle PQR \sim \triangle ZYX \quad \text{[AAA similarity]}
$$
\n
$$
\text{(iii)} \quad \frac{AB}{PQ} = \frac{3 \text{ cm}}{4.5 \text{ cm}} = \frac{2}{3}, \frac{BC}{QR} = \frac{4 \text{ cm}}{8 \text{ cm}} = \frac{1}{2},
$$

$$
\angle B = \angle Q = 60^{\circ}
$$

Since
$$
\frac{AB}{PQ} \neq \frac{BC}{QR}
$$

∴ ∆ABC and ∆PQR **are not similar**.

(*iv*) $\frac{AC}{PQ} = \frac{3 \text{ cm}}{7.5 \text{ cm}} = \frac{2}{5}, \frac{CB}{QR} = \frac{5 \text{ cm}}{12.5 \text{ cm}} = \frac{2}{5},$ ∠C = ∠Q = 30° Clearly, $\frac{AC}{PQ} = \frac{CB}{QR}$ and ∠C = ∠Q
∴ $\triangle ACB \sim \triangle PQR$ ∴ ∆**ACB ~** ∆**PQR** [SAS similarity] **2.** In ∆ABC, DE ∥ BC A D $\overleftrightarrow{}$ E B C ∴ $rac{\text{AD}}{\text{DB}} = \frac{\text{AE}}{\text{EC}} = \frac{1}{2}$ [By BPT and $\frac{\text{AE}}{\text{EC}} = \frac{1}{2}$, given] Let $AD = x \text{ cm}$, then $DB = 2x$ cm Also, $AB = BC = 9$ cm (Sides of an equilateral ∆) Now, $AD + DB = AB$ \Rightarrow $(x + 2x) = 9$ \Rightarrow 3*x* = 9 \Rightarrow $x = 3$ $DB = 2x$ cm $= (2 \times 3)$ cm = **6 cm 3.** ∴ ∠ADE = ∠ABC and ∠AED = ∠ACB [corr. ∠s, DE || BC] A D $\overleftrightarrow{ }$ E $B \longleftarrow \longrightarrow C$ ∴ ∆ADE ~ ∆ABC [By AA similarity] ∴ $\frac{AD}{AB} = \frac{DE}{BC}$ [Corresponding sides of similar triangles are proportional] ∴ $\frac{1.5 \text{ cm}}{6 \text{ cm}} = \frac{\text{DE}}{8 \text{ cm}}$ ⇒ $DE = \frac{1.5 \times 8}{6}$ cm = 2 cm Hence, **DE = 2 cm**.

4. In ∆ABC, we have

 $\frac{AP}{PB} = \frac{1}{2} \frac{cm}{cm} = \frac{1}{2}$ and $\frac{AQ}{QC} = \frac{3 \text{ cm}}{6 \text{ cm}} = \frac{1}{2}$

Thus, in ∆ABC, PQ divides the sides AB and AC in the same ratio.

∴ By the converse of BPT, PQ ∥ BC. In ∆APQ and ∆ABC,

$$
\angle APQ = \angle ABC
$$

and

$$
\angle AQP = \angle ACB
$$
 [corr. ∠s, PQ || BC]
ΔAPQ ~ ΔABC [By AA similarity]
∴

$$
\frac{AP}{AB} = \frac{AQ}{BC}
$$

[Corresponding sides of similar triangles are proportional]

$$
\Rightarrow \frac{AP}{AP+PB} = \frac{PQ}{BC}
$$

$$
\Rightarrow \frac{1 \text{ cm}}{(1+2) \text{ cm}} = \frac{PQ}{BC}
$$

$$
\Rightarrow \frac{1}{3} = \frac{PQ}{BC}
$$

$$
\Rightarrow \text{BC} = 3PQ
$$

5. In ∆ABC and ∆DBA, we have \angle ABC = \angle DBA [\angle B is common] and $∠CAB = ∠ADB$

[Each angle is equal ot 90°]

$$
\therefore \quad \triangle ABC \sim \triangle DBA \quad [By AA similarity]
$$

$$
\therefore \quad \frac{AB}{DB} = \frac{AC}{DA}
$$

[Sides of similar triangles are proportional] 1 m $0.75 m$

$$
\Rightarrow \qquad \frac{1.25 \text{ m}}{1.25 \text{ m}} = \frac{AD}{AD}
$$

$$
\Rightarrow \qquad AD = \frac{0.75 \times 1.25}{1.25} \text{ m}
$$

$$
12 = 1
$$

= 0.9375 m
= 93.75 cm

6. In
$$
\triangle
$$
ADE and \triangle ABC, we have
\n \angle ADE = \angle ABC [Given]
\nand
\n \angle DAE = \angle BAC [\angle A is common]

∴ ∆ADE ~ ∆ABC [By AA similarity]

7Triangles Triangles $\overline{}$ $\overline{7}$

© Ratna Sagar

∴

⇒

$$
\frac{AD}{AB} = \frac{DE}{BC}
$$

\n[Sides of similar triangles are proportional]
\n
$$
\Rightarrow \frac{AD}{AE + EB} = \frac{DE}{BC}
$$

\n
$$
\Rightarrow \frac{6.8 \text{ cm}}{8.6 \text{ cm} + 2.4 \text{ cm}} = \frac{DE}{5.5 \text{ cm}}
$$

\n
$$
\Rightarrow \frac{6.8}{11} = \frac{DE}{5.5 \text{ cm}}
$$

\n
$$
\Rightarrow DE = \frac{6.80 \times 5.5}{11} \text{ cm}
$$

\n
$$
\Rightarrow DE = 3.4 \text{ cm}
$$

\n7. In $\triangle KLM$ and $\triangle KPN$, we have

$$
\angle KML = \angle KNP
$$
 [Each is equal to 46°] and
$$
\angle MKL = \angle NKP
$$
 [LK is common]

∴ ∆KLM ~ ∆KPN [By AA similarity] ∴ $\frac{LM}{PN} = \frac{KM}{KN}$

[Sides of similar triangles are proportional]

$$
\Rightarrow \frac{a}{x} = \frac{b+c}{c}
$$

$$
\Rightarrow \qquad x = \frac{ac}{b+c}
$$

8. (*i*) In
$$
\triangle
$$
ACE and \triangle BDE, we have
\n \angle AEC = \angle BED [Vert. opp. \angle s]
\nand \angle ACE = \angle BDE [Alt \angle s, AC || DB]

$$
\therefore \quad \triangle ACE \sim \triangle BDE \quad [By AA similarity]
$$
\n
$$
\therefore \quad \triangle ACE \sim \triangle BDE \quad [Proved in (i)]
$$
\n
$$
\therefore \quad \frac{AE}{BE} = \frac{CE}{DE}
$$

 [Sides of similar triangles are proportional] \Rightarrow $\frac{AE}{CE}$ $\frac{AE}{CE} = \frac{BE}{DE}$

9. ∆ABR ~ ∆PQR [Given]

 $\frac{\text{AB}}{\text{PQ}} = \frac{\text{BR}}{\text{QR}} = \frac{\text{AR}}{\text{PR}}$

[Corresponding sides of similar triangles are proportional]

$$
\Rightarrow \frac{45 \text{ cm}}{30 \text{ cm}} = \frac{BR}{42 \text{ cm}} = \frac{AR}{AP - AR}
$$

\n
$$
\Rightarrow \frac{45}{30} = \frac{BR}{42 \text{ cm}}
$$

\n
$$
\Rightarrow \text{BR} = \frac{45 \times 42}{30} \text{ cm}
$$

\n
$$
\Rightarrow \text{BR} = 63 \text{ cm}
$$

\nand
$$
\frac{45}{30} = \frac{AR}{72 \text{ cm} - AR}
$$

\n
$$
\Rightarrow 3(72 \text{ cm} - AR) = 2AR
$$

\n
$$
216 \text{ cm} - 3 AR = 2AR
$$

\n
$$
216 \text{ cm} = 5AR
$$

\n
$$
\Rightarrow \text{AR} = \frac{216}{5} \text{ cm} = 43.2 \text{ cm}
$$

\n
$$
\text{PR} = AP - AR
$$

\n
$$
= (72 - 43.2) \text{ cm}
$$

\n
$$
= 28.8 \text{ cm}
$$

\nHence, PR = 28.8 cm, AR = 43.2 cm and BR = 63 cm.

10. Given that $\triangle ABC$ \sim $\triangle EDF$, $AB = 5$ cm, $AC = 7$ cm, $ED = 12$ cm and $DF = 15$ cm. To find the lengths of BC and EF.

Hence, the required lengths of BC and EF are 6.25 cm and 16.8 cm respectively.

11. Given that $\triangle ABC$ $\sim \triangle DEF$, $AB = 4$ cm, $DE = 6$ cm, $EF = 9$ cm and $DF = 12$ cm. To find AB + BC + CA.

Since ∆ABC \sim ∆DEF,

∴

© Ratna Sagar

$$
\frac{\text{AB}}{\text{DE}} = \frac{\text{AC}}{\text{DF}} = \frac{\text{BC}}{\text{EF}} \quad ...(1)
$$

Let $AB + AC + BC = P$

∴

Now from (1), we have

$$
\frac{AB}{DE} = \frac{AB + AC + BC}{DE + DF + EF}
$$

$$
= \frac{P}{6 + 12 + 9} = \frac{P}{27}
$$

$$
\Rightarrow \frac{4}{6} = \frac{P}{27}
$$

$$
\Rightarrow P = \frac{4}{6} \times 27 = 18
$$

^x ⁺*^z* ⇒ $z\left(\frac{1}{x} + \frac{1}{y}\right) = \frac{BD}{BD}$ ⇒ $z\left(\frac{1}{x} + \frac{1}{y}\right) = 1$ ⇒ $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$

13. In ∆GHD and ∆EFD, we have \angle GHD = \angle EFD [Each is 90°]

∴ ABCD is a trapezium

∴

Since the diagonals of a trapezium divide each other proportionally,

$$
\therefore \quad \frac{AO}{OC} = \frac{BO}{OD}
$$
\n
$$
\Rightarrow \quad \frac{x+5}{x+3} = \frac{x-1}{x-2}
$$
\n
$$
\Rightarrow \quad (x+5)(x-2) = (x-1)(x+3)
$$
\n
$$
\Rightarrow \quad x^2 + 5x - 2x - 10 = x^2 - x + 3x - 3
$$
\n
$$
\Rightarrow \quad 3x - 10 = 2x - 3
$$
\n
$$
\Rightarrow \quad x = 7
$$

15. Let ∆ABC ~ ∆DEF, where the perimeter of ∆ABC = 36 cm and perimeter of $\triangle DEF$ is 48 cm and $AB = 9$ cm.

We know that the ratio of the perimeters of two similar triangles is the same as the ratio of their corresponding sides.

$$
\therefore \frac{\text{Perimeter of } \triangle ABC}{\text{Perimeter of } \triangle DEF} = \frac{AB}{DE}
$$

$$
\Rightarrow \frac{36 \text{ cm}}{48 \text{ cm}} = \frac{9 \text{ cm}}{x}
$$

Triangles **9**Triangles $\overline{}$ $\overline{9}$

$$
\Rightarrow \qquad \qquad x = \frac{9 \times 48}{36} \text{ cm} = 12 \text{ cm}
$$

Hence, the corresponding side of the other triangle is **12 cm**.

16. Let AB be the stick and BC its shadow.

Then, $AB = 15$ cm and $BC = 10$ cm

Let the angular elevation of the Sun be θ.

Then, $\angle ACB = \theta$

Let $DE = x$, be the vertical flag pole and EF be its shadow.

Then, $EF = 60 \text{ cm}$

Angular elevation of the Sun (at the same time) $= \angle DEF = \theta$

Now, in ∆ABC and ∆DEF, we have

and $\angle ACB = \angle DEF = \theta$

∴

∴ $\triangle ABC \sim \triangle DEF$ [By AA similarity] AB

$$
\frac{\text{AB}}{\text{DE}} = \frac{\text{BC}}{\text{EF}}
$$

[Corresponding sides of similar triangles are proportional]

 \angle ABC = \angle DEF [Each is 90°]

$$
\Rightarrow \qquad \frac{15 \text{ cm}}{x} = \frac{10 \text{ cm}}{60 \text{ cm}}
$$

$$
\Rightarrow \qquad x = \frac{15 \times 60}{10} \text{ cm} = 90 \text{ cm}
$$

Hence, the height of the flag pole is **90 cm**.

17. Let AB be the straight vertical pole, B, the bulb on it, C, the position of the woman of height $CD = 1.5$ m and CE, the shadow of the woman on the horizontal ground.

Given that $AB = 6$ m, $CE = 3$ m and $CD = 1.5$ m. To find the distance AC of the woman from the base A of the pole.

Since AE is horizontal and AB and CD are vertical, ∴ $∠BAE = ∠DCE = 90°$ ∴ $AB \parallel DC$ ∴ ∆AEB ∽ ∆CED

∴ We have
$$
\frac{AB}{CD} = \frac{AE}{CE}
$$

\n $\Rightarrow \frac{6}{1.5} = \frac{3+AC}{3}$
\n $\Rightarrow (3+AC) \times 1.5 = 18$
\n $\Rightarrow AC + 3 = \frac{18}{1.5} = \frac{180}{15} = 12$
\n $\Rightarrow AC = 12 - 3 = 9$
\nHence, the required distance of the woman from the base of the pole is 9 cm.
\n18. In $\triangle BPE$ and $\triangle CPD$, we have
\n $\angle BPE = \angle CP$ [Each is 90°]
\n $\angle BPE = \triangle CPD$ [Vert. top ∠s]
\n $\triangle BPE = \triangle CPD$ [by AA similarly]
\n $\triangle BDE = \triangle CPD$ [By AA similarly]
\n $\triangle BDE = \frac{P}{P}$
\n[Corresponding sides of similar triangles are proportional]
\n $\Rightarrow BP \times PD = EP \times PC$
\n19.
\n $\frac{QR}{QS} = \frac{QT}{PR}$ [Taking reciprocals]
\n $\Rightarrow \frac{PQ}{QR} = \frac{QS}{QT}$ [Taking reciprocals]
\n $\Rightarrow \frac{PQ}{QT} = \frac{QS}{QR}$
\n[$\therefore PR = PQ$, sides opposite equal \angle s of $\triangle PQR$]
\nIn $\triangle PQS$ and $\triangle TQR$, we have
\n $\frac{PQ}{QT} = \frac{QS}{QR}$
\nand
\n $\angle PQS = \angle TQR = \angle θ$
\nand
\n $\angle PQS = \angle TQR = \angle θ$
\nand
\n $\angle PQS = \angle TQR = \angle θ$

20. In ∆AEB and ∆DEC, we have

∠BAE = ∠CDE [Each is equal to 90°]

∠AEB = ∠DEC [Vertically opp.∠s] ∴ ∆AEB ~ ∆DEC [By AA similarity]

© Ratna Sagar

$$
\frac{\text{AE}}{\text{DE}} = \frac{\text{EB}}{\text{EC}}
$$

[Corresponding sides of similar triangles are proportional]

$$
\Rightarrow \qquad \qquad \text{AE-EC} = \text{BE-ED}
$$

21. In ∆APE and ∆ABD, we have

∴

∴

 $∠APE = ∠ABD$ [Corr. ∠s]
 $∠PAE = ∠BAD$ [Common] and ∠PAE = ∠BAD
∴ \triangle AAPE ~ \triangle ABD ∴ ∆APE ~ ∆ABD [By AA similarity]

[Corresponding sides of similar triangles are proportional] … (1)

In ∆AQE and ∆ACD, we have

[Corresponding sides of similar triangles are proportional] … (2)

From (1) and (2), we get

$$
\frac{PE}{BD} = \frac{EQ}{DC} \left[\text{Each is equal to } \frac{AE}{AD} \right]
$$

But BD = DC [: AD is the median]
 :
 PE = EQ

Hence, the **median AD bisects PQ**.

∠DBE = ∠DBC – ∠ABC

 $= 90^{\circ} - \angle ABC$ … (1)

Ratna Sa

$$
\therefore \quad \triangle DEB \sim \angle BCA \quad \text{[By AA similarity]}
$$

$$
\therefore \quad \frac{DE}{BC} = \frac{EB}{CA}
$$

[Corresponding sides of similar triangles are proportional]

$$
\Rightarrow \qquad \frac{CA}{BC} = \frac{EB}{DE}
$$

Hence,
$$
\frac{BE}{DE} = \frac{AC}{BC}
$$
.

∴

23. Given that ∆ABC and ∆ADE are two triangles with the common vertex A such that ∠BAD = ∠CAE and ∠ABC $=\angle$ ADE.

To prove that $\frac{\mbox{AB}}{\mbox{AD}} \; = \;$

We have $∠BAD = CAE$ ⇒ ∠BAD + ∠DAC = ∠CAE + ∠DAC ⇒ $\angle BAC = \angle DAE$...(1)
Also, $\angle ABC = \angle ADE$ [Given] ...(2) $∠ABC = ∠ADE$ ∴ In ∆ABC and ∆ADE, we have $\angle BAC = \angle DAE$ [From (1)] $\angle ABC = \angle ADE$ [From (2)] Hence, $\triangle ABC \sim \triangle ADE$ [By AA similarity criterion] ∴ **AB** $\frac{AB}{AD} = \frac{AC}{AE}$ **AE**

 $\frac{\text{AC}}{\text{AE}}$

24. Let ABCD be a trapezium in which $AB \parallel DC$ and diagonal AC divides diagonal BD in the ratio 1:2.

Let $DO = x$, then $OB = 2x$.

Hence, **one of the parallel sides of the trapezium is double the other**.

26. In ∆AGF and ∆CGE, we have

$$
\therefore \frac{AG}{CG} = \frac{GF}{GE}
$$

⇒

 \Rightarrow **AG** \times **EG** = **FG** \times **CG 27.** In ∆AMB and ∆CND, we have

∠AMB = ∠CND [Each is equal to 90°] \angle ABM = \angle CDN [Alt. \angle s, AB || CD] ∴ ∆AMB ~ ∆CND [By AA similarity] $\frac{BM}{DN} = \frac{AB}{CD}$

> [Corresponding sides of similar triangles are proportional]

⇒ $\frac{BM}{DN} = \frac{CD}{CD} = 1$ [$\because AB = CD$, opp. sides of a rectangle] ⇒ $\frac{\text{BM}}{\text{DN}} = 1$ \Rightarrow BM = DN … (1) \Rightarrow BM – MN = DN – MN

$$
\Rightarrow \qquad BN = DM \qquad \dots (2)
$$

Squaring (1) and (2) and adding, we get BM^2 + BN^2 = DN^2 + DM^2

- **28.** Given that AB and CD are two chords of a circle with centre at O and E is point of intersection of these two chords.
	- To prove that $\triangle BAC \sim \triangle BDB$ and $EA \times EB = EC \times ED$

- [From the above 1st two ratios] **29.** Given that BZ, AY and CX are the altitudes of a ∆ABC from the vertices B, A and C respectively to their opposite sides.
	- These three altitudes meet each other at a point P.

To prove that $\frac{AX}{XB} \cdot \frac{BY}{YC} \cdot \frac{CZ}{ZA} = 1$.

In ∆AXP and ∆CYP, we have \angle AXP = \angle CYP = 90°

$$
\angle APX = \angle CH = 90
$$

$$
\angle APX = vertically opposite \angle CPY
$$

∴ By AA similarity criterion, we have

- $\triangle AXP \sim \triangle CYP$ …(1) Similarity, it can be shown that
- $\triangle BYP \sim \triangle AZP$ …(2) and $\triangle CZP \sim \triangle BXP$ …(3)
- ∴ From (1), we have

$$
\frac{AX}{CY} = \frac{AP}{CP} = \frac{XP}{YP} \qquad ...(4)
$$

From (2), we have

$$
\frac{BY}{AZ} = \frac{BP}{AP} = \frac{YP}{ZP} \qquad \qquad ...(5)
$$

and from (3), we have

$$
\frac{CZ}{BX} = \frac{CP}{BP} = \frac{ZP}{XP} \qquad ...(6)
$$

$$
\therefore \text{ From (4), (5) and (6), we have}
$$
\n
$$
\frac{AX}{CY} \times \frac{BY}{AZ} \times \frac{CZ}{BX} = \frac{XP}{YP} \times \frac{YP}{ZP} \times \frac{ZP}{XP} = 1
$$
\n
$$
\Rightarrow \frac{AX}{XB} \cdot \frac{BY}{YC} \cdot \frac{CZ}{ZA} = 1
$$

30. Given that ABC is a triangle and AD is a median of this triangle, D being the middle point of BC. X is a point on AD such that $AX : XD = 2 : 3$.

12Triangles Triangles $\overline{}$ 12

BX is produced to intersect AC in Y. To prove that $BX = 4XY$.

Construction: We draw DZ || BY to intersect AC at Z. Since $DZ \parallel BY$.

$$
\therefore \quad \frac{\text{AX}}{\text{AD}} = \frac{\text{XY}}{\text{DZ}} \quad \dots (2)
$$

Finally, it is given that

$$
\frac{AX}{XD} = \frac{2}{3}
$$

\n
$$
\frac{AX}{2} = \frac{XD}{3} = k(say)
$$

∴ AX = 2*k*, XD = 3*k* and AD = AX + XD = 5*k* …(3) From (2) and (3), we get $\frac{5}{2}$ $\frac{XY}{2} = \frac{1}{2}(BX + XY)$

$$
\Rightarrow \qquad \qquad 4XY = BX
$$

31. Given that D and E are two points on the sides AB and AC respectively if \triangle ABC such that AD = $\frac{1}{3}$ AB and

GF is a line through A parallel to BC. BE produced and CD produced intersect the line through A parallel to BC at the points F and G respectively. To prove that $GF = BC$ Since GAF || BC ∴ ∠AGD = alternate ∠BCD ∠ADG = vertically opposite ∠BDC ∴ By AA similarity criterion, ∆GDA ∆CDB

$$
\therefore \quad \frac{\text{DA}}{\text{DB}} = \frac{\text{GA}}{\text{CB}} \quad \text{...(1)}
$$

Similarly ∆FEA ∆BEC

$$
\frac{AE}{CE} = \frac{AF}{CB}
$$
 ...(2)
\nAdding (1) and (2), we get
\n
$$
\frac{DA}{DB} + \frac{AE}{CE} = \frac{GA}{CB} + \frac{AF}{CB}
$$

\n
$$
= \frac{GA + AF}{CB} = \frac{GF}{CB}
$$

\n
$$
\frac{\frac{1}{3}AB}{DB} + \frac{\frac{1}{3}AC}{CE} = \frac{GF}{CB}
$$

\n[:: Given that $DA = \frac{1}{3}AB$ and $AE = \frac{1}{3}AC$]
\n
$$
\frac{\frac{1}{3}AB}{\frac{2}{3}AB} + \frac{\frac{1}{3}AC}{\frac{2}{3}AC} = \frac{GF}{CB}
$$

\n[:: $DB = AB - AD = AB - \frac{1}{3}AB = \frac{2}{3}AB$ and
\n $CE = AC - AE = AC - \frac{1}{3}AC = \frac{2}{3}AC$]
\n
$$
\Rightarrow \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = \frac{GF}{CB}
$$

\n
$$
\Rightarrow \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = \frac{GF}{CB}
$$

\n
$$
\Rightarrow \frac{1}{2} + \frac{1}{2} = \frac{GF}{CB}
$$

\n
$$
\Rightarrow GF = BC
$$

For Standard Level

32. Since the diagonals of a trapezium divide each other proportionally,

In ∆AXP and ∆ADC, we have \angle XAP = \angle DAC [Common] ∠AXP = ∠ADC [Corresponding ∠s, AB || DC] ∴ $\triangle AXP \sim \triangle ADC$ [By AA similarity]

$$
\frac{1}{3}
$$

Iriangles

$$
\frac{XP}{DC} = \frac{AP}{AC}
$$

[Corresponding sides of similar triangles are proportional] … (2)

[Corresponding sides of similar triangles are proportional] … (3)

From (1), (2) and (3), we get $rac{XP}{DC} = \frac{YP}{CD}$

⇒ **XP = YP**

33. In ∆BMC and EMD,

∴

∴ ∆BAM ~ ∆QPM [By AA similarity]

 $\frac{BA}{QP} = \frac{BM}{QM}$

⇒

[\because BA = CD, Opp. sides of a \parallel gm] ... (1)

In ∆CDR and ∆QPR, we have

Thus, in ∆QMR, BC divides the sides QM and QR in the same ratio.

Hence, $MR \parallel BC$.

35. Let AB represents the lamp post and CD represents the girl after she has moved away from the lamp post for 3 seconds. Let DE represents the shadow of the girl and let θ be the angular elevation of the lamp.

In ∆ABE and ∆CDE, we have

[Corresponding sides of similar triangles are proportional]

© Ratna Sagar

14Triangles Triangles $\overline{}$ 14

⇒

⇒
$$
\frac{2.85 \text{ m}}{0.95 \text{ m}} = \frac{3.6 + \text{DE}}{\text{DE}}
$$

\n⇒
$$
(2.85) \times \text{DE} = (0.95) (3.6) \text{ m} + (0.95) \text{DE}
$$

\n⇒
$$
(2.85 - 0.95) \text{DE} = 0.95 \times 3.6 \text{ m}
$$

\n⇒
$$
(1.9) \text{DE} = 0.95 \times 3.6 \text{ m}
$$

$$
\Rightarrow \qquad \qquad DE = \frac{0.95 \times 3.6}{1.9} \text{ m} = 1.8 \text{ m}
$$

Hence, the length of the girl's shadow is **1.8 m**.

36. Let ABC be a triangle in which D, E and F are the mid-points of the sides AB, BC and CA respectively. Since D and F are the mid-points of AB and AC respectively,

∴ By the converse of Thales theorem, DF \parallel BC. In ∆ADF and ∆ABC, we have ∠ADF = ∠ABC [Corresponding angles, DF || BC] ∠DAF = ∠BAC [Common] ∴ ∆ADF ~ ∆ABC [By AA similarity] Similarity, ∆DBE ∼ ∆ABC and ∆FEC ∼ ∆ABC. Now, F and E are the mid-points of AC and BC respectively.

∴ By the converse of Thales theorem, FE \parallel AB. Also, D and E are the mid-points of AB and BC respectively.

∴ By the converse of Thales theorem, DE \parallel AC.

∴ AFED is a parallelogram.

∴ ∠DEF = ∠A [Opp. ∠s of a gml Similarly, BDFE is a parallelogram. \angle DFE = \angle A [Opp. \angle s of a \parallel gm]

Thus, in ∆EFD and ∆ABC, we have ∠DEF = ∠A

and ∠DFE = ∠B

∴ ∆EFD ∼ ∆ABC [By AA similarity]

Hence, ∆**ADF** ∼ ∆**ABC,** ∆**DBE** ∼ ∆**ABC,** ∆**FEC** ∼ ∆**ABC** and ∆**EFD** ∼ ∆**ABC**.

37. (*i*) In ∆ABC, PR || CA

A

$$
\overline{a}
$$

⇒

(*ii*) In ∆ABC, RQ || BC ∴ $\frac{\text{AR}}{\text{BR}} = \frac{\text{AQ}}{\text{QC}}$ [By BPT]

$$
\frac{24 \text{ cm}}{18 \text{ cm}} = \frac{16 \text{ cm}}{QC}
$$

[Using AR = 24 cm, from (*i*)]

$$
\Rightarrow \qquad \qquad \text{QC} = \frac{16 \times 18}{24} \text{ cm} = 12 \text{ cm}
$$

(*iii*) In ∆ARQ and ∆ABC,

⇒

∴

$$
\angle ARQ = \angle ABC
$$

$$
\angle AQR = \angle ACB
$$

[Corresponding angles]

$$
\therefore \quad \Delta ARQ \sim \Delta ABC \quad [By AA similarity]
$$

$$
\therefore \quad \underline{AR} = \underline{RQ} = \underline{AQ}
$$

$$
\frac{AR}{AB} = \frac{RQ}{BC} = \frac{AQ}{AC}
$$

[Corresponding sides of similar triangles are proportional]

⇒
$$
\frac{RQ}{BC} = \frac{AQ}{AC}
$$

\n⇒ $\frac{RQ}{BP + PC} = \frac{AQ}{AQ + QC}$
\n⇒ $\frac{RQ}{(15 + 20) \text{ cm}} = \frac{16 \text{ cm}}{(16 + 12) \text{ cm}}$
\n⇒ $\frac{RQ}{35 \text{ cm}} = \frac{16 \text{ cm}}{28 \text{ cm}}$
\n⇒ $RQ = \frac{16 \times 35}{28} \text{ cm} = 20 \text{ cm}$

$$
\therefore \qquad \frac{\text{RQ}}{\text{BC}} \cdot \frac{\text{AR}}{\text{AB}} = \frac{20 \text{ cm}}{(15 + 20) \text{ cm}} \times \frac{24 \text{ cm}}{(24 + 18) \text{ cm}}
$$

$$
= \frac{20 \times 24}{35 \times 42} = \frac{16}{49}
$$

38. Given that ABCD is a rectangle in which M is the midpoint of BC. Diagonal DB meets AM at O.

To prove that (i) $\triangle BOM \sim \triangle DOA$ and (ii) BD : $DO = 3:2$. (*i*) In ∆BOM and ∆DOA, we have ∠MBO = alternate ∠ADO [\therefore AD \parallel BC and BD is a transversal] ∠BOM = vertically opposite ∠DOA ∴ By AA similarity criterion, ∆BOM ∽ ∆DOA. (*ii*) Since, ∆BOM ∆DOA, $\frac{BO}{DO} = \frac{BM}{DA} = \frac{BM}{2BM}$

> $\frac{BD}{DO} = \frac{BO + OD}{DO}$ +

$$
DO = DA = 2BM
$$

[\because DA = BC = 2BM]

$$
= \frac{1}{2}
$$
...(1)

$$
\begin{array}{c}\n\text{Equation 15}\n\\
\text{Equation 25}\n\\
\text{Equation 36}\n\\
\text{Equation 47}\n\\
\text{Equation 58}\n\\
\text{Equation 67}\n\\
\text{Equation 76}\n\\
\text{Equation 76
$$

15

© Ratna Sagar

∴

$$
= \frac{BO}{DO} + \frac{OD}{OD}
$$

$$
= 1 + \frac{BO}{DO}
$$

$$
= 1 + \frac{1}{2}
$$
 [From (1)]
$$
= \frac{3}{2}
$$

∴ BD : $DO = 3 : 2$

39. Given that ABCD is a rhombus such that AB = BC = CD = DA and diagonals AC and BD meet each other at E at right angles so that ∠AED = 90°. P is a point on AC such that AP produced intersect CB produced at R. To prove that

In ∆DPA and ∆RPC, we have ∠DAP = alternate ∠RCP [\because DA \parallel CB and AC is a transversal] ∠DPA = vertically opposite ∠RPC ∴ By AA similarity criterion, we have ∆DPA ∆RPC ∴ $\frac{\text{DP}}{\text{RP}} = \frac{\text{DA}}{\text{RC}} = \frac{\text{DC}}{\text{CR}}$ [: DA = DC]

- \Rightarrow DP × CR = DC × PR 40. Given that ABCD is a \parallel gm with AC as one of the diagonals. P and Q are two points on AB and DC
	- respectively such that AP : PB = 3 : 2 and $CQ: QD = 4:1.$

Let PQ intersect AC at R. To prove that $AR = \frac{3}{7} AC$.

In ∆RQC and ∆RPA, we have

$$
\angle RQC = \text{alternate } \angle RPA
$$

[∴ DC || AB and PQ is a transversal]

$$
\angle QCR = \text{alternate } \angle PAR
$$

[∴ DC || AB and AC is a transversal]
∴ By AA similarity criterion, $\triangle RQC \sim \triangle RPA$
∴
$$
\frac{RQ}{RP} = \frac{RC}{RA} = \frac{QC}{PA}
$$
...(1)

Now,
\n
$$
\frac{QC}{QD} = \frac{4}{1}
$$
 [Given]
\n
$$
\therefore \qquad QC = 4QD = 4(CD - CQ)
$$
\n
$$
= 4AB - 4CQ
$$
 [.: AB = CD]
\n
$$
\Rightarrow \qquad 5QC = 4AB
$$
\n
$$
\therefore \qquad QC = \frac{4}{5}AB
$$
 ...(2)
\n
$$
= \frac{4}{5}AB
$$
 [From (2)]
\n
$$
= \frac{1}{5}AB
$$
 ...(3)
\nAgain,
\n
$$
\frac{PA}{PB} = \frac{3}{2}
$$
 [Given]
\n
$$
\therefore \qquad AP = \frac{3}{2}PB = \frac{3}{2}(AB - AP)
$$

$$
\Rightarrow \frac{5}{2}AP = \frac{3}{2}AB
$$

$$
\Rightarrow AP = \frac{3}{5}AB
$$
...(4)

$$
\therefore \qquad \text{BP} = \text{AB} - \text{AP}
$$

$$
= \text{AB}\left(1 - \frac{3}{5}\right) \qquad \text{[From (4)]}
$$

$$
= \frac{2}{5} \text{AB} \qquad \qquad \dots (5)
$$

∴ From (1),

Now,

Again,

⇒

⇒

⇒

⇒

$$
\frac{RC}{RA} = \frac{QC}{PA} = \frac{\frac{4}{5}AB}{\frac{3}{5}AB}
$$

$$
= \frac{4}{3}
$$
 [From (2) and (4)]
$$
\Rightarrow \frac{AC - AR}{AR} = \frac{4}{3}
$$

$$
\Rightarrow \frac{AC}{AR} = 1 + \frac{4}{3} = \frac{7}{3}
$$

$$
\Rightarrow AR = \frac{3}{7}AC
$$
EXECISE 6C

For Basic and Standard Levels

1. ∆ABC ∼ ∆PQR, $ar(\triangle ABC) = 36$ cm², $ar(\Delta PQR) = 49$ cm² and $BC = 12 \text{ cm}$

We know that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

$$
\therefore \frac{\text{ar}(\Delta ABC)}{\text{ar}(\Delta PQR)} = \frac{BC^2}{QR^2}
$$

$$
\Rightarrow \qquad \frac{36 \text{ cm}^2}{49 \text{ cm}^2} = \frac{(12 \text{ cm})^2}{\text{QR}^2}
$$

$$
\Rightarrow \qquad \qquad QR^2 = \frac{12 \times 12 \times 49}{36} \text{ cm}^2
$$

$$
= (4 \times 49) \text{ cm}^2
$$

© Ratna Sagar

16Triangles Triangles $\overline{}$ 16

Since
$$
\triangle ABC \sim \triangle QRP
$$
,
\n \therefore $\frac{ar(\triangle ABC)}{ar(\triangle QRP)} = \frac{BC^2}{RP^2}$
\n \Rightarrow $\frac{9}{4} = \frac{BC^2}{RP^2}$ [Given]
\n \Rightarrow $\frac{BC}{RP} = \sqrt{\frac{9}{4}} = \frac{3}{2}$
\n \Rightarrow $\frac{15}{RP} = \frac{3}{2}$
\n \Rightarrow $RP = \frac{2 \times 15}{3} = 10$
\nHence, the required length of PR is 10 cm.
\n5. Given that $\triangle ABC \sim \triangle PQR$, $BC = 4.5$ cm
\nand $\frac{ar(\triangle ABC)}{ar(\triangle PQR)} = \frac{9}{16}$
\n \Rightarrow $\frac{AC^2}{ar(\triangle PQR)} = \frac{9}{16}$
\nTo find the length of QR
\nSince $\triangle ABC \sim \triangle PQR$,
\n $\Rightarrow \frac{BC^2}{QR^2} = \frac{9}{16}$
\n $\Rightarrow \frac{BC^2}{QR} = \sqrt{\frac{9}{16}} = \frac{3}{4}$
\n $\Rightarrow \frac{4.5}{QR} = \sqrt{\frac{9}{16}} = \frac{3}{4}$
\n $\Rightarrow \text{QR} = \frac{4 \times 4.5}{3} = 6$.
\nHence, the required length of QR is 6 cm.
\n6. Given that $\triangle ABC \sim \triangle PQR$ and

6. Given that ∆ABC ∆PQR and

$$
\frac{\text{AB}}{\text{PQ}} = \frac{\text{BC}}{\text{QR}} = \frac{\text{AC}}{\text{PR}} = \frac{2}{3} \qquad \dots (1)
$$

To find the area of the larger triangle ∆PQR. $\triangle ABC$ \sim $\triangle PQR$,

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle PQR)} = \frac{(2)^2}{(3)^2} = \frac{4}{9}
$$

\n
$$
\Rightarrow \frac{48}{\text{ar}(\triangle PQR)} = \frac{4}{9}
$$

\n
$$
\Rightarrow 4\text{ar}(\triangle PQR) = 9 \times 48
$$

⇒

© Ratna Sagar

 \Rightarrow 4ar($\triangle PQR$) = 9 × 48 \Rightarrow ar($\triangle PQR$) = $\frac{9 \times 48}{4}$ = 108

Hence, the required area of $\Delta PQR = 108$ cm².

which is the required ratio.

8.
$$
\triangle ABC \sim \triangle DEF,
$$

$$
BC = 4 \text{ cm},
$$

$$
EF = 5 \text{ cm}
$$

and $ar(\triangle ABC) = 64 \text{ cm}^2$ Since the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \frac{BC^2}{EF^2}
$$

\n
$$
\Rightarrow \frac{64 \text{ cm}^2}{\text{ar}(\triangle DEF)} = \frac{(4 \text{ cm})^2}{(5 \text{ cm})^2} = \frac{16}{25}
$$

\n
$$
\Rightarrow \text{ar}(\triangle DEF) = \frac{64 \times 25}{16} \text{ cm}^2 = 100 \text{ cm}^2
$$

\n9. In $\triangle ADE$ and $\triangle ABC$, we have
\n $\angle ADE = \angle ABC$

[Corresponding \angle s, DE \parallel BC] ∠DAE = ∠BAC [Common] ∴ ∆ADE ∼ ∆ABC

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar(AABC)}}{\text{ar(AABC)}} = \frac{\text{DE}^2}{\text{BC}^2}
$$

\n
$$
\Rightarrow \frac{15 \text{ cm}^2}{\text{ar(AABC)}} = \frac{(3 \text{ cm})^2}{(6 \text{ cm})^2} = \frac{9}{36}
$$

\n
$$
\Rightarrow \text{ar(AABC)} = \frac{15 \times 36}{9} \text{ cm}^2 = 60 \text{ cm}^2
$$

10. ABC is a triangle in which P and Q are the midpoints of the sides AB and AC respectively.\n\n
$$
\begin{bmatrix}\n1 & 1 \\
1 & 1\n\end{bmatrix}
$$

Thus, in ∆ABC, PQ divides the sides AB and AC in the same ratio.

∴ By the converse of the Thales Theorem, $PQ \parallel BC$. In ∆APQ and ∆ABC, we have

$$
\angle APQ = \angle ABC
$$
 [Corresponding angles]

$$
\angle PAQ = \angle BAC
$$
 [Common]

$$
\therefore \triangle APQ \sim \triangle ABC
$$
 [By AA similarity]

Since the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle A P Q)}{\text{ar}(\triangle ABC)} = \frac{AP^2}{AB^2}
$$

$$
= \frac{AP^2}{(AP + PB)^2}
$$

$$
= \frac{AP^2}{(AP + AP)^2}
$$

[∴ P is the midpoint of AB]

$$
\therefore \frac{\text{ar}(\Delta \text{APQ})}{\text{ar}(\Delta \text{ABC})} = \frac{\text{AP}^2}{(2\text{AP})^2}
$$

$$
= \frac{\text{AP}^2}{(4\text{AP})^2}
$$

$$
= \frac{1}{4}
$$

∴ ar(∆APQ) : ar(∆ABC) = **1 : 4**.

11. Given that S and T are two points on the sides PQ and QR respectively of $\triangle PQR$, such that PT = 2 cm and $TR = 4$ cm. Also, ST \parallel QR. To find ar(∆PST) : ar(∆PQR) Since ST \parallel QR, $\sqrt{2}$ cm ∴ \triangle PST ∽ \triangle PQR

$$
\therefore \frac{\text{ar}(\Delta \text{PST})}{\text{ar}(\Delta \text{PQR})} = \frac{\text{PT}^2}{\text{PR}^2}
$$
\n
$$
= \frac{2^2}{(2+4)^2} \quad \underbrace{\begin{array}{c} 1 \\ 2 \end{array}}_{\text{Q}}
$$
\n
$$
= \frac{4}{36} = \frac{1}{9}
$$

∴ Required ratio = 1 : 9.

12. Given that D and E are two points on the sides AB and AC respectively of ∆ABC such that DE || BC, $AD = 1$ cm and $DB = 2$ cm. To find the ratio of ar($\triangle ABC$) and ar(∆ADE).

18Triangles Triangles $\overline{}$ 18

Since DE
$$
\parallel
$$
 BC
\n \therefore $\triangle ABC \sim \triangle ADE$
\n \therefore $\frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle ADE)} = \frac{AB^2}{AD^2} = \frac{(1+2)^2}{1^2} = \frac{9}{1}$

∴ Required ratio is 9 : 1.

13. In ∆ABC, we have

Clearly, $\frac{AP}{PB} = \frac{AQ}{QC}$.

Thus, in ∆ABC, PQ divides the sides AB and AC in the same ratio.

∴ By the converse of BPT,

 $PQ \parallel BC$ Now, in ∆APQ and ∆ABC, we have ∠APQ = ∠ABC [Corresponding angles, PQ || BC] ∠PAQ = ∠BAC [Common]
 $\triangle APQ \sim \triangle ABC$ [By AA similarity] ∴ ∆APQ ~ ∆ABC [By AA similarity] Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two

corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle \text{APQ})}{\text{ar}(\triangle \text{ABC})} = \frac{\text{AP}^2}{\text{AB}^2}
$$

$$
= \frac{\text{AP}^2}{(\text{AP} + \text{PB})^2}
$$

$$
= \frac{(1 \text{ cm})^2}{(4 \text{ cm})^2} = \frac{1}{16}
$$

$$
\Rightarrow \text{ar}(\triangle \text{APQ}) = \frac{1}{16}(\text{ar}\triangle \text{ABC})
$$

Hence, **the area of** ∆**APQ is one-sixteenth of the area of** ∆**ABC**.

14. Let $AD = 5x$ Then,

Then,
$$
DB = 4x
$$

and $AB = AD + DB$

In ∆ADE and ∆ABC, we have $\angle ADE = \angle ABC$ [Corr. $\angle s$, DE || BC] ∠DAE = ∠BAC [Common]

$$
\therefore \quad \Delta ADE \sim \Delta ABC
$$

$$
\therefore \quad \frac{AD^2}{AB^2} = \frac{DE^2}{BC^2}
$$

∴

[Corresponding sides of similar triangles are proportional]

$$
\Rightarrow \frac{(5x)^2}{(9x)^2} = \frac{DE^2}{BC^2}
$$

$$
\Rightarrow \frac{DE^2}{BC^2} = \frac{25}{81} \qquad \qquad \dots (1)
$$

In ∆DFE and ∆CFB, we have

∠DFE = ∠CFB

[∵ Vertically opposite angles]
\n∠EDF = ∠BCF
\n[∵ ∠EDC = ∠BCD, Alt. ∠s DE
$$
\parallel
$$
 BC]

$$
\therefore \qquad \triangle DFE \sim \triangle CFB
$$

Since the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \qquad \frac{\text{(ar }\Delta \text{DFE})}{(\text{ar }\Delta \text{CFE})} = \frac{\text{DE}^2}{\text{BC}^2} = \frac{25}{81} \qquad \text{[Using (1)]}
$$

Hence, ar(∆DFE) : ar(∆CFB) = **25 : 81**.

15. Let the two given triangles be ABC and DEF, so that ar ($\triangle ABC$) = 100 cm² and $ar(\triangle DEF) = 49 \text{ cm}^2$

Let AP and DQ be the corresponding altitudes of ∆ABC and ∆DEF respectively.

Then, $AP = 5$ cm

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding altitudes,

$$
\therefore \frac{\text{ar}(\Delta ABC)}{\text{ar}(\Delta DEF)} = \frac{AP^2}{DQ^2}
$$

$$
\frac{100 \text{ cm}^2}{49 \text{ cm}^2} = \frac{(5 \text{ cm})^2}{DQ^2}
$$

$$
\Rightarrow \qquad \qquad \text{DQ}^2 = \frac{25 \times 49}{100} \text{ cm}^2
$$

$$
= \frac{49}{4} \text{ cm}^2
$$

\n
$$
\Rightarrow \qquad PQ = \frac{7}{2} \text{ cm} = 3.5 \text{ cm}
$$

16. Given that $\triangle ABC$ $\sim \triangle DEF$ such that ar($\triangle ABC$) = 81 cm² and ar($\triangle DEF$) = 49 cm².

AM is the altitude of ∆ABC from the vertex A to the side BC and DN is the altitude of ∆DEF from its vertex D to the side EF. It is also given that $AM = 6.3$ cm. To find the length of DN.

© Ratna Sagar

⇒

Hence, the required length of DN is 4.9 cm. **17.** Given that $\triangle ABC \sim \triangle DEF$, ar($\triangle ABC$) = 81 cm² and $ar(\triangle DEF) = 49$ cm²

AM is the altitude of the bigger triangle ∆ABC from the vertex A to BC and DN is the altitude of the smaller triangle ∆DEF from its vertex D to EF. Also, it is given that $AM = 4.5$ cm.

To find the length of DN.

Hence, the required length of DN is 3.5 cm.

18. Let ∆ABC and ∆DEF be the given isosceles triangles such that $AB = AC$ and $DE = DF$.

Let AP and DQ be the altitudes of ∆ABC and ∆DEF respectively.

$$
\Rightarrow \text{ AB} = AC
$$
\n
$$
\Rightarrow \frac{AB}{AC} = 1
$$
\nand \tDE = DF\n
$$
\frac{DE}{DF} = 1
$$
\n
$$
\therefore \frac{AB}{AC} = \frac{DE}{DF}
$$
\n
$$
\Rightarrow \frac{AB}{AC} = \frac{DE}{DF}
$$
\n
$$
\Rightarrow \frac{AB}{DE} = \frac{AC}{DF}
$$
\n
$$
\therefore (1)
$$
\nIn $\triangle ABC$ and $\triangle DEF$, we have

In ∆ABC and ∆DEF, we have

 $\angle A = \angle D$ [Given] $\frac{AB}{DE} = \frac{AC}{DF}$

∴ ∆ABC ~ ∆DEF

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding altitudes,

$$
\frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \frac{AP^2}{DQ^2}
$$
\n
$$
\Rightarrow \frac{16}{25} = \frac{AP^2}{DQ^2}
$$
\n
$$
\Rightarrow \frac{4}{5} = \frac{AP}{DQ}
$$

⇒

 \Rightarrow AP : DQ = 4 : 5

Hence, the ratio of their corresponding heights (altitudes) is **4 : 5**.

In ∆ABC and ∆DEF,

$$
\angle A = \angle D
$$
 [Given]

$$
\frac{AB}{DE} = \frac{AC}{DF}
$$
 [Using (1)]

∴ ∆ABC ∼ ∆DEF

Since the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \frac{AB^2}{DE^2}
$$

$$
\Rightarrow \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle ABC)} = \left(\frac{3}{2}\right)^2
$$

$$
\Rightarrow \qquad \frac{\text{ar}(\Delta ABC)}{\text{ar}(\Delta DEF)} = \left(\frac{3}{4}\right)^2
$$

$$
\Rightarrow \qquad \frac{\text{ar}(\Delta ABC)}{\text{ar}(\Delta DEF)} = \frac{9}{16}
$$

$$
\Rightarrow \qquad \frac{\text{ar}(\Delta \text{ABC})}{\text{ar}(\Delta \text{DEF})} + 1 = \frac{9}{16} + 1
$$

$$
\Rightarrow \frac{\text{ar}(\triangle ABC) + \text{ar}(\triangle DEF)}{\text{ar}(\triangle DEF)} = \frac{25}{16}
$$

$$
\Rightarrow \frac{20 \text{ cm}^2}{\text{ar}(\triangle DEF)} = \frac{25}{16}
$$

$$
\Rightarrow \quad \text{ar}(\Delta DEF) = \frac{20 \times 16}{25} \text{ cm}^2
$$

$$
= \frac{64}{5} \text{ cm}^2
$$

$$
= 12.8 \text{ cm}^2
$$

$$
\therefore \text{ ar(}\triangle ABC) = (20 - 12.8) \text{ cm}^2
$$

$$
= 7.2 \text{ cm}^2
$$

Hence, ar($\triangle ABC$) = **7.2 cm²** and ar($\triangle DEF$) = **12.8 cm².**

20. Let the two given similar triangles be ABC and DEF, such that

Let $AP = x$ cm and $DQ = y$ cm be the corresponding altitudes of ∆ABC and ∆DEF respectively.

Then,
\n
$$
\Rightarrow \qquad \qquad DQ - AP = 10 \text{ cm}
$$
\n
$$
\Rightarrow \qquad \qquad y - x = 10 \text{ cm}
$$
\n
$$
\Rightarrow \qquad \qquad y = (x + 10) \text{ cm} \qquad \qquad \dots (1)
$$

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding altitudes,

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \frac{AP^2}{DQ^2} = \frac{(x \text{ cm})^2}{[(x+10) \text{ cm}]^2}
$$

\n
$$
\Rightarrow \frac{49 \text{ cm}^2}{64 \text{ cm}^2} = \frac{x^2}{(x+10)^2}
$$

\n
$$
\Rightarrow \frac{7}{8} = \frac{x}{x+10}
$$

\n
$$
\Rightarrow 7x + 70 = 8x
$$

\n
$$
\Rightarrow 8x - 7x = 70
$$

\n
$$
\Rightarrow x = 70
$$

\nand $y = 70 + 10 = 80$
\nHence the length of the altitudes are 70 cm and 80

Hence, the length of the altitudes are **70 cm** and **80 cm**. **21.** Let the given two similar triangles be ABC and DEF

such that $ar(\triangle ABC) = 121$ cm² and $ar(\triangle DEF) = 64 \text{ cm}^2$ Let AP and DQ be the corresponding medians of ∆ABC and ∆DEF respectively such that $AP = 12.1$ cm

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding medians,

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \frac{AP^2}{DQ^2}
$$
\n
$$
\Rightarrow \frac{121 \text{ cm}^2}{64 \text{ cm}^2} = \frac{(12.1 \text{ cm})^2}{DQ^2}
$$
\n
$$
\Rightarrow \qquad DQ^2 = \frac{64 \times 12.1 \times 12.1}{121} \text{ cm}^2
$$
\n
$$
\Rightarrow \qquad DQ = \frac{8 \times 12.1}{11} \text{ cm}
$$
\n
$$
= 8 \times 1.1 \text{ cm} = 8.8 \text{ cm}
$$

Hence, the corresponding median is **8.8 cm**.

22. Since the ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding altitudes,

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle PQR)} = \frac{AD^2}{PS^2}
$$

$$
= \left(\frac{AD}{PS}\right)^2
$$

$$
= \left(\frac{4}{9}\right)^2
$$

$$
= \frac{16}{81}
$$

Hence, ar(∆ABC) : ar(∆PQR) = **16 : 81**.

23. Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding angle bisector segments,

$$
\therefore \frac{\text{ar}(\Delta ABC)}{\text{ar}(\Delta XYZ)} = \frac{AD^2}{XE^2}
$$

$$
= \frac{(4 \text{ cm})^2}{(3 \text{ cm})^2}
$$

$$
= \frac{16}{9}
$$
Hence, ar (AABC) : ar (AXYZ) = 16 : 9.

24. In ∆ABC and ∆ACP, we have

∴ ∆ABC ∼ ∆ACP

[Corresponding sides of similar triangles are proportional]

© Ratna Sagar

∴

(i)
\n
$$
\frac{AB}{AC} = \frac{BC}{CP}
$$
\n
$$
\Rightarrow \frac{AB}{3} = \frac{5}{4}
$$
\n
$$
\Rightarrow AB = \frac{3 \times 5}{4}
$$
\n
$$
= \frac{15}{4}
$$
\n
$$
= 3.75
$$
\nHence, **AB** = 3.75.
\n(ii)
\n
$$
\frac{BC}{CP} = \frac{AC}{AP}
$$
\n
$$
\Rightarrow \frac{5}{4} = \frac{3}{AP}
$$
\n
$$
\Rightarrow AP = \frac{3 \times 4}{5} = \frac{12}{5} = 2.4
$$

Hence, **AP = 2.4**.

(*iii*) Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle ACP)} = \frac{BC^2}{CP^2}
$$

$$
= \frac{5^2}{4^2}
$$

$$
= \frac{25}{16}
$$

Hence,
$$
\frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle ACP)} = \frac{25}{16}
$$
.

25. Given that ∆ABC is right-angled at A and AD ⊥ BC. Also, $BC = 13$ cm and $AC = 5$ cm.

To find the ratio of areas of ∆ABC and ∆ADC. In ∆BAC and ∆ADC, we have

$$
\angle BAC = \angle ADC = 90^{\circ}
$$
 [Given]
\n $\angle BCD = \angle ACD$ [Common]

$$
\therefore \text{ By AA similarity criterion, } \triangle BAC \sim \triangle ADC
$$
\n
$$
\frac{\text{ar}(\triangle BAC)}{\text{ar}(\triangle ADC)} = \frac{BC^2}{AC^2} = \frac{13^2}{5^2} = \frac{169}{25}
$$

Hence, the required ratio is **169 : 25**.

26. Given that ∆ABC and ∆EBD are two equilateral triangles, where D is the mid-point of BC. To find the ratio of the area of ∆ABC and ∆EBD.

We know that all equilateral triangles are similar, since each angle of each of such triangles is 60°.

$$
\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle EBD)} = \frac{BC^2}{BD^2} = \frac{4BD^2}{BD^2} = \frac{4}{1}
$$

∴ Required ratio is **4 : 1**.

27. In ∆LMN and ∆QNP, we have

∠LMN = ∠QNP [Alt ∠s, LM || NQ]
∠LNM = ∠QPN [Alt ∠s, LN || PQ] [Alt ∠s, LN \parallel PQ] ∴ ∆LMN ~ ∆QNP [By AA similarity]

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\Delta L MN)}{\text{ar}(\Delta QNP)} = \frac{MN^2}{NP^2} = \frac{MN^2}{\left(\frac{2}{3}MN\right)^2}
$$

$$
[\because MP = \frac{MN}{3} \implies NP = MN - MP
$$

$$
\Rightarrow NP = MN - \frac{MN}{3} = \frac{2}{3} MN]
$$

Hence, $ar(\Delta LMN)$: $ar(\Delta QNP) = 9:4$.

28. (*i*) Given that D is a point on the side AB of ∆ABC such that $AD : DB = 3 : 2$. Also, E is a point on BC such that $DE \parallel AC$.

To find the ratio of the areas of ∆ABC and ∆DBE.

∴ ∆ABC ∽ ∆DBE

- ∴ $\frac{\text{ar}(\Delta ABC)}{\text{ar}(\Delta DBE)}$ $\frac{(\triangle ABC)}{(\triangle DBE)} = \frac{AB}{DB}$ $rac{2}{2} = \frac{(3+2)}{2^2}$ 2 $\frac{(3+2)^2}{2^2} = \frac{25}{4}$
	- ∴ Required ratio is **25 : 4**.
- (*ii*) Given that S and T are two points on the sides PR and PT respectively of ∆QPR such that TS || QR, $PS = 3$ cm and $SR = 4$ cm.

 To find the ratio of the areas of ∆PST and PRQ. Since, TS || QR,

Ratna Sar

22Triangles Triangles 22

31. In
$$
\Delta
$$
PXQ and Δ RXS, we have

$$
\therefore \frac{\text{ar}(\Delta \text{PST})}{\text{ar}(\Delta \text{PRQ})} = \frac{\text{PS}^2}{\text{PR}^2} = \frac{3^2}{(3+4)^2} = \frac{9}{49}.
$$

∴ Required ratio is **9 : 49**.

∴ ∆PST ∽ ∆PRQ

29. Let each side of equilateral triangle ABC be *x*.

Then, $AB = x$

and altitude, $AD = \frac{\sqrt{3}}{2}x$.

$$
\triangle ABC \sim \triangle ADE
$$

[They are equiangular ∆s] Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle ADE)}{\text{ar}(\triangle ABC)} = \frac{AD^2}{AB^2} = \frac{\left(\frac{\sqrt{3}}{2}x\right)^2}{x^2} = \frac{3}{4}
$$

Hence, ar (∆ADE) : ar (∆ABC) = **3 : 4**.

30. In ∆AOB and ∆COD, we have

 ∠AOB = ∠COD [Vertically opposite angles] ∠OAB = ∠OCD $[\angle CAB = \angle ACD$, Alt $\angle s$, DC || AB] ∴ ∆AOB ~ ∆COD [By AA similarity]

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle AOB)}{\text{ar}(\triangle COD)} = \frac{AB^2}{CD^2}
$$

$$
= \frac{(2 CD)^2}{CD^2}
$$

$$
= \frac{4}{1}
$$

$$
\Rightarrow \frac{84 cm^2}{\text{ar}(\triangle COD)} = \frac{4}{1}
$$

$$
\Rightarrow \quad \text{ar}(\Delta COD) = \frac{84}{4} \text{ cm}^2 = 21 \text{ cm}^2
$$

Hence, the area of
$$
\Delta COD
$$
 is 21 cm².

∠PXQ = ∠RXS [Vertically opposite angles] ∠QPX = ∠SRX

$$
[\because \angle QPR = \angle SRP, Alt \angle s, PQ \parallel SR]
$$

∴
$$
\triangle PXQ \sim \triangle RXS
$$
 [By AA similarity]

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\Delta \text{P} \text{XQ})}{\text{ar}(\Delta \text{R} \text{XS})} = \frac{\text{PQ}^2}{\text{RS}^2}
$$

$$
= \frac{\left(\frac{2}{3}\text{RS}\right)^2}{\text{RS}^2}
$$

$$
= \frac{4}{9}
$$

Hence, ar (∆PXQ) : ar (∆RXS) = **4 : 9**. **32.** (*i*) In ∆ADE and ∆ABC, we have

$$
\angle ADE = \angle ABC
$$
 [Corresponding $\angle s$, DE || BC]

$$
\angle DAE = \angle BAC
$$
 [Common]

$$
\therefore \triangle ADE \sim \triangle ABC
$$
 [By AA similarity]

 \overline{AC} \overline{CB}

$$
\frac{AD}{AB} = \frac{AE}{AC}
$$

∴

⇒

 [Corresponding sides of similar triangles are proportional]

$$
\Rightarrow \frac{AD}{AB} = \frac{AC - CE}{AC}
$$

$$
\Rightarrow \frac{2 \text{ cm}}{6 \text{ cm}} = \frac{9 \text{ cm} - CE}{9 \text{ cm}}
$$

$$
\Rightarrow \qquad \frac{1}{3} = \frac{9 \text{ cm} - \text{CE}}{9 \text{ cm}}
$$

$$
\Rightarrow \qquad 9 \text{ cm} = 27 \text{ cm} - 3 \text{ CE}
$$

$$
\Rightarrow \qquad 3 \text{ cm} = 9 \text{ cm} - \text{CE}
$$

$$
\Rightarrow \qquad \text{C}E = (9-3) \text{ cm} = 6 \text{ cm}
$$

Hence, the length of CE is **6 cm**.

(*ii*) Since the ratio of the areas of two similar triangles is equal to the ratio of the square of any two corresponding sides,

$$
\frac{1}{2}
$$

Triang

$$
rac{ar(ΔADE)}{ar(ΔABC)} = \frac{AD^2}{AB^2}
$$

\n
$$
= \frac{(2cm)^2}{(6cm)^2} = \frac{1}{9}
$$

\n
$$
= \frac{ar(ΔABC)}{ar(ΔABC)} = 9
$$
 [Taking reciprocals]
\n
$$
= \frac{ar(ΔABC) - ar(ΔDE)}{ar(ΔABC)} = 8
$$

\n
$$
= \frac{ar(ΔABC) - ar(ΔDE)}{ar(ΔDEF)} = 8
$$

\n
$$
= \frac{ar(ΔADE)}{ar(αDEF)} = \frac{8}{1}
$$

\n
$$
= \frac{ar(ΔADE)}{ar(trapezium BCED)} = \frac{1}{8}
$$
 [Taking reciprocals]
\nHence,
$$
ar(trapezium BCED) = \frac{1}{8}
$$

\n33.
\n
$$
= \frac{6}{12cm} = \frac{6}{12}
$$

\n
$$
= \frac{12cm}{20cm} = \frac{15cm}{PC}
$$

\n
$$
= 25 cm
$$

\n(ii) In ΔPQR,
$$
CB = \frac{p}{BR}
$$
 [By BPT]
\n
$$
= \frac{25cm}{15cm} = \frac{15cm}{BR}
$$

\n
$$
= 25 cm
$$

\n(iii) In ΔPQR,
$$
CB = \frac{p}{BR}
$$
 [By BPT]
\n
$$
= \frac{25cm}{15cm} = \frac{15cm}{BR}
$$

\n
$$
= \frac{25cm}{25} = 9 cm
$$

\nHence, BR = 9 cm.
\n(iii) In ΔPBC and ΔPRQ, we have
\n
$$
∠PBC = ∠PRQ
$$

\n[Corresponding ∠s, CB || QR]

∠BPC = ∠RPQ [Common]

 $rac{2}{2} = \frac{PB^2}{(PB+BR)}$

2 2

∴ △PBC ~ ∆PRQ [By AA similarity] Since the ratio of two similar triangles is equal to

 $= \frac{(15 \text{cm})}{56 \text{cm}^2}$ 15 + 9) cm 2 2 $(15cm)$ $(15 + 9)$ cm $=\frac{15\times15}{24\times24}$ × × $= \frac{5 \times 5}{8 \times 8}$ $\frac{\times 5}{\times 8} = \frac{25}{64}$

Hence, ar (∆PBC) : ar (∆PRQ) = **25 : 64**.

ALTERNATIVE METHOD

33. (*i*) and (*ii*)

 $CB \parallel QR$ and $CA \parallel PR$ ∴ ARBC is a parallelogram. ∴ $CB = AR = 20$ cm
 $\triangle PCB \sim \triangle PQR$ [B [By AA similarity] ∴ $\frac{PC}{PQ} = \frac{CB}{QR} = \frac{PB}{PR}$ [Corresponding sides of similar triangles are proportional] \Rightarrow PC +15 cm = $\frac{20}{32}$ and $\frac{20}{32} = \frac{15 \text{ cm}}{15 \text{ cm} + \text{BR}}$ \Rightarrow **PC** = 25 cm and **BR = 9 cm** (*iii*) $\frac{\text{ar}(\Delta PBC)}{\text{ar}(\Delta PRQ)}$ $\frac{\Delta PBC}{\Delta PRQ} = \frac{BC}{QC}$ 2 2 $=\frac{(20 \text{ cm})}{(32 \text{ cm})}$ $\frac{2}{2}$ = $\frac{25}{64}$

For Standard Level

34. Given that P, R are points on the side AB of ∆ABC such that $AP = 4$ cm, $PR = 3$ cm and $RB = 5$ cm. Q and S are points on AC such that PQ \parallel BC, RS \parallel BC and AQ = 3 cm. Also, ar($\triangle ABC$) = 48 cm².

To find the lengths of QS and SC and also the area of ∆APQ.

Since, $PQ \parallel RS \parallel BC$, $\triangle APQ \sim \triangle ARS$ …(1) and $\triangle APQ \sim \triangle ABC$ …(2) From (1) , $\frac{AP}{AR} = \frac{AQ}{AS}$ ⇒ $\frac{4}{4+3} = \frac{3}{3+QS}$ \Rightarrow 12 + 4QS = 21 ⇒ $4QS = 21 - 12 = 9$ ∴ QS = $\frac{9}{4}$

the ratio of squares of any two corresponding sides, ∴ $\frac{\text{ar}(\Delta \text{PBC})}{\text{ar}(\Delta \text{PRQ})}$ ∆ ∆ $\frac{(APBC)}{(APRQ)} = \frac{PB}{PR}$

© Ratna Sagar

24Triangles Triangles $\overline{}$ 24

Again, since RS || BC,
\n
$$
\frac{AS}{SC} = \frac{AR}{RB}
$$
 [By BPT]
\n
$$
\Rightarrow \frac{3 + \frac{9}{4}}{\frac{9}{5C}} = \frac{4 + 3}{5}
$$

\n
$$
\Rightarrow \frac{21}{4SC} = \frac{7}{5}
$$

\n
$$
\Rightarrow 28 SC = 105
$$

\n
$$
\Rightarrow SC = \frac{105}{28} = \frac{15}{4}
$$

\nHence, the required lengths of QS and SC are
\nrespectively $\frac{9}{4}$ cm and $\frac{15}{4}$ cm.
\nAgain, from (2), we have

$$
\frac{\text{ar(AAPQ)}}{\text{ar(AABC)}} = \frac{\text{AP}^2}{\text{AB}^2}
$$

$$
= \frac{4^2}{(4+3+5)^2} = \frac{16}{144} = \frac{1}{9}
$$

$$
\Rightarrow \frac{\text{ar(AAPQ)}}{48} = \frac{1}{9}
$$

∴ $ar(\triangle APQ) = \frac{48}{9} = \frac{16}{3}$ Hence, the required area of $\triangle APQ$ is $\frac{16}{3}$ cm².

35. Given that CE and DE are equal chords of a circle with centre at O. Also, $∠AOB = 90°$. Clearly, COD is a diameter of the circle with radius, say *r* cm so that $OA = OC = OB = OD = r.$

$$
\angle OAB = \angle OBA
$$
\nand\n
$$
\angle ECO = \angle EDO
$$
\n
$$
\angle ECO = \angle EDO
$$

 \cap D

To find the ratio of the areas of ∆CED and ∆AOB. Since, angle is a semicircle is 90°.

∴ Required ratio is **2 : 1**.

EXERCISE 6D For Basic and Standard Levels 1. For the given triangle to be right-angled, the sum of the squares of the two smaller sides must be equal to the square of the greatest side. (*i*) $a = 6$ cm, $b = 8$ cm and $c = 10$ cm $a^2 + b^2 = (6 \text{ cm})^2 + (8 \text{ cm})^2$ $= (36 + 64)$ cm² $= 100$ cm² $c^2 = (10 \text{ cm})^2 = 100 \text{ cm}^2$ Clearly, $a^2 + b^2 = c^2$. Hence, the given triangle is right–angled. (*ii*) *a* = 35 cm, *b* = 12 cm and *c* = 12.5 cm $b^2 + c^2 = (12 \text{ cm})^2 + (12.5 \text{ cm})^2$ $=$ (144 + 156.25) cm² $= 300.25$ cm² $c² = (35 cm)² = 1225 cm²$ Clearly, $b^2 + c^2 \neq a^2$. Hence, the given triangle is not right-angled. (*iii*) *a* = 4 cm, *b* = 7.5 cm and *c* = 8.5 cm $a^2 + b^2 = (4 \text{ cm})^2 + (7.5 \text{ cm})^2$ $=$ (16 + 56.25) cm² $= 72.25$ cm² $c^2 = (8.5 \text{ cm})^2 = 72.25 \text{ cm}^2$ Clearly, $a^2 + b^2 = c^2$. Hence, the given triangle is right-angled. (*iv*) Let $x = (a - 1)$ cm, $y = 2\sqrt{a}$ cm and $z = (a + 1)$ cm

$$
x^{2} + y^{2} = [(a - 1) \text{ cm}]^{2} + [2\sqrt{a} \text{ cm}]^{2}
$$

$$
= (a^{2} - 2a + 1 + 4a) \text{ cm}^{2}
$$

$$
= (a^{2} + 2a + 1) \text{ cm}^{2}
$$

$$
= (a + 1)^{2} \text{ cm}^{2}
$$

$$
z^{2} = [(a + 1) \text{ cm}]^{2}
$$

$$
= (a + 1)^{2} \text{ cm}^{2}
$$

Clearly, $x^2 + y^2 = z^2$. Hence, the given triangle is right-angled.

2. Starting from point P, let the man go 7 m due North and reach point A and then let him go 24 m due East to reach point B.

Then, PA = 7 m, AB = 24 m and \angle PAB = 90°. In right triangle PAB, we have

 $PB^{2} = PA^{2} + AB^{2}$ [By Pythagoras' Theorem] $= (7 \text{ m})^2 + (24 \text{ m})^2$ $= (49 + 576)$ m² $= 625$ m² ∴ PB = $\sqrt{625}$ m = 25 m

Hence, the man is **25 m** away from the starting point.

Hence, **PQ2 = 2 PR2**.

4. Let A represents the airport from which one aeroplane flies due North at a speed of 1000 km/h and reaches point B after 30 minutes, another aeroplane flies due West at a speed of 1200 km/h and reaches point C after 30 minutes.

Thus, the two aeroplanes will be $100\sqrt{61}$ km apart.

5. Let AB be the ladder which reaches a window CB of a house at point B.

In right triangle ACB, we have $AB^2 = BC^2 + AC^2$ [Bv Pvthagoras' Theorem]

$$
\Rightarrow (25 \text{ m})^2 = (20 \text{ m})^2 + AC^2
$$

\n
$$
\Rightarrow AC^2 = (625 - 400) \text{ m}^2
$$

 $= 225$ m²

$$
\Rightarrow \qquad \qquad AC = 15 \text{ m}
$$

Hence, the distance of the foot of the ladder from the house is **15 m**.

6. Let ABC be a right triangle, right-angled at B. Let $AB = x$ cm be the smaller of the remaining two sides.

Then, AC = 25 cm and AC = $(x + 5)$ cm². In right triangle ABC, we have

7. Let ∆ABC be a right triangle in which $∠B = 90^\circ$, altitude $AB = x$ cm.

Then, hypotenuse $AC = (2x + 1)$ cm and base $BC = (2x + 1 - 2)$ cm = $(2x - 1)$ cm In right triangle ABC, we have $AC^2 = AB^2 + BC^2$ [By Pythagoras' Theorem] ⇒ $(2x + 1)^2 = x^2 + (2x - 1)^2$ \Rightarrow $4x^2 + 4x + 1 = x^2 + 4x^2 - 4x + 1$ \Rightarrow $x^2 - 8x = 0$ \Rightarrow $x(x-8) = 0$ \Rightarrow *x* = 0 (rejected) or $x = 8$

© Ratna Sagar

∴ AB = 8 cm, BC = $(2 \times 8 - 1) = 15$ cm and $AC = (2 \times 8 + 1)$ cm = 17 cm

Hence, the lengths of the triangle are **8 cm, 15 cm** and **17 cm**.

8. Let AB be the street and let C and D be the windows at heights of 8 m and 15 m respectively from the ground. Let E be the foot of the ladder. Then, EC and ED are the two positions of the ladder.

Clearly, $AC = 8$ m, $BD = 15$ m, $EC = ED = 17$ m and $∠CAE = ∠DBE = 90^\circ$. In right triangle CAE, we have $AC^2 + AE^2 = CE^2$ [By Pythagoras' Theorem] ⇒ $(8 \text{ m})^2 + \text{AE}^2 = (17 \text{ m})^2$ \Rightarrow AE² = (289 – 64) m² $= 225$ m² \Rightarrow AE = 15 m ... (1) In right triangle DBE, we have $BD^2 + EB^2 = ED^2$ [By Pythagoras' Theorem] \Rightarrow $(15 \text{ m})^2 + \text{EB}^2 = (17 \text{ m})^2$ ⇒ EB² = (289 – 225) m² $= 64 \text{ m}^2$ \Rightarrow EB = 8 m … (2) Hence, the width of the street $AB = AE + EB$

$$
= 15 \text{ m} + 8 \text{ m} \n= 23 \text{ m} \qquad \text{[Using (1) and (2)]}
$$

9. Let AB and CD be the two walls 5 m apart such that a ladder kept at E, *x* m from wall AB touches the wall at A and touches the wall CD at C, keeping the foot of the ladder fixed.

Then, $BE = x \text{ m}$, $ED = (5 - x) \text{ m}$, $AB = 6 \text{ m}$, $CD = 5 \text{ m}$ and $∠ABE = ∠CDE = 90^\circ$. In right triangle ABE, we have $AB^2 + BE^2 = AE^2$

In right triangle CDE, we have
\n
$$
CD^2 + ED^2 = CE^2
$$
\n
$$
\Rightarrow (5)^2 + (5 - x)^2 = CE^2
$$
\n
$$
(6)^2 + x^2 = (5)^2 + (5 - x)^2
$$
\n[\because AE = CE = length of the ladder]
\n
$$
\Rightarrow 36 + x^2 = 25 + 25 - 10x + x^2
$$
\n
$$
\Rightarrow 14 - 10x = 0
$$
\n
$$
\Rightarrow 2(7 - 5x) = 0
$$
\n
$$
\Rightarrow 5x = 7
$$
\n
$$
\Rightarrow x = \frac{7}{5} = 1.4
$$

Hence, the distance of the foot of the ladder from the first wall is **1.4 m**.

10. In right triangle QPR, we have

11. In right ∆PMR, we have

Ratna Sagar

27Triangles

riangles $\overline{}$ 27

$$
ar(\Delta PQR) = \frac{1}{2} \times PQ \times PR
$$

= $\frac{1}{2} \times 24 \times 10$
= 120 cm² [Using (1) and (2)]

Hence, area ($\triangle PQR$) = 120 cm².

12. Let AD be the altitudes of isosceles ∆ABC in which $AB = AC = 13$ cm.

Then, altitude $AD = 5$ cm.

In right triangles ∆ADB and ∆ADC, we have

 $AB = AC$ [Given] $AD = AD$ [Common] ∴ ∆ADB ≅ ∆ADC[By RHS Congruency] \therefore BD = CD [CPCT] \ldots (1) In right ∆ADB, we have $AB^2 = AD^2 + BD^2$ [By Pythagoras' theorem] \Rightarrow BD² = (169 – 25) cm² $= 144$ cm² \Rightarrow BD = 12 cm ... (2) Now, $BC = BD + CD$ $=$ BD $+$ BD $= 2 BD$ $= 2 \times 12$ = **24 cm** [Using (1) and (2)]

13. Let ABC be an equilateral triangle with side 2*a*.

Let $AD \perp BC$.

In right ∆ADB and right ∆ADC, we have

 $AB = AC$ [Sides of an equilateral triangle] $AD = AD$ [Common] ∴ ∆ADB ≅ ∆ADC [By RHS congruency] \Rightarrow BD = DC [By CPCT] ... (1) and $BC = BD + DC$ $=$ BD $+$ BD $= 2 BD$ [Using (1)] ⇒ $BD = \frac{BC}{2} = \frac{2a}{2} = a$... (2) In right ∆ADB, we have

$$
B2 = AD2 + BD2
$$

[By Pythagoras' Theorem]

⇒ $(2a)^2 = AD^2 + a^2$ [Using (2)] \Rightarrow $4a^2 = AD^2 + a^2$ \Rightarrow AD² = 3*a*² \Rightarrow AD = $\sqrt{3}a$

Hence, the altitudes of an equilateral triangle with side 2*a* is $\sqrt{3}a$.

14. Given that ∆ABC is an equilateral triangle such that $AB = BC = AC = 8$ cm.

AD is an altitude of ∆ABC from the vertex A to the side BC.

Then D is the mid-point of BC.

$$
\therefore BD = \frac{8}{2}
$$
 cm = 4 cm, AB = 8 cm and $\angle ADB = 90^{\circ}$

To find the length of the altitude AD of ∆ABC. From right-angled triangle ABD, we have by Pythagoras' theorem

Hence, the required length of the altitude is $4\sqrt{3}$ cm.

15. Given that ∠ABC = 90° in a triangle ABC. Also, BD \perp AC where D is a point on AC and $AD = 4$ cm and $DC = 5$ cm. To find the length of BD and AB.

Let $AB = x$ cm and $BC = y$ cm. In $\triangle ABD$, $\angle ADB = 90^\circ$, $AB = x$ cm and $AD = 4$ cm. ∴ By Pythagoras' theorem, we have $AB^2 = BD^2 + AD^2$ \Rightarrow $x^2 = 4^2 + BD^2$ $= 16 + BD²$ …(1) Similarly, from right-angled triangle BDC, we have by Pythagoras' theorem, $BC^2 = BD^2 + DC^2$

 \Rightarrow $y^2 = BD^2 + 5^2$ ⇒ $y^2 = 25 + BD^2$ …(2)

Also, from ∆ABC, ∠ABC = 90°, ∴ $AB^2 + BC^2 = AC^2$ ⇒ $x^2 + y^2 = (5 + 4)^2 = 81$ …(3) Adding (1) and (2), we have $x^2 + y^2 = 25 + 16 + 2BD^2$ $= 41 + 2BD^2$ \Rightarrow 81 – 41 = 2BD² [From (3)] ∴ BD² = $\frac{40}{2}$ = 20 ∴ BD = $\sqrt{20}$ = $2\sqrt{5}$ …(4) Also, from (1) and (4) ,

 $x^2 = 16 + 20 = 36$ ∴ $x = \sqrt{36} = 6$

 \Rightarrow AB = 6 …(5) Hence, the required length of **BD** and **AB** are

respectively $2\sqrt{5}$ cm and 6 cm.

16. Given that ∆ABC is a right-angled triangle with ∠ACB $= 90^{\circ}$, Q is the mid-point of BC and AC = 4 cm, AQ = 5 cm. To find AB2.

From ∆AQC,

- ∠ACQ = 90°
- ∴ By Pythagoras' theorem, we have $AO^2 = AC^2 + OC^2$

$$
AQ = AC + QC
$$

\n
$$
25 = 16 + OC^2
$$

$$
\frac{1}{\sqrt{25-16}} = 3
$$

From ∆ABC,

∴ The required value of AB2 is **52 cm2**.

17. Let AB and CD be the given vertical poles.

Ratna Sagar

$$
= 12 \text{ m} - 7 \text{ m}
$$

\n
$$
= 5 \text{ m}
$$

\nIn right triangle DEB, we have
\n
$$
BD^2 = BE^2 + DE^2
$$

\n[By Pythagoras' Theorem]
\n
$$
= (12 \text{ m})^2 + (5 \text{ m})^2
$$

\n
$$
= (144 + 25) \text{ m}^2
$$

\n
$$
= 169 \text{ m}^2
$$

\n
$$
BD = 13 \text{ m}
$$

Hence, the distance between the tips of the poles is **13 m**.

 $AD^2 = AB^2 + BC^2 + CD^2$ [Given] \Rightarrow AD² = AC² + CD²

[\therefore AB² + BC² = AC², Pythagoras' Theorem] By the converse of Pythagoras theorem,

∠ACD = 90° Hence, ∠**ACD = 90°**.

18.

19. Let ABCD be the given rhombus, whose diagonals AC and BD intersect at O.

Then, $AB = 10$ cm Let $AC = 12$ cm

Since the diagonals of a rhombus intersect each other at right angles.

$$
\therefore \qquad \text{OA} = \frac{1}{2} \text{ AC} = 6 \text{ cm}.
$$

In right ∆AOB, we have

 $AB^2 = OA^2 + OB^2$ [By Pythagoras' Theorem] ⇒ $(10 \text{ cm})^2 = (6 \text{ cm})^2 + \text{OB}^2$ \Rightarrow OB² = (100 – 36) cm² $= 64$ cm² \Rightarrow OB = 8 cm $BD = 2 \times OB$ $= (2 \times 8)$ cm $= 16$ cm.

Hence, the length of the second diagonal is **16 cm**.

Area of the rhombus = $\frac{1}{2}d_1d_2 = \frac{1}{2} \times 12 \times 16$ cm² $= 96$ cm² Hence, the area of the rhombus is **96 cm2**.

20. Let ABCD be the given rhombus in which diagonal $AC = 15$ cm and diagonal $BD = 36$ cm. Let the diagonals AC and BD intersect at O.

Since the diagonals of a rhombus bisect each other at right angles,

$$
\angle AOB = 90^{\circ},
$$

$$
AO = \frac{1}{2} AC = \frac{15}{2} cm
$$

and $BO = \frac{1}{2} BD = \frac{36}{2} cm = 18 cm$

In right triangle AOB, we have $AB^2 = AO^2 + BO^2$ [By Pythagoras' Theorem]

$$
\Rightarrow \qquad AB^2 = \left(\frac{15}{2} \text{cm}\right)^2 + (18 \text{ cm})^2
$$

$$
= \left(\frac{225}{4} + 324\right)
$$

$$
= \frac{225 + 1296}{4}
$$

$$
= \frac{1521}{4} \text{ cm}^2
$$

$$
\Rightarrow \qquad AB = \frac{39}{2} \text{ cm}
$$

Perimeter of rhombus = $4 \times AB = 4 \times \frac{39}{2}$ cm = **78 cm**

21. In right triangle ACB, we have

- $= AC² + 4 CD²$ $= AC² + 4 (AD² – AC²)$ [$AC^2 + CD^2 = AD^2$, By Pythagoras' Theorem] $= AC² + 4 AD² - 4 AC²$ $= 4 AD² - 3 AC²$ Hence, $AB^2 = 4AD^2 - 3AC^2$.
- **22.** In right triangle ADB, we have

For Standard Level

23. In right ∆BAC, we have

 $BC^2 = AB^2 + AC^2$ [By Pythagoras' Theorem] … (1) In right ∆ADB, we have $AB^2 = AD^2 + BD^2$ [By Pythagoras' Theorem] … (2) In right ∆ADC, we have $AC² = AD² + CD²$ [By Pythagoras' Theorem] … (3) From (2) and (3), we get $AB^{2} + AC^{2} = 2 AD^{2} + BD^{2} + CD^{2}$ \Rightarrow BC² = 2 AD² + BD² + CD² [Using (1)] $(BD + CD)^2 = 2 AD^2 + BD^2 + CD^2$ \Rightarrow BD² + CD² + 2 BD × CD = 2 AD² + BD² + CD² \Rightarrow 2 BD × CD = 2 AD² \Rightarrow **AD² = BD × CD**

24. In right triangle ADB, we have

AB2 = AD2 + BD2 [By Pythagoras' Theorem] … (1) In right triangle ADC, we have AC2 = AD2 + CD2 [By Pythagoras' Theorem] … (2) Adding (1) and (2), we get AB2 + AC2 = BD2 + CD2 + 2 AD2 ⇒ AB2 + AC2 = BD2 + CD2 + 2 BD × DC [AD2 = BD × DC, given] ⇒ AB2 + AC2 = (BD + CD)2 ⇒ AB2 + AC2 = (BC)2 ∴ By the converse of Pythagoras Theorem, ∆**ABC is a right triangle**. **25.** (*i*) Area of ∆ABC ⁼ ¹ ² base × height [∴] ar(∆ABC) ⁼ ¹ ² AB × CD [Taking AB as base] [⇒] ar(∆ABC) ⁼ ¹ ² *cp* … (1) and ar(∆ABC) ⁼ ¹ ² BC × AC [Taking BC as base] [⇒] ar(∆ABC) ⁼ ¹ ² *ab* … (2) From (1) and (2), we get ¹ ² *cp* ⁼ ¹ ² *ab* ⇒ *cp = ab* Hence, *cp = ab*. (*ii) cp* = *ab* [Proved in (*i*)] [⇒] ¹ *^p* ⁼ *^c ab* ⇒ 1 ² *^p* ⁼ *^c a b* 2 2 2 ⁼ *b a a b* 2 2 2 2 ⁺ [AB2 = AC2 + BC2] ⇒ 1 ² *^p* ⁼ *^b a b* 2 2 2 + *^a a b* 2 2 2 ⁼ ¹ ² *^a*⁺ 1 2 *b* Hence, **¹ ²** *^p* = **¹ ²** *^a*⁺ **1 2** *b* . A C B *a* D *c ^b ^p*

[By Pythagoras' Theorem] \Rightarrow BD² = OB² – OD² … (2) In right triangle OEC, $OC^2 = OE^2 + CE^2$

[By Pythagoras' Theorem]

Triangles **31**Triangles $\overline{}$ 31

© Ratna Sagar

 \Rightarrow BP² = BC² + $\frac{4}{9}$ $[Using (1)]$ \Rightarrow 9BP² = 9BC² + 4AC² … (4) Hence, **9BP2 = 9BC2 + 4AC2**. (*iii*) Adding (3) and (4), we get $9AQ^2 + 9BP^2 = 9AC^2 + 9BC^2 + 4BC^2 + 4AC^2$ ⇒ 9(AQ² + BP²) = 13(AC² + BC²) \Rightarrow 9(AQ² + BP²) = 13AB² [\therefore AB² = AC² + BC², By Pythagoras' Theorem]

E

Hence,
$$
9AQ^2 = 9AC^2 + 4BC^2
$$
.
(*ii*) In right triangle BCP, we have
 $BP^2 = BC^2 + CP^2$
[By Pythagoras' Theorem]

$$
\Rightarrow \qquad \text{AQ}^2 = \text{AC}^2 + \frac{4}{9}\text{BC}^2 \qquad \text{[Using (2)]}
$$
\n
$$
\Rightarrow \qquad \text{9AQ}^2 = \text{9AC}^2 + \text{4BC}^2 \qquad \dots \text{ (3)}
$$

-
-
-
-
-
-
-

(*i*) Since P divides CA in the ratio 2 : 1,

A

P

And Q divides CB in the ratio 2 : 1,

In right triangle ACQ, we have

∴ CP = $\frac{2}{3}$ AC … (1)

C Q B

 Ω

∴ CQ = $\frac{2}{3}$ BC … (2)

26.

Hence, $9AQ^2 = 9AC^2 + 4BC^2$. (*ii*) In right triangle BCP, we have

[By Pythagoras' Theorem]
BP² = BC² +
$$
\frac{4}{3}
$$
 AC² [Using (1)]

Hence, **9(AQ2 + BP2) = 13AB2**.

F

A

O

B D C

27. In right triangle of OFA, we have

 $AQ^2 = AC^2 + CQ^2$ [By Pythagoras' Theorem] 4

$$
CE2 = OC2 - OE2 \t ... (3)
$$

Adding (1), (2) and (3), we get

$$
AF2 + BD2 + CE2 = OA2 - OF2 + OB2 - OD2
$$

$$
+ OC2 - OE2
$$

$$
= AP2 + BD2 + CE2 = (OA2 - OE2) + (OB2 - OF2)+ (OC2 - OD2)
$$
= AP2 + BD2 + CE2 = AE2 + BF2 + CD2
$$

$$
= AF2 + (BD2 - BF2) + (CE2 - CD2) = 0
$$
Hence, (AF² - AE²) + (BD² - BF²) + (CE² - CD²) = 0.
$$

28. Draw AM ⊥ BC.

In right ∆s AMB and AMC, we have $AB = AC$ [Sides of equilateral triangle]
AM = AM [Common] [Common] ∴ $\triangle AMB \cong \triangle AMC$ [By RHS Congruency]

$$
\therefore \qquad \qquad BM = MC = \frac{BC}{2} \qquad [CPCT] \ \dots (1)
$$

[Given]

$$
CD = \frac{BC}{4}
$$
 [Given]
and

$$
BD = BC - CD
$$

$$
= BC - \frac{BC}{4}
$$

$$
= \frac{BC}{4}
$$
 ... (2)

In ∆ABD, ∠B is acute ∴ $AD^2 = AB^2 + BD^2 - 2BD \times BM$ $= AB^{2} + \left(\frac{3}{4}\right)$ 4 $\left(\frac{3}{4}\text{BC}\right)^2$ – 2 × $\frac{3}{4}\text{BC}$ × $\frac{\text{BC}}{2}$ [Using (1) and (2)] $= AB^{2} + \frac{9}{2}$

$$
= AB2 + \frac{9BC2}{16} - \frac{3}{4}BC2
$$

\n
$$
\Rightarrow \qquad 16 AD2 = 16 BC2 + 9 BC2 - 12 BC2
$$

\n[AB = BC, sides of an equilateral triangle]
\n
$$
\Rightarrow \qquad 16 AD2 = 13 BC2
$$

Hence, **16 AD2 = 13 BC2**.

In right ∆AMB and right ∆AMC, we have

$$
AB = AC
$$
 [Sides of an equilateral triangle]
\n
$$
AM = AM
$$
 [Common]
\n
$$
\therefore \quad \triangle AMB \cong \triangle AMC
$$
 [By RHS congruency]
\n
$$
\therefore \quad BM = CM
$$
 [By CPCT] ... (1)
\nBut
$$
BC = BM + CM
$$

\n
$$
\therefore \quad BM = CM = \frac{BC}{2}
$$
 ... (2)

$$
BM = CM = \frac{BC}{2} \qquad \qquad \dots (2)
$$

$$
DM = BM - BD = \frac{BC}{2} - \frac{BC}{4}
$$

[\because 4 BD = BC and using (2)]

$$
\Rightarrow \qquad \text{DM} = \frac{\text{BC}}{4} \qquad \qquad \dots (3)
$$

In right triangle AMD, we have

$$
AD2 = AM2 + DM2 [By Pythagoras' Theorem]
$$

\n
$$
\Rightarrow AD2 = AC2 - CM2 + DM2
$$

$$
[\because AC^2 = AM^2 + CM^2]
$$

\n
$$
\Rightarrow \qquad AD^2 = BC^2 - CM^2 + DM^2
$$

$$
AD2 = BC2 - CM2 + DM2
$$

[\therefore AC = BC, sides of an equilateral triangle]

$$
\Rightarrow \qquad AD^2 = BC^2 - \left(\frac{BC}{2}\right)^2 + \left(\frac{BC}{4}\right)^2
$$

[Using (2) and (3)]

$$
\Rightarrow \qquad \text{AD}^2 = \text{BC}^2 - \frac{\text{BC}^2}{4} + \frac{\text{BC}^2}{16}
$$

$$
\Rightarrow \qquad 16 \text{ AD}^2 = 16 \text{ BC}^2 - 4\text{BC}^2 + \text{BC}^2
$$

 \Rightarrow 16 AD² = 13 BC²

Hence, **16 AD2 = 13 BC2**.

30. In right triangle PQS, PQT and PQR, we have

 $PS² = PQ² + QS²$
 $PT² = PQ² + QT²$ [By Pythagoras' Theorem] $PR^2 = PQ^2 + QR^2$ [By Pythagoras' Theorem] … (1)

Now,
3 PR²

$$
3 PR2 + 5 PS2 - 8 PT2
$$

= 3 (PQ² + QR²) + 5 (PQ² + QS²) - 8 (PQ² + QT²)
[Using (1)]
= 3 PQ² + 3 QR² + 5 PQ² + 5 QS² - 8 PQ² - 8 QT²
= 3 QR² + 5 QS² - 8 QT²
= 3 QR² + 5($\frac{QR}{3}$)² - 8($\frac{2}{3}$ QR)²
[\because Points S and T trisect QR]

 $\overline{1}$

$$
= 3 \text{ QR}^2 + 5 \left(\frac{\text{QR}^2}{9} \right) - 8 \left(\frac{4}{9} \text{ QR}^2 \right)
$$

= 27 \text{ QR}^2 + 5 \text{ QR}^2 - 32 \text{ QR}^2
= 32 \text{ QR}^2 - 32 \text{ QR}^2
= 0
Thus, 3 \text{ PR}^2 + 5 \text{ PS}^2 - 8 \text{ PT}^2 = 0
Hence, 8 \text{ PT}^2 = 3 \text{ PR}^2 + 5 \text{ PS}^2

In ∆AED,

 $\angle AED = 90^\circ$ ∴ $∠ADE < 90^\circ$ ∴ $∠ADB > 90^\circ$ Thus, in $\triangle ADB$, $\angle ADB > 90^\circ$ and $AE ⊥ BD$ produced. ∴ $AB^2 = AD^2 + BD^2 + 2 BC \times DE$ … (1) In ∆ADC, ∠ADC < 90°and AE ⊥ BC ∴ $AC^2 = AD^2 + CD^2 - 2 CD \times DE$ \Rightarrow AC² = AD² + BD² – 2BD × DE $[\because CD = BD] ... (2)$ Adding (1) and (2), we get

$$
AC2 + AB2 = 2(AD2 + BD2)
$$

Hence, $AB2 + AC2 = 2(AD2 + BD2)$

32. In right
$$
\triangle
$$
ADE,

- Hence, $AE^2 = CE^2 + 2DC \times DE$.
- **33.** In right ∆BAC, we have

 $BC² = AB² + AC²$ [By Pythagoras' Theorem] … (1) In right ∆EAQ, we have $EQ² = AE² + AQ²$ [By Pythagoras' Theorem] … (2) Adding (1) and (2), we get $BC² + EQ² = AB² + AC² + AE² + AQ²$ $= (AB² + AE²) + (AC² + AQ²)$ $= (DE² + AE²) + (PQ² + AQ²)$ [\therefore AB = DE and AC = PQ, Opp. sides of a square] $= AD² + AP²$ [By Pythagoras' Theorem] Hence, $BC^2 + EQ^2 = AD^2 + AP^2$

34. Let $AC = b$, $BC = a$ and $AB = c$.

In right triangle, we have

 $c^2 = a^2 + b^2$ [By Pythagoras' Theorem] ... (1) Join diagonals BE, CI and GA on rhombus BDEA, CHIB and CGFA respectively.

$$
ΔABE ≅ ΔBDE
$$
\n
$$
ar(ΔABE) = ar(ΔBDE)
$$
\n
$$
∴ ΔABE is equilateral.
$$
\n
$$
(2)
$$

 \Rightarrow $\triangle BDE$ is also equilateral. \therefore (3) Area (rhombus BDEA) = 2(ar∆ABE)

$$
= 2\frac{\sqrt{3}}{2}c^2
$$
 [Using (2) and (3)]

$$
= \sqrt{3} c^2 \qquad \qquad \dots (4)
$$

Similarly, area (rhombus CHIB) = $\sqrt{3} a^2$

and area (rhombus CGFA) =
$$
\sqrt{3} b^2
$$

ar(rhombus CHIB) + ar(rhombus CGFA) $=$ $\sqrt{3} a^2 + \sqrt{3} b^2$

$$
= \sqrt{3} (a^2 + b^2) \qquad \qquad \dots (5)
$$

From (1) , (4) and (5) , we get

$$
\sqrt{3} c^2 = \sqrt{3} (a^2 + b^2)
$$

Hence, **area of rhombus on the hypotenuse of a right triangle with one of the angles as 60° is equal to the sum of the areas of rhombuses with one of their angles as 60° drawn on the other two sides**.

35. Let AB = 6 cm and AC = 8 cm.

In right triangle CAB, we have
\n
$$
BC^2 = AB^2 + AC^2
$$
 [By Pythagoras' Theorem]
\n
$$
= (6 \text{ cm})^2 + (8 \text{ cm})^2
$$
\n
$$
= 100 \text{ cm}^2
$$
\n
$$
\Rightarrow BC = 10 \text{ cm}
$$
\n
$$
\text{ar}(\Delta CAB) = \text{ar}(\Delta OAB) + \text{ar}(\Delta OBC) + \text{ar}(\Delta OCA)
$$
\n
$$
\Rightarrow \frac{1}{2} AB \times AC = (\frac{1}{2}AB \times r) + (\frac{1}{2}BC \times r) + (\frac{1}{2}CA \times r)
$$
\n
$$
\Rightarrow \frac{1}{2} \times 6 \times 8 \text{ cm}^2
$$
\n
$$
= [\frac{1}{2} \times 6 \times r + \frac{1}{2} \times 10 \times r + \frac{1}{2} \times 8 \times r] \text{ cm}
$$
\n
$$
\Rightarrow 48 \text{ cm}^2 = [6r + 10r + 8r] \text{ cm}
$$

$$
\overset{\text{small}}{\text{Singular}}
$$

riangles

$$
\Rightarrow \qquad 24r = 48 \text{ cm}
$$

$$
\Rightarrow \qquad r = 2 \text{ cm}
$$

- Hence, the radius of the circle is **2 cm**.
- **36.** Given that ∆ABC is an isosceles triangle with AB = AC, inscribed in a circle with centre at O. AB = AC = 13 cm and $BC = 10$ cm, Let $OA = OB = OC = r$ cm be the radius of the circle.

To find the radius *r* of the circle. We draw AOP ⊥ BC. Then P is the middle point of BC.

$$
\therefore \qquad BP = PC = \frac{10}{2} \text{ cm} = 5 \text{ cm}.
$$

We join OB and OC.

Now, $OP = AP - AO = AP - r$ …(1) Now, in ∆APB, we have by Pythagoras' theorem, $AB^2 = AP^2 + PB^2$

$$
\Rightarrow \qquad 13^2 = AP^2 + \left(\frac{10}{2}\right)^2
$$

\n
$$
\Rightarrow \qquad AP^2 = 169 - 25 = 144
$$

\n∴ $AP = 12$
\n∴ From (1), $OP = 12 - r$...(2)
\nNow, from $\triangle OBP$,
\n∴ $\angle OPB = 90^\circ$
\n∴ By Pythagoras' theorem, we have
\n $OB^2 = OP^2 + PB^2$
\n $r^2 = (12 - r)^2 + 5^2$ [From (2)]
\n $= 144 + r^2 - 24r + 25$
\n $\Rightarrow 24r = 169$
\n∴ $r = \frac{169}{24} = 7.041$ (approx.)

Hence, the required radius of the circle is **7.041 cm** (approx.)

In right ∆ABE, we have $AE^2 = AB^2 + BE^2$

⇒ $(5 \text{ cm})^2 = (2x)^2 + (y)$

In right ∆DBC, we have $CD² = DB² + BC²$ [Pythagoras' Theorem]

⇒
$$
(\sqrt{20} \text{ cm})^2 = x^2 + (2y)^2
$$
 ... (2)
\nAdding (1) and (2), we get
\n $(25 + 20) \text{ cm}^2 = 4x^2 + y^2 + x^2 + 4y^2$
\n⇒ $5x^2 + 5y^2 = 45 \text{ cm}^2$
\n⇒ $x^2 + y^2 = 9 \text{ cm}^2$... (3)

In right ∆ABC, we have $AC^2 = AB^2 + BC^2$ $= 4x^2 + 4y^2$

$$
= 4x^2 + 4y^2
$$

= 4(x² + y²)

$$
= 4 \times 9
$$

 $= 36$ cm² \Rightarrow AC = 6 cm

$$
\begin{array}{c}\n\cdot & \text{A}\cup \\
\cdot & \text{A}\cup\n\end{array}
$$

38. Given that in ∆PQR, ∠PQR is obtuse and ∠PMR = 90°. Also, RN is \perp to PQ produced.

To prove that $PR^2 = PQ \cdot PN + RQ \cdot RM$. In ∆PQR, ∠PQR is obtuse hence, we have $PR^2 = PQ^2 + QR^2 + 2PQ \cdot QN$ …(1) Also, $PR^2 = PQ^2 + QR^2 + 2QR \cdot QM$ …(2) Adding (1) and (2), we get $2(PR^2) = 2(PQ^2 + QR^2) + 2(PQ \cdot QN + QR \cdot QM)$ \Rightarrow PR² = PQ² + QR² + PQ · QN + QR · QM $= PQ^2 + QR^2 + PQ(PN - PQ) + RQ(RM - QR)$ $= PQ^2 + QR^2 + PQ \cdot PN - PQ^2 + RQ \cdot RM$ $-$ RQ² $= PQ \cdot PN + RQ \cdot RM$. Hence, proved. **39.** In right ∆APD and right ∆BQC, we have $AD = BC$ [Given] $AP = BQ$ $[\cdot: AB \parallel DC, \cdot: AB \parallel PQ]$

∴ $\triangle APD \simeq \triangle BQC$ [By RHS congruency] ∴ $DP = QC$ [By CPCT] ...(1) B D Q \overline{C}

In right triangle APC,

 $AC^2 = AP^2 + PC^2$ [By Pythagoras' theorem] …(2)

In right triangle BQC,

 $BC^2 = BQ^2 + QC^2$ [By Pythagoras' theorem] …(3)

© Ratna Sagar

 \dots (1)

[Pythagoras' Theorem]

Subtracting equation (3) from equation (2), we get
\n
$$
AC^2 - BC^2 = AP^2 - BQ^2 + PC^2 - QC^2
$$
\n
$$
= BQ^2 - BQ^2 + PC^2 - QC^2
$$
\n[:: AP = BQ]\n
$$
= PC^2 - QC^2
$$
\n[:: AP = BQ]\n
$$
= PC^2 - QC^2
$$
\n
$$
= (PC + QC) (PC - QC)
$$
\n
$$
= (PC + QC) (PQ) [Using (1)]
$$
\n
$$
= CD \times AB [[: PQ = AB]
$$
\nHence, AC² - BC² = AB × CD.

40. Given that ABCD is a quadrilateral such that ∠A + ∠D $= 90^{\circ}$.
To pro

To prove that
$$
AC^2 + BD^2 = AD^2 + BC^2
$$

Construction: We produce AB and DC to intersect each other at E. We join AC and BD. ∴ $∠A + ∠D = 90°$ [Given] ∴ The remaining ∠AED of ∆AED is also 90° [By angle-sum property of a triangle] Now, in $\triangle ADE$, $\angle AED = 90^\circ$. ∴ By Pythagoras' theorem, we have from ∆AED $AD^2 = AE^2 + DE^2$ …(1) [∴ $\angle AED = 90^\circ$] Similarly, from \triangle BEC, since ∠BEC = 90°, ∴ BC² = BE² + CE² …(2) Adding (1) and (2), we get $AD^2 + BC^2 = AE^2 + DE^2 + BE^2 + CE^2$ $= (AE² + CE²) + (DE² + BE²)$ $= AC² + BD²$ In ∆ ACE and in ∆BED, \angle AEC = \angle BED = 90°. Hence, $AC^2 + BD^2 = AD^2 + BC^2$. **EXERCISE 6E**

(OPTIONAL)

For Basic and Standard Levels

1. (*i*) AB = 6 cm, AC = 12 cm, BD = 2.5 cm and $CD = 5.5$ cm

∴ **AD is not the bisector of** ∠**A of** ∆**ABC**.

(*ii*) AB = 9 cm, AC = 12 cm, BD = 4.5 cm and $CD = 6$ cm

$$
\frac{BD}{DC} = \frac{4.5 \text{ cm}}{6 \text{ cm}} = \frac{3}{4}
$$

and

$$
\frac{AB}{AC} = \frac{9 \text{ cm}}{12 \text{ cm}} = \frac{3}{4}
$$

Since

$$
\frac{BD}{DC} = \frac{AB}{AC},
$$

∴ **AD is the bisector of** ∠**A of** ∆**ABC**.

2. Since AD is the bisector of ∠A, \overline{D}

∴

$$
\frac{BD}{DC} = \frac{AB}{AC}
$$

[By the Angle-bisector Theorem]

$$
Q = \frac{BD}{DC} = \frac{AB}{AC}
$$

$$
\frac{35}{3}
$$

Ė

$$
\frac{3.2 \text{ cm}}{2.8 \text{ cm}} = \frac{5.6 \text{ cm}}{AC}
$$
\n⇒ $AC = \frac{5.6 \times 2.8}{3.2} \text{ cm}$
\n⇒ $AC = 4.9 \text{ cm}$
\nHence, $AC = 4.9 \text{ cm}$.
\n(2) Let $BD = x \text{ cm}$
\nThen, $CD = BC - BD = (10.4 - x) \text{ cm}$,
\nNow, $\frac{BD}{DC} = \frac{AB}{AC}$
\n⇒ $\frac{x \text{ cm}}{(10.4 - x) \text{ cm}} = \frac{9 \text{ cm}}{4 \text{ cm}}$
\n⇒ $4x = 93.6 - 9x$
\n⇒ $13x = 93.6$
\n⇒ $x = 7.2$
\n $BD = 7.2 \text{ cm}$ and $CD = (10.4 - 7.2) \text{ cm} = 3.2 \text{ cm}$.
\nHence, $CD = 3.2 \text{ cm}$ and $BD = 7.2 \text{ cm}$.
\n3. Let $AB = x \text{ cm}$.
\nThen, $AC = (5.6 - x) \text{ cm}$
\n $\frac{AB}{BC} = \frac{AB}{AC}$
\nSince AP bisects $\angle A$ of $\triangle ABC$,
\n∴ $\frac{BP}{PC} = \frac{AB}{AC}$
\n[By the Angle-bisector Theorem]
\n⇒ $\frac{2.5 \text{ cm}}{1.5 \text{ cm}} = \frac{x \text{ cm}}{(5.6 - x) \text{ cm}}$
\n⇒ $\frac{5}{3} = \frac{x}{(56 - x)}$
\n⇒ $5(5.6 - x) = 3x$

$$
\Rightarrow \qquad 5 \times 5.6 - 5x = 3x
$$

$$
\Rightarrow \qquad 8x = 5 \times 5.6
$$

$$
x = \frac{5 \times 5.6}{8} = 3.5
$$

Hence, **AB = 3.5 cm**.

4. Since AE is the bisector of exterior ∠CAD and meets BC produced at E,

[By the Angle-bisector theorem]

⇒ $\frac{10 \text{ cm}}{8 \text{ cm}} = \frac{\text{BC} + \text{CE}}{\text{CE}}$ ⇒ $\frac{5}{4} = \frac{4 \text{ cm} + \text{CE}}{\text{CE}}$ ⇒ $5 \text{ CE} = 16 \text{ cm} + 4 \text{ CE}$

⇒ $(5-4) \text{ CE} = 16 \text{ cm}$ \Rightarrow (5 – 4) CE = 16 cm

⇒ CE = 16 cm $CE = 16$ cm

Hence, **CE = 16 cm**.

5. Since AD is the internal bisector of ∠A meeting BC at D,

Since AE is the external bisector of ∠A meeting BC produced at E,

$$
\frac{\text{AB}}{\text{AC}} = \frac{\text{BE}}{\text{CE}}
$$
\n
$$
\Rightarrow \frac{10 \text{ cm}}{8 \text{ cm}} = \frac{\text{BE}}{\text{BE} - \text{BC}}
$$
\n
$$
\Rightarrow \frac{5}{4} = \frac{\text{BE}}{\text{BE} - 9 \text{ cm}}
$$
\n
$$
\Rightarrow 5 \text{BE} - 45 \text{ cm} = 4 \text{ BE}
$$
\n
$$
\Rightarrow 5 \text{BE} - 4 \text{ BE} = 45 \text{ cm}
$$
\n
$$
\frac{\text{Hence BE}}{\text{BE} - 45 \text{ cm}} = 45 \text{ cm}
$$

Hence, **BE = 45 cm**.

6. In ∆ABC, BD is the bisector of ∠B.

[By the Angle–bisector theorem] In ∆ABC, CE is the bisector of $∠C$.

Ratna Sagar

∴

∴

$$
\frac{AC}{CB} = \frac{AE}{EB} \qquad ...(2)
$$

[By the Angle-bisector theorem] Now, $DE \parallel BC$ [Given]

∴ $\frac{AE}{EB} = \frac{AD}{DC}$ [By BPT] \dots (3)

From (1), (2) and (3), we get

$$
\frac{AB}{BC} = \frac{AC}{CB}
$$

 \Rightarrow AB = AC

- Hence, ∆**ABC is an isosceles triangle**.
- **7.** In ∆ACB, CD is the bisector of ∠C.

From (1) and (2), we get

$$
\frac{\text{AD}}{\text{DB}} = \frac{\text{AE}}{\text{ED}}
$$

$$
\Rightarrow \qquad \qquad AD \times ED = AE \times DB
$$

- Hence, **AD × DE = AE × BD**.
- **8.** In ∆ABC, AD is the bisector of ∠BAC.

∴

∴

 $\frac{AB}{AC} = \frac{BD}{DC}$

From (1) and (2), we get

$$
\frac{\text{AB}}{\text{AC}} = \frac{\text{BE}}{\text{EF}}
$$

Hence,
$$
\frac{AB}{AC} = \frac{BE}{EF}
$$
.

9. Join diagonal AC and let it intersect diagonal BD at E. In ∆ABC, BE bisects ∠ABC.

[By the Angle-bisector theorem] … (1) In ∆ADC, DE bisects ∠ADC.

$$
\frac{\text{AD}}{\text{DC}} = \frac{\text{AE}}{\text{EC}}
$$

[By the Angle-bisector theorem] … (2) From (1) and (2), we get

$$
\frac{\text{AB}}{\text{BC}} = \frac{\text{AD}}{\text{DC}}
$$

Hence, $\frac{AB}{BC} = \frac{AD}{CD}$.

For Standard Level

∴

∴

10. In ∆ADB, DP is the bisector of ∠ADB.

$$
\Delta_{\rm{max}}
$$

[By the Angle-bisector theorem] … (1) In ∆ADC, DQ is the bisector of ∠ADC.

$$
\therefore \qquad \qquad \frac{AQ}{QC} = \frac{AD}{DC}
$$

[By the Angle-bisector theorem]

$$
\Rightarrow \qquad \frac{AQ}{QC} = \frac{AD}{BD} \qquad [\because DC = BD] \dots (2)
$$

From (1) and (2), we get

$$
\frac{\stackrel{\vee}{AP}}{PB} = \frac{AQ}{QC}
$$

Thus, in ∆ABC, PQ divides the sides AB and AC in the same ratio.

∴ By the converse of BPT, PQ \parallel BC.

Hence, **PQ** || **BC**.

11. Given that P and Q are two points on the side BC of \triangle ABC such that BP = QC. M is a point on AC such that BM bisects ∠ABC cutting AP and AQ at R and S respectively.

$$
\frac{1}{2}
$$

 \Rightarrow

6. (*b***) 3 cm**

$$
\frac{\triangle ABC \sim \triangle PQR}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}
$$
\n
$$
\Rightarrow \qquad \frac{6 \text{ cm}}{4.5 \text{ cm}} = \frac{4 \text{ cm}}{x}
$$
\n
$$
\Rightarrow \qquad x = \frac{4 \times 4.5}{6} \text{ cm} = 3 \text{ cm}
$$

Hence, $x = 3$ cm.

7. (*d***) 10 cm**

$$
\triangle ADE \sim \triangle ABC \qquad \text{[By AA similarity]}
$$
\n
$$
\therefore \qquad \frac{AD}{AB} = \frac{DE}{BC}
$$
\n
$$
\Rightarrow \qquad \frac{2 \text{ cm}}{2 \text{ cm} + 3 \text{ cm}} = \frac{4 \text{ cm}}{x}
$$
\n
$$
\Rightarrow \qquad x = \frac{4 \times 5}{2} \text{ cm} = 10 \text{ cm}
$$

Hence, $x = 10$ cm.

8. (*a***) 13.5 cm**

and $\frac{AQ}{QC} = \frac{3 \text{ cm}}{6 \text{ cm}} = \frac{1}{2}$

Clea

$$
\frac{\text{AP}}{\text{PB}} = \frac{\text{AQ}}{\text{QC}}.
$$

 $\frac{\text{AP}}{\text{PB}} = \frac{3.5 \text{ cm}}{7 \text{ cm}} = \frac{1}{2}$

Thus, in ∆ABC, PQ divides sides AB and AC in the same ratio. By the converse of Thales Theorem, $PQ \parallel BC$ [By AA similarity] ⇒ $\frac{AP}{AB} = \frac{PQ}{BC}$ ⇒ $\frac{3.5 \text{ cm}}{(3.5 + 7) \text{ cm}} = \frac{4.5 \text{ cm}}{BC}$ ⇒ BC = $\frac{4.5 \times 10.5}{3.5}$ $.5 \times 10.$ $\frac{\times 10.5}{3.5}$ cm = 13.5 cm

Hence, $BC = 13.5$ cm.

9. (*a***) DE BC**

and $\frac{AE}{EC} = 1:3$

Clearly,
$$
\frac{AD}{DB} = \frac{AE}{EC}
$$
.

Thus, in ∆ABC, DE divides the sides AB and AC in the same ratio. ∴ By the converse of BPT, DE \parallel BC.

 $rac{\text{AD}}{\text{DB}} = \frac{1}{3}$

Hence, $DE \parallel BC$.

10. (*c*) **PQ** = $\frac{BC}{3}$

Since \overline{AP}

$$
\frac{\text{AP}}{\text{PB}} = \frac{\text{AQ}}{\text{QC}},
$$

∴ By the converse of BPT, PQ \parallel BC.

∆APQ ∼ ∆ABC [By AA similarity] $\frac{AP}{AB} = \frac{PQ}{BC}$ ⇒ $\frac{AP}{AP + PB} = \frac{PQ}{BC}$ $\frac{1}{1+2} = \frac{PQ}{BC}$ $rac{1}{3} = \frac{PQ}{BC}$ \Rightarrow PQ = $\frac{BC}{3}$

Hence, $PQ = \frac{BC}{3}$.

11. (*b***) 1 : 6**

∴

⇒

⇒

 $\angle ADC = \angle ABC$ [Given] But ∠ADC and ∠ABC are corresponding angles. ∴ DE \parallel BC In ∆ABC, we have $\frac{AE}{EC} = \frac{AD}{DB}$ [By BPT] ⇒ $\frac{4}{8} = \frac{AD}{DB}$ ⇒ $rac{\text{AD}}{\text{DB}} = \frac{1}{2}$ \Rightarrow DB = 2 AD $= 2 (AF + FD)$ … (1) $\angle AEF = \angle ACD$ [Given] But ∠AEF and ∠ACD are corresponding angles. FE ∥ DC In ∆ADC, we have $\frac{\text{AF}}{\text{FD}} = \frac{\text{AE}}{\text{EC}}$ ⇒ $rac{1}{\text{FD}} = \frac{4}{8}$ \Rightarrow FD = 2 units … (2) Now, $\frac{AF}{DB} = \frac{1}{2(AF + FD)}$ [Using (1)] ⇒ $\frac{\text{AF}}{\text{DB}} = \frac{1}{2(1+2)}$ [Using (2)] ⇒ $\frac{\text{AF}}{\text{DB}} = \frac{1}{6}$ \Rightarrow AF : DB = 1: 6 Hence, $AF : DB = 1 : 6$. **12. (***d***) OA = 3.6 cm, OB = 4.8 cm** ∆ABO ∼ ∆DCO [Given] ⇒ $\frac{AB}{CD} = \frac{BO}{OC} = \frac{OA}{OD}$ ⇒ $\frac{3 \text{ cm}}{2 \text{ cm}} = \frac{\text{OB}}{3.2 \text{ cm}} = \frac{\text{OA}}{2.4 \text{ cm}}$ \Rightarrow OB = $\frac{3 \times 3.2}{2}$ cm = 4.8 cm

and
$$
OA = \frac{3 \times 2.4}{2}
$$
 cm = 3.6 cm

Hence, $OA = 3.6$ cm and $OB = 4.8$ cm.

 $= 180^{\circ} - 30^{\circ} - 40^{\circ}$

 $= 110^{\circ}$

Hence, \angle OCA = 110°.

18. (*d***) 7.5 cm**

In ∆ABC, we have

and
$$
\frac{AP}{AB} = \frac{3 \text{ cm}}{5 \text{ cm}} = \frac{3}{5}
$$

$$
\frac{AQ}{AC} = \frac{6 \text{ cm}}{10 \text{ cm}} = \frac{3}{5}
$$

Thus, in ∆ABC, PQ divides the sides AB and AC in the same ratio.

∴ By the converse of BPT, PRQ \parallel BDC.

In ∆APR and ∆ABD, we have

Hence, $AD = 7.5$ cm.

19. (*d***) 30 cm**

 ∆PQR ∼ ∆XYZ [Given] We know that ratio of the perimeter of two similar triangles is the same as the ratio of their corresponding sides.

$$
\therefore \frac{\text{Perimeter of } \Delta PQR}{\text{Perimeter of } \Delta XYZ} = \frac{PQ}{XY}
$$
\n
$$
\Rightarrow \frac{\text{Perimeter of } \Delta PQR}{XY+YZ+ZX} = \frac{PQ}{XY}
$$
\n
$$
\Rightarrow \frac{\text{Perimeter of } \Delta PQR}{(4+4.5+6.5) \text{cm}} = \frac{8 \text{ cm}}{4 \text{ cm}}
$$

$$
\Rightarrow \quad \text{Perimeter of } \Delta PQR = \frac{8}{4} \times 15 \text{ cm} = 30 \text{ cm}
$$

Hence, the perimeter of ∆PQR is 30 cm.

20. (*c***) 9 : 1**

 $\triangle ABC \sim \triangle DEF$ [Given] Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \qquad \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \frac{BC^2}{EF^2} = \frac{BC^2}{\left(\frac{1}{3}BC\right)^2} = \frac{9}{1}
$$

Hence, $ar(\triangle ABC)$: $ar(\triangle DEF) = 9$: 1.

21. (*d*) $\frac{9}{25}$

In ∆APQ and ∆ABC, we have

∠APQ = ∠ABC [Corresponding \angle s, PQ \parallel BC] ∠PAQ = ∠BAC [Common] ∴ ∆APQ ∼ ∆ABC

$$
\frac{AP}{AB} = \frac{PQ}{BC}
$$
 ... (1)
\n
$$
\frac{AP}{PB} = \frac{3}{2}
$$
 [Given]
\n
$$
\Rightarrow \frac{PB}{AP} = \frac{2}{3}
$$
 [Taking reciprocals]
\n
$$
\Rightarrow \frac{PB + AP}{AP} = \frac{2}{3} + 1
$$

\n
$$
\Rightarrow \frac{PB + AP}{AP} = \frac{5}{3}
$$

\n
$$
\Rightarrow \frac{AB}{AP} = \frac{5}{3}
$$

\n
$$
\Rightarrow \frac{AP}{AB} = \frac{3}{5}
$$
 ... (2)
\nFrom (1) and (2), we get
\n
$$
\frac{PQ}{BC} = \frac{3}{5}
$$

\n
$$
\frac{2PQ}{BC} = \frac{3}{5}
$$

\n
$$
\frac{2PQ}{BC} = \frac{3}{5}
$$

\n
$$
\frac{2PQ}{BC} = \frac{3}{5}
$$
 [By AA similarity]

$$
\therefore \frac{\text{ar}(\Delta \text{POQ})}{\text{ar}(\text{COB})} = \frac{\text{PQ}^2}{\text{BC}^2}
$$

$$
= \left(\frac{\text{PQ}}{\text{BC}}\right)^2
$$

$$
= \left(\frac{3}{5}\right)^2
$$

$$
= \frac{9}{25}
$$

Hence,
$$
\frac{\text{ar}(\Delta \text{POQ})}{\text{ar}(\Delta \text{COB})} = \frac{9}{25}
$$

22. (*b***) 81 : 25**

Since the ratio of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

9 5 $\left(\frac{9}{5}\right)^2 = \frac{A_1}{A_2}$ $\frac{1}{2}$ where A₁ and A₂ are the areas of the

similar triangles respectively

$$
\Rightarrow \qquad \qquad \frac{81}{25} = \frac{A_1}{A_2}
$$

Hence, the ratio of the areas of two similar triangles is 81 : 25.

23. (*c***) 3.5 cm**

∴

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding altitudes,

$$
\frac{100 \text{ cm}^2}{49 \text{ cm}^2} = \frac{(5 \text{ cm})^2}{(x)^2}
$$

where x is the corresponding altitude of the smaller triangle.

$$
\Rightarrow \qquad \qquad x^2 = \frac{25 \times 49}{100} \text{ cm}
$$

$$
\Rightarrow \qquad \qquad x^2 = \frac{49}{4} \text{ cm}
$$

$$
\Rightarrow \qquad \qquad x = \frac{7}{2} \text{ cm} = 3.5 \text{ cm}
$$

Hence, the corresponding altitude of the smaller triangle is 3.5 cm.

24. (*b***) 9.6 cm**

∴

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding medians,

$$
\frac{121 \text{ cm}^2}{64 \text{ cm}^2} = \frac{(13.2 \text{ cm})^2}{x^2}
$$

where x is the corresponding median of the other triangle.

$$
\Rightarrow \quad x^2 = \frac{13.2 \times 13.2 \times 64}{121} \text{ cm}^2
$$
\n
$$
\Rightarrow \quad x = \frac{13.2 \times 8}{11} \text{ cm}
$$
\n
$$
= 1.2 \times 8 \text{ cm}
$$
\n
$$
= 9.6 \text{ cm}
$$

Hence, the corresponding median of the other triangle is 9.6 cm.

25. (*d***) 5 cm2**

In ∆ANM and ∆ABC, we have

$$
\angle ANM = \angle ABC
$$
 [Corresponding angles, NM || BC]
\n
$$
\angle NAM = \angle BAC
$$
 [Common]
\n
$$
\therefore \quad \Delta ANM \sim \Delta ABC
$$
 [By AA similarity]
\n
$$
\therefore \quad \frac{\text{ar}(\Delta ANM)}{\text{ar}(\Delta ABC)} = \frac{AN^2}{AB^2}
$$

\n
$$
\Rightarrow \quad \frac{\text{ar}(\Delta ANM)}{20 \text{ cm}^2} = \frac{AN^2}{(2AN)^2}
$$

\n[AB = 2AN, \because N is the mid-point of AB]
\n
$$
\Rightarrow \quad \text{ar}(\Delta ANM) = \frac{20}{2} \text{ cm}^2 = 5 \text{ cm}^2
$$

$$
\Rightarrow \quad \text{ar}(\Delta \text{ANM}) = \frac{20}{4} \text{ cm}^2 = 5
$$

Hence, the ar(\triangle ANM) is 5 cm².

26. (*c***) 4 : 1**

(c)
$$
\pm
$$
 : 1
Let each side of $\triangle ABC$ be 2x.

Then, $BD = x$ and each side of $\triangle BDE = x$.

∆ABC ∼ ∆BDE

[By AA similarity, \therefore they are equiangular]

$$
\therefore \qquad \frac{\text{ar}(\Delta \text{ABC})}{\text{ar}(\Delta \text{BDE})} = \frac{(2x)^2}{(x)^2} = \frac{4}{1}
$$

Hence, the ratio of areas of ∆ABC and ∆BDE is 4 : 1.

$$
\frac{1}{\text{Hence}} = 1
$$

lrian

[Corresponding sides of similar ∆s are proportional] Hence, $\frac{CA}{CD} = \frac{CB}{CA}$.

28. (*c***) 15 m**

Then, AC = 9 m, BC = 12 m and ∠ACB = 90°. Then,
\n
$$
AB^2 = AC^2 + BC^2
$$
\n[By Pythagoras' Theorem]
\n= $(9 \text{ m})^2 + (12 \text{ m})^2$
\n= $(81 + 144) \text{ m}^2$
\n= 225 m²
\n⇒ AB = 15 m
\nHence, the length of the ladder is 15 m.

29. (*b***) 8 cm**

Hypotenuse = (c 42 42 m) (cm) 2 2 + = () 32 32 cm² + = 64 cm = 8 cm A C B 4 2√^m 4 2 m √

Hence, the length of the hypotenuse is 8 cm.

30. **(b)** $10(\sqrt{2} + 1)$ cm

Let ABC be an isosceles right triangle in which ∠B = 90° and AB = BC.

31. (*d***) 90°**

 $AB^{2} + AC^{2} = (4 \text{ cm})^{2} + (4\sqrt{3} \text{ cm})^{2}$ $= (16 + 48)$ cm² $= 64$ cm² $BC² = (8 cm)²$ $= 64$ cm² Clearly, $BC^2 = AB^2 + AC^2$.

By the converse of Pythagoras theorem, ∠A = 90°

Hence, $\angle A = 90^\circ$.

32. (*b***) 30°**

In
$$
\triangle PQR
$$
, $\angle Q = 75^\circ$, $\angle R = 45^\circ$.
\n \therefore $\angle P = 180^\circ - 120^\circ = 60^\circ$
\n[Sum of $\angle s$ of a \triangle]

In ∆PQR, $\frac{PQ}{PR} = \frac{QM}{MR}$ ∴ PM bisects ∠P. [By the converse of angle-bisector theorem] ∴ ∠QPM = $\frac{1}{2}$ ∠P = $\frac{1}{2}$ × 60° [Using (1)] $= 30^{\circ}$

 $\dots (1)$

Hence, \angle QPM = 30°.

© Ratna Sagar

42Triangles Triangles $\overline{}$ 42

33.
$$
(c)
$$
 1.75 cm

$$
\angle EAB + \angle BAD + \angle DAC = 180^{\circ}
$$

\n
$$
\Rightarrow 110^{\circ} + \angle BAD + 35^{\circ} = 180^{\circ}
$$

\n
$$
\angle BAD = 180^{\circ} - 110^{\circ} - 35^{\circ}
$$

\n
$$
= 35^{\circ}
$$

\nThus,
\n
$$
\angle BAD = \angle DAC
$$

\n
$$
= 35^{\circ}
$$

⇒ AD is the bisector of ∠BAC. In ∆BAC, we have

$$
\frac{\text{AB}}{\text{AC}} = \frac{\text{BD}}{\text{DC}}
$$

[By the Angle-bisector theorem]

∆COD ∼ ∆AOB [By AA similarity]

$$
\Rightarrow \qquad \qquad \frac{5}{7} = \frac{3 \text{ cm} - \text{CD}}{\text{CD}}
$$

$$
\Rightarrow \qquad 5 \text{ CD} = 21 \text{ cm} - 7 \text{ CD}
$$

$$
\Rightarrow \qquad 12 \text{ CD} = 21 \text{ cm}
$$

$$
\Rightarrow \qquad CD = \frac{21}{12} \text{ cm}
$$

$$
= \frac{7}{4} \text{ cm}
$$

$$
= 1.75 \, \mathrm{cm}
$$

Hence, $CD = 1.75$ cm.

34. (*d***) 21 cm2**

⇒

$$
\Rightarrow \qquad \frac{\text{ar}(\Delta \text{COD})}{\text{ar}(\Delta \text{AOB})} = \frac{\text{CD}^2}{\text{AB}^2} = \frac{\text{CD}^2}{(2 \text{ CD})^2} = \frac{1}{4}
$$

$$
\Rightarrow \frac{\text{ar}(\triangle COD)}{84 \text{ cm}^2} = \frac{1}{4}
$$

$$
\Rightarrow \text{ar}(\triangle COD) = \frac{84}{4} \text{ cm}^2 = 21 \text{ cm}^2
$$

Hence, $ar(\triangle COD) = 21$ cm².

35. (*a***) 150 m**

Let AB be the vertical stick and DE be the tower. Let BC and EF represent the shadows of the stick and the tower respectively.

Then, AB = 30 m, EF = 75 m, BC = 15 m.
\nIn
$$
\triangle ABC
$$
 and $\triangle DEF$, we have
\n $\angle ABC = \angle DEF = 90^{\circ}$
\n $\angle ACB = \angle DFE$
\n[Angular elevation of the Sun at the same time]
\n $\therefore \qquad \triangle ABC \sim \triangle DEF$
\n $\Rightarrow \qquad \frac{AB}{DE} = \frac{BC}{EF}$
\n $\Rightarrow \qquad \frac{30 \text{ m}}{DE} = \frac{15 \text{ m}}{75 \text{ m}}$
\n $\Rightarrow \qquad DE = \frac{30 \times 75}{15} \text{ m} = 150 \text{ m}$

Hence, the height of the tower is 150 m.

$$
36. (c) \frac{a\sqrt{3}}{2}
$$

Let ABC be an equilateral triangle of side *a* and let AD be its altitude.

∆ADB ≅ ∆ADC [By RHS congruency] ∴ BD = DC $\left(= \frac{BC}{2} \right)$ $\left(= \frac{BC}{2} \right)$ [CPCT]

 \Rightarrow BD = $\frac{a}{2}$

In right
$$
\triangle
$$
ADB, we have

$$
AB2 = AD2 + BD2
$$

[By Pythagoras' Theorem]

$$
a2 = AD2 + \left(\frac{a}{2}\right)^{2}
$$

$$
\Rightarrow \qquad AD2 = a2 - \frac{a2}{4} = \frac{3a2}{4}
$$

$$
\Rightarrow \qquad AD = \frac{\sqrt{3}}{2}a
$$

Hence, the altitude of an equilateral triangle of side *a* is $rac{13}{2}a$.

$$
\begin{array}{c} 2 \\ -2 \end{array}
$$

37. (c)
$$
\frac{36}{49}
$$

$$
\Rightarrow \frac{\text{ABB}}{\text{ar}(\text{ABC})} = \frac{\text{APQR}}{\text{PQ}^2} = \frac{(1.2 \text{ cm})^2}{(1.4 \text{ cm})^2} = \frac{36}{49}
$$

Hence, $\frac{\text{ar}(\Delta \text{ABC})}{\text{ar}(\Delta \text{PQR})} = \frac{36}{49}$.

38. (c)
$$
\frac{60}{13}
$$
 cm
In right $\triangle PQR$, we have

Triangles **43**Triangles

$$
\frac{1}{6} \sqrt{\frac{90^{\circ}}{90^{\circ}}}
$$
\n
\n
$$
PR^{2} = PQ^{2} + QR^{2}
$$
\n
$$
= (5 \text{ cm})^{2} + (12 \text{ cm})^{2}
$$
\n
$$
= (25 + 144) \text{ cm}^{2}
$$
\n
$$
= 169 \text{ cm}^{2}
$$
\n
$$
PR = 13 \text{ cm}
$$
\n
$$
ar(\triangle PQR) = \frac{1}{2} \times QR \times PQ
$$
\n
$$
= \frac{1}{2} \times 12 \times 5 \text{ cm}^{2}
$$
\n
$$
= 30 \text{ cm}^{2}
$$
\n[Taking QR as base] ... (2)\n
$$
ar(\triangle PQR) = \frac{1}{2} \times PR \times QS
$$
\n
$$
= \frac{1}{2} \times 13 \text{ cm} \times QS
$$
\n[Using (1)] ... (3)\nFrom (2) and (3), we get

$$
\frac{1}{2} \times 13 \text{ m} \times \text{QS} = 30 \text{ cm}^2
$$

$$
\Rightarrow \qquad \text{QS} = \frac{30 \times 2}{13} \text{ cm} = \frac{60}{13} \text{ cm}
$$

Hence,
$$
QS = \frac{60}{13}
$$
 cm.

39. (*b***) 3 AB2 = 4 AD2**

 $\triangle ADB \cong \triangle ADC$ [By RHS congruency] AB

$$
\Rightarrow \qquad BD = DC = \frac{BC}{2} = \frac{AB}{2} \qquad \dots
$$

In right
$$
\triangle
$$
ADB, we have

$$
AB^2 = AD^2 + BD^2
$$

[By Pythagoras' Theorem] \Rightarrow AD² = AB² – BD²

 $\left(\frac{AB}{2}\right)^2$

$$
\Rightarrow \qquad \qquad AD^2 = AB^2 - \left(\frac{AB}{2}\right)
$$

$$
\Rightarrow \qquad AD^2 = AB^2 - \frac{AB^2}{4} = \frac{3AB^2}{4}
$$

$$
\Rightarrow \qquad \qquad 4 AD^2 = 3 AB^2
$$

Hence,
$$
3 AB^2 = 4 AD^2
$$
.

40. (*b***) 6 cm**

Let ABCD be a rhomubs of side 5 cm, whose one of the diagonal say $BD = 8$ cm. Let diagonals AC and BD intersect at O. Then, $\angle AOB = 90^\circ$, $BO = OD = 4 cm$ and $AO = OC$ … (1)

In right triangle AOB, we have $AB^2 = AO^2 + BO^2$ [By Pythagoras' Theorem] \Rightarrow (5 cm)² = AO² + (4 cm)² ⇒ $AO^2 = (25 - 16)$ cm² = 9 cm² \Rightarrow AO = 3 cm … (2) $AC = AO + OC$ $= 3$ cm + 3 cm [Using (1) and (2)] $= 6$ cm

Hence, the length of the second diagonal is 6 cm.

For Standard Level

41. (*d***) 120 cm2**

In right ∆BAE, we have

Hence, the area of rectangle BCDE is 120 cm².

42. (*c***) 10 cm**

 (1)

© Ratna Sagar

 \angle ABC = 90° [Angle in a semicircle]

 In right ∆ABC, we have $AC^2 = AB^2 + BC^2$ $= (8 \text{ cm})^2 + (6 \text{ cm})^2$ $= 100$ cm² \Rightarrow AC = 10 cm Diameter = 10 cm

$$
\begin{array}{c}\n\text{Iriangles} \\
\text{Iriangles}\n\end{array}
$$

43. (*d***) 128 cm2**

Let ABCD be the square inscirbed in a circle of radius 8 cm.

 \Rightarrow Diameter AC = 16 cm Diameter of the circle = Diagonal of the inscribed square \Rightarrow 16 cm = $\sqrt{2}$ side

⇒ side = $\frac{16}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$ cm $= 8\sqrt{2}$ cm $ar(sq ABCD) = side \times side$ $= 8\sqrt{2} \times 8\sqrt{2}$ cm² $= 128$ cm²

Hence, the area of inscribed square is 128 cm².

44. (*b***) 16 cm**

Let O be the centre of the concentric circle in which radius $OA = 15$ cm and radius $OB = 17$ cm. Let BC be the chord of the larger circle which is tangent to the smaller circle at P. Join OP.

Then, \angle OPB = 90° In right ∆OPB, we have

 $OB^2 = OP^2 + BP^2$ [By Pythagoras' Theorem] \Rightarrow OB² = OA² + BP² $[\because$ OP = OA, radius of a circle] ⇒ $(17 \text{ cm})^2 = (15 \text{ cm})^2 + \text{BP}^2$ ⇒ BP² = (289 – 225) cm = 64 cm² \Rightarrow BP = 8 cm ... (1)

Since perpendicular from the point of contact to centre of a circle to a chord bisects it,

Now
$$
BP = PC
$$
 ... (2)
\n $BC = BP + PC$... (2)
\n $= (8 + 8) \text{ cm}$

$$
= 16 \text{ cm} \qquad \text{[Using (1) and (2)]}
$$

Hence, the length of the larger chord which is tangent to the smaller circle is 16 cm.

45. (*b***) 90°**

In right ∆PAR, we have

 \Rightarrow AC⋅FC = DC² Hence, $DC^2 = CF \cdot AC$.

$$
\frac{\text{ar}(\Delta \text{ALM})}{\text{ar}(\text{trap}\text{LMCB})} = \frac{9}{16}
$$
\n
$$
\Rightarrow \frac{\text{ar}(\text{trap}\text{LMCB})}{\text{ar}(\Delta \text{ALM})} + 1 = \frac{16}{9} + 1
$$
\n
$$
\Rightarrow \frac{\text{ar}(\text{trap}\text{LMCB}) + \text{ar}(\Delta \text{ALM})}{\text{ar}(\Delta \text{ALM})} = \frac{16 + 9}{9}
$$
\n
$$
\Rightarrow \frac{\text{ar}(\Delta \text{ABC})}{\text{ar}(\Delta \text{ALM})} = \frac{25}{9}
$$
\n
$$
\Rightarrow \frac{\text{ar}(\Delta \text{ALM})}{\text{ar}(\Delta \text{ABC})} = \frac{9}{25} \qquad \dots (1)
$$
\n
$$
\Delta \text{ALM} \sim \Delta \text{ABC}
$$
\n[By AA similarity]

$$
\therefore \qquad \frac{\text{ar}(\Delta \text{ALM})}{\text{ar}(\Delta \text{ABC})} = \frac{\text{AL}^2}{\text{AB}^2} \qquad \dots (2)
$$

From (1) and (2), we get

$$
\frac{AL^2}{AB^2} = \frac{9}{25}
$$
\n
$$
\Rightarrow \frac{AL}{AB} = \frac{3}{5}
$$
\n
$$
\Rightarrow \frac{AB}{AL} = \frac{5}{3}
$$
\n
$$
\Rightarrow \frac{AB}{AL} - 1 = \frac{5}{3} - 1
$$
\n
$$
\Rightarrow \frac{AB - AL}{AL} = \frac{5 - 3}{3}
$$
\n
$$
\Rightarrow \frac{LB}{AL} = \frac{2}{3}
$$
\n
$$
\Rightarrow \frac{AL}{LB} = \frac{3}{2}
$$

Hence, $AL : LB = 3 : 2$.

49. (*b***) ar(**∆**ABC)**

In ∆BAC, we have

 $BC^2 = AB^2 + AC^2$ [By Pythagoras' Theorem] … (1) area of shaded portion = area of semicircle on AB as diameter

- + area of semicircle AC as diameter
- + area of ∆BAC area of semicircle on BC as diameter

$$
= \frac{1}{2} \left[\pi \left(\frac{AB}{2} \right)^2 \right] + \frac{1}{2} \left[\pi \left(\frac{AC}{2} \right)^2 \right] + ar(\Delta ABC)
$$

$$
- \frac{1}{2} \left[\pi \left(\frac{BC}{2} \right)^2 \right]
$$

$$
= \frac{\pi}{8} [AB^2 + AC^2 - BC^2] + ar(\triangle ABC) = \frac{\pi}{8} (0) + ar(\triangle ABC)
$$

[Using (1)]

$$
= ar(\triangle ABC)
$$

Hence, the area of the shaded region is ar(\triangle ABC).

50. (*d***) 10 cm2**

Let $AB = BC = x$ cm.

Then, in right ∆ABC, we have

$$
AC^{2} = AB^{2} + BC^{2}
$$

\n[By Pythagoras' Theorem]
\n
$$
\Rightarrow AC^{2} = (x^{2} + x^{2}) \text{ cm}^{2} = 2x^{2}
$$

\n
$$
\Rightarrow AC = \sqrt{2} x \text{ cm}
$$

\n
$$
ar(ABCD) = \frac{\sqrt{3}}{2} BC^{2}
$$

\n
$$
= \frac{\sqrt{3}}{2} x^{2} \text{ cm}^{2} \text{ ... (1)}
$$

\n
$$
ar(ACE) = \frac{\sqrt{3}}{2} AC^{2}
$$

\n
$$
= \frac{\sqrt{3}}{2} (\sqrt{2}x)^{2} \text{ cm}^{2}
$$

\n
$$
= 20 \text{ cm}^{2}
$$
 [Given]

$$
\Rightarrow \frac{\sqrt{3}}{2} (\sqrt{2}x) (\sqrt{2}x) = 20
$$

$$
\Rightarrow x^2 = \frac{20}{\sqrt{3}}
$$
 ... (2)

Substituting $x^2 = \frac{20}{\sqrt{3}}$ in (1), we get

$$
ar(\triangle BCD) = \frac{\sqrt{3}}{2} \times \frac{20}{\sqrt{3}} \text{ cm}^2 = 10 \text{ cm}^2
$$

Hence, ar($\triangle BCD$) = 10 cm².

$-$ TRUE OR FALSE $-$

For Basic and Standard Levels

True/False Justification

- 1. **FALSE** For polygons with more than three sides to be similar, the corresponding sides must also be proportional.
- **2.** TRUE By AA criteria of similarity, the two triangles are similar.
- **3.** FALSE The ratio of areas of two similar triangles is equal to the ratio of the squares of the corresponding altitudes.
	- ∴ Ratio of areas of the two triangles is 2^2 : 3^2 = 4 : 9.
- © Ratna Sagar

 $\overline{}$ $\frac{1}{2}$

2

L $\overline{}$

46Triangles Triangles $\overline{}$ 46

- **4.** TRUE The two triangles have their corresponding two sides and the perimeters proportional, so their sides will be proportional. Hence, they will be similar.
- **5.** FALSE For the two triangles to be similar, the equal angles must be included angles between the two pairs of proportional sides.

 \overline{B}

and $∠CAB = ∠PAM$ [Common]

P

M

In ∆ABC and ∆AMP, we have $∠ABC = ∠AMP$

∴ ∆ABC ~ ∆AMP [By AA similarity] ⇒ $\frac{CA}{PA} = \frac{BC}{MP}$

[Corresponding sides of similar triangles are proportional]

$$
\Rightarrow \quad \text{CA} \times \text{MP} = \text{PA} \times \text{BC}
$$

Hence,
$$
CA \times MP = PA \times BC
$$
.

4.

⇒

In ∆AFD and ∆EFB, we have

$$
\angle AFD = \angle EFD
$$
\n
$$
\angle FAD = \angle FEB
$$
\n
$$
\therefore \triangle AFD \sim \triangle FFB
$$
\n
$$
\Rightarrow \frac{FA}{FE} = \frac{DF}{BF}
$$
\n[By AA similarity]

[Vertically opp. \angle s] [Alt ∠s, AD \parallel BC]

[Corresponding sides of similar triangles are proportional]

 \Rightarrow FA × BF = DF × FE

Hence, $DF \times FE = BF \times FA$.

5.
$$
\triangle ACD \sim \triangle ABE
$$
 [Given]

Since the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$
\therefore \frac{\text{ar}(\triangle ACD)}{\text{ar}(\triangle ABE)} = \frac{AC^2}{AB^2} = \frac{AB^2 + BC^2}{AB^2}
$$

\n[$\because AC^2 = AB^2 + BC^2$]
\n $\Rightarrow \frac{\text{ar}(\triangle ACD)}{\text{ar}(\triangle ABE)} = \frac{AB^2}{AB^2} + \frac{BC^2}{AB^2} = 1 + 1 = 2$
\n[$\because BC = AB$, given]
\n $\Rightarrow \frac{\text{ar}(\triangle ABE)}{\text{ar}(\triangle ACD)} = \frac{1}{2}$ [Taking reciprocals]

Hence, ar(∆ABE):ar(∆ACD) = **1 : 2**.

For Standard Level

6.

[Each is equal to 90°]

In right triangle ABC, we have $AC^2 = AB^2 + BC^2$ [By Pythagoras' Theorem] \Rightarrow AC² = AB² + (2 BD)² [\because D is the mid-point of BC] ⇒ $AC^2 = AB^2 + 4 BD^2$ … (1) In right triangle ABD, we have $AD^2 = AB^2 + BD^2$ [By Pythagoras' Theorem] … (2) Subtracting (2) from (1), we get $AC^2 - AD^2 = 3 BD^2$. Hence, $AC^2 - AD^2 = 3BD^2$. **7.** B D In right ∆BDC, we have $a^2 = BD^2 + c^2$ [By Pythagoras' Theorem]

⇒ $BD^2 = a^2 - c^2$ … (1) In right ∆BDA, we have $b^2 = BD^2 + d^2$ [By Pythagoras' Theorem] ⇒ $BD^2 = b^2 - d^2$ … (2) From (1) and (2), we get $a^2 - c^2 = b^2 - d^2$ \Rightarrow $a^2 - b^2 = c^2 - d^2$ \Rightarrow $(a + b) (a - b) = (c + d) (c - d)$ \Rightarrow $\frac{(a+b)}{(c+d)} = \frac{(c-d)}{(a-b)}$ *c d a b* − − Hence, $\frac{a+b}{c+d} = \frac{c-d}{a-b}$ $\frac{-d}{-b}$.

8. Since AD is the bisector of ∠BAC of ∆BAC of ∆ABC,

[By the angle–bisector theorem]

 $\frac{AC}{AB} = \frac{CD}{BD}$

 $\frac{b}{c} = \frac{a - BD}{BD}$ BD

∴

⇒

$$
\Rightarrow \qquad b \times BD = ac - c \times BD
$$

\n
$$
\Rightarrow b \times BD + c \times BD = ac
$$

\n
$$
\Rightarrow \qquad BD (b + c) = ac
$$

\n
$$
\Rightarrow \qquad BD = \frac{ac}{b + c}
$$

Hence, $BD = \frac{ac}{b+c}$.

VALUE-BASED QUESTIONS

For Basic and Standard Levels

1. (*i*)

and
$$
\angle
$$
CDO = \angle ABO [Alt \angle s, DC || AB]
\n $\therefore \quad \triangle$ DOC ~ \triangle AOB
\n $\therefore \quad \frac{\text{ar}(\triangle$ DOC)}{\text{ar}(\triangleAOB)} = $\frac{\text{CD}^2}{\text{AB}^2} = \frac{\text{CD}^2}{(2 \text{ CD})^2} = \frac{1}{4}$
\n $\therefore \quad \frac{\text{ar}(\triangle$ DOC)}{84 \text{ m}^2} = \frac{1}{4}

$$
\Rightarrow \quad \text{ar}(\Delta \text{DOC}) = \frac{84}{4} \text{ m}^2 = 21 \text{ m}^2
$$

 $\frac{1}{84}$ m²

 Hence, the area of land donated by the man is **21 m2**. (*ii*) **Empathy and environmental awareness**.

2. (*i*) Let the pigeon be on the window sill at a height of 9 m at point A and let AC be the ladder at a distance BC from the wall AB, so that it just reaches the pigeon.

Then,
$$
AB = 9 \text{ m}
$$
, $AC = 15 \text{ m}$.
In right $\triangle ABC$, we have
 $AC^2 = AB^2 + BC^2$

[By Pythagoras' Theorem]

$$
\implies
$$
 $(15 \text{ m})^2 = (9 \text{ m})^2 + BC^2$

$$
\Rightarrow \qquad BC^2 = (225 - 81) \text{ m}^2 = 144 \text{ m}^2
$$

 \Rightarrow BC = 12 m

 Thus, the boy will have to place the foot of the ladder at a distance of **12 m** from the wall.

(*ii*) **Empathy and helpfulness**

For Standard Level

3. (*i*) He can donate a triangular region where vertices are A and the mid-points P and Q of sides AB and AC respectively.

© Ratna Sagar

48Triangles Triangles 48 *Justification*: P and Q are the mid-points of AB and AC respectively.

∴ PQ || BC [By mid-point theorem]
\nand 2 PQ = BC ... (1)
\n
$$
\triangle APQ \sim \triangle ABC
$$
 [By AA similarity]
\n∴ $\frac{\text{ar}(\triangle APQ)}{\text{ar}(\triangle ABC)} = \frac{AP^2}{AB^2} = \frac{\left(\frac{AB}{2}\right)^2}{AB^2} = \frac{1}{4}$

 AB^2 $[\cdot]$: P is the mid-point of AB]

Hence,
$$
ar(\triangle APQ) = \frac{1}{4} ar(\triangle ABC)
$$
.

 In the remaining piece of land PQCB, three triangular pieces PBR, PRQ and QRC, obtained by drawing $PR \parallel QC$ (where R lies on BC) and joining QR can be given by the man to his three children.

Justification: PQ || BC [From (1)] and PR || QC [Given] ∴ PQCR is a parallelogram. ∴ PQ = RC [Opposite sides of a \parallel gm] ... (2) Also, $BC = BR + RC$ \Rightarrow BC = BR + PQ [Using (2)]

- \Rightarrow 2 PQ = BR + PQ [Using (1)]
- \Rightarrow PQ = BR … (3)
- ∴ ∆PBR, ∆PRQ and ∆QRC lie on equal bases BR, PQ and RC respectively [using (2) and (3)] and between same parallels PQ and BC.
- $ar(\triangle PBR) = ar(\triangle PRQ) = ar(\triangle QRC)$
- (*ii*) **Empathy, problem solving and gender equality**
- **4.** (*i*) Let the diagonals AC and BD of rhombus ABCD be 24 m and 10 m respectively.

Let 2*x* and 2*y* be the diagonals of the smaller rhombus and the diagonals of a rhombus bisect each other at right angles.

In rhombus ABCD, we have

$$
OA = OC = \frac{24}{2} m = 12 m,
$$

OD = OB = $\frac{10}{2} m = 5 m$

and
$$
\angle AOD = 90^\circ
$$

\nIn rhombus PQRS, we have
\n $OP = OR = x$
\n $OS = OQ = y$
\nand $\angle POS = 90^\circ$
\nArea of rhombus ABCD = $\frac{1}{2}$ AC × BD
\n $= \frac{1}{2} \times 24 \times 10 \text{ m}^2 = 120 \text{ m}^2$
\n $\triangle OAD \cong \triangle OAB \cong \triangle OCB \cong \triangle OCD$
\n \therefore ar(ΔOAD) = ar(ΔOAB)
\n= ar(ΔOCB)
\n= ar(ΔOCD)
\n= ar(ΔOCD) ar(ΔOAB) + ar(ΔOCB) + ar(ΔOCD)
\n \Rightarrow area (rhombus ABCD) = 4 ar(ΔOAD)
\n[Using (1) and (2)] ... (3)
\nSimilarly, area (rhombus PQRS) = 4 ar(ΔOPS) ... (4)
\nSubtracting (4) from (3), we get
\nar(rhombus ABCD) – ar(rhombus PQRS) = 4 [ar(ΔOAD) – ar(ΔOPS)]

$$
\Rightarrow \qquad \frac{43.2 \text{ m}^2}{4} = \text{ar}(\Delta \text{OAD}) - \text{ar}(\Delta \text{OPS})
$$

$$
\Rightarrow \qquad 10.8 \text{ m}^2 = \frac{1}{2} \text{OA} \times \text{OD} - \text{ar}(\Delta \text{OPS})
$$

$$
\Rightarrow \qquad 10.8 \text{ m}^2 = \left(\frac{1}{2} \times 12 \times 5\right) \text{ m}^2 - \text{ar}(\Delta \text{OPS})
$$

$$
\Rightarrow \quad \ar(\triangle OPS) = (30 - 10.8) \text{ m}^2 = 19.2 \text{ m}^2 \dots (5)
$$

Now, rhombus ABCD ~ rhombus PQRS [Given]
∴ ΔOAD ~ ΔOPS [By AA similarity] ∴ ∆OAD ∼ ∆OPS [By AA similarity]

$$
\therefore \qquad \frac{\text{ar}(\Delta \text{OAD})}{\text{ar}(\Delta \text{OPS})} = \frac{\text{OA}^2}{\text{OP}^2}
$$

$$
\Rightarrow \qquad \frac{30 \,\mathrm{m}^2}{19.2 \,\mathrm{m}^2} = \frac{(12 \,\mathrm{m})^2}{x^2} \qquad \qquad \text{[Using (5)]}
$$

$$
\Rightarrow \qquad x^2 = \frac{12 \text{ m} \times 12 \text{ m} \times 19.2}{30}
$$

$$
\Rightarrow \qquad \qquad x = 9.6 \text{ m} \qquad \qquad \dots (6)
$$

Now, $ar(\triangle OPS) = \frac{1}{2} x \times y$

⇒

⇒

$$
\Rightarrow \qquad 19.2 \text{ m}^2 = \frac{1}{2} \times 9.6 \text{ m} \times y
$$

[Using (5) and (6)]

$$
\mathcal{L}^{\text{max}}_{\text{max}}
$$

⇒

© Ratna Sagar

$$
\Rightarrow \qquad \frac{19.2 \times 2}{9.6} \text{ m} = y
$$

$$
\Rightarrow \qquad y = 4 \text{ m}
$$

 19.2×2

.

Diagonal PR = $2x = 2 \times 9.6$ m = 19.2 m

and diagonal $SQ = 2y = 2 \times 4$ m = 8 m

Hence, the diagonal of the smaller rhombus are **19.2 m** and **8 m**.

(*ii*) **Awareness about environment**.

In ∆QPR and MLN, we have $\frac{PR}{LN} = \frac{13}{39} = \frac{1}{3}$ and $\frac{QP}{LM} = \frac{9}{27} = \frac{1}{3}$ and $\triangle QPR = \angle MLN = 110^{\circ}$ ∴ ∆QPR ~ ∆MLN [By SAS similarity] ∠ $Q = ∠M = 40°$ and $\angle R = \angle N = 30^{\circ}$ Hence, the measures of ∠Q and ∠R are 40° and 30° respectively. **4.** (*d*) **2** For PQ to be parallel to AB, $\frac{CQ}{QB} = \frac{CP}{PA}$ \Rightarrow $\frac{x}{3x+4} = \frac{x}{3x}$ + + 3 $3x + 19$ \Rightarrow $3x^2 + 19x = 3x^2 + 4x + 9x + 12$ \Rightarrow 6*x* = 12 \Rightarrow $x = 2$ Hence, $x = 2$. **5.** (*c*) $\frac{25}{3}$ **cm** B C A D 3 cm $\begin{matrix} 6 \times 10^6 \end{matrix}$ In ∆ADB and ∆ABC, we have \angle ADB = \angle ABC [Each is equal to 90°] ∠DAB = ∠BAC [Common] $\triangle ADB \sim \triangle ABC$ … (1) In ∆BDC and ∆ABC, we have $\angle BDC = \angle ABC$ [Each is 90°] ∠DCB = ∠BCA [Common] $\triangle BDC \sim \triangle ABC$ … (2) From (1) and (2), we get ∆ADB ∼ ∆BDC ⇒ $\frac{\text{AD}}{\text{BD}} = \frac{\text{BD}}{\text{CD}}$ ⇒ $\frac{3 \text{ cm}}{4 \text{ cm}} = \frac{4 \text{ cm}}{\text{CD}}$ \Rightarrow CD = $\frac{16}{3}$ cm Now, AC = AD + CD = $3 + \frac{16}{3}$ cm = $\frac{25}{3}$ cm Hence, $AC = \frac{25}{3}$ cm. **6.** (*c*) **5.4 cm** perimeter of ΔPQR
perimeter of ΔXYZ $\frac{\Delta PQR}{\Delta XYZ} = \frac{QR}{YZ}$ ⇒ $\frac{30 \text{ cm}}{18 \text{ cm}} = \frac{9 \text{ cm}}{\text{YZ}}$

Ratna Sagar

50Triangles Triangles $\overline{}$ 50

$$
\Rightarrow \qquad \qquad \text{YZ} = \frac{9 \times 18}{30} \text{ cm} = 5.4 \text{ cm}
$$

Hence, $YZ = 5.4$ cm.

7. (*b*) **25 cm**

$$
\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} = \frac{AB}{DE}
$$
\n
\n⇒
$$
\frac{\text{perimeter of } \triangle ABC}{15 \text{ cm}} = \frac{9 \text{ cm}}{5.4 \text{ cm}}
$$
\n
\n⇒ perimeter of
$$
\triangle ABC = \frac{9 \times 15}{5.4} \text{ cm}
$$

Hence, perimeter of $\triangle ABC = 25$ cm.

8. (*a*) 25 cm2

$$
\frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle DEF)} = \frac{AB^2}{DE^2} = \left(\frac{AB}{DE}\right)^2
$$

\n
$$
\Rightarrow \frac{\text{ar}(\triangle ABC)}{100 \text{ cm}^2} = \left(\frac{1}{2}\right)^2
$$

\n
$$
\Rightarrow \text{ar}(\triangle ABC) = \frac{100}{4} \text{ cm}^2 = 25 \text{ cm}^2
$$

Hence, ar(
$$
\triangle ABC
$$
) = 25 cm².

9. (*b*) **17 m**

Suppose the man starts from point A, goes 15 m towards West and reaches point B and then he goes 8 m North to reach point C.

Then, he is at a distance $= AC$ from his starting position.

In right ∆ABC, we have

Hence, the man is 17 m away from his starting position.

⇒

$$
\Rightarrow \quad 4x = 2 - 16
$$

\n
$$
\Rightarrow \quad 4x = 20
$$

\n
$$
\Rightarrow \quad x = 5
$$

\n
$$
AB = 2 \times 5 - 1
$$

\n
$$
= 9 \text{ cm},
$$

- $BC = 2 \times 5 + 2$ $= 12$ cm, $AC = 3 \times 5$ = 15 cm, $QR = 3 \times 5 + 9$ $= 24$ cm, $PR = 6 \times 5$ $= 30$ cm Hence, **AB = 9 cm**, **BC = 12 cm, CA = 15 cm, PQ = 18 cm, QR = 24 cm** and **PR = 30 cm**.
- 11. In ∆ABC, DE || BC

∴

⇒

[By BPT]

$$
\Rightarrow \frac{3x-2}{7x-5} = \frac{5x-4}{5x-3}
$$

$$
\Rightarrow 15x^2 - 10x - 9x + 6 = 35x^2 - 25x -28x + 20
$$

$$
\Rightarrow 20x^2 - 34x + 14 = 0
$$

 $=$ $\frac{AE}{EC}$

 $\frac{AD}{DB}$

$$
\Rightarrow \quad 10x^2 - 17x + 7 = 0
$$

\n
$$
\Rightarrow \quad 10x^2 - 10x - 7x + 7 = 0
$$

\n
$$
\Rightarrow \quad 10x(x - 1) - 7(x - 1) = 0
$$

\n
$$
\Rightarrow \quad (x - 1) (10x - 7) = 0
$$

\n
$$
\Rightarrow \quad \text{Either } x - 1 = 0
$$

\nor
$$
(10x - 7) = 0
$$

\n
$$
\Rightarrow \quad x = \frac{7}{10}
$$

Hence, $x = 1$ unit or $\frac{7}{10}$ unit.

12. Let ABCD be the rhombus, whose diagonals AC and BD intersect at O.

Let $AC = 30$ cm and $BD = 40$ cm. Then, AO = 15 cm, BO = 20 cm and \angle AOB = 90°. [\therefore The diagonals of a rhombus bisect each other (at O) at right angles] In right ∆AOB, we have $AB^2 = (AO)^2 + (BO)^2$ $= (15 \text{ cm})^2 + (20 \text{ cm})^2$ $= (225 + 400)$ cm² $= 625$ cm²

© Ratna Sagar

\Rightarrow AB = 25 cm

Hence, each side of the rhombus is **25 cm**.

13. Through C , draw $CG \parallel DF$ and let it meet AB at G .

A B C D E F G

 $AF = AE$ [Sides opposite equal ∠s AEF and AFE] … (1) In \triangle ACG, E is the mid-point of AC and EF \parallel CG. ∴ F is the mid-point of AG i.e AF \parallel FG [By the conv. of Mid-point Theorem] … (2) ∴ $FG = AE$ [From (1) and (2)] ... (3)
In $\triangle BDF$, CG || DF $CG \parallel DF$ ∴ $\frac{BD}{CD} = \frac{BF}{GF}$ ⇒ $\frac{BD}{CD} = \frac{BF}{AE}$ $\frac{\text{BF}}{\text{AE}}$ [Using (3)] $\frac{BD}{CD} = \frac{BF}{CE}$ $[\because AF = CE]$

Hence,
$$
\frac{BD}{CD} = \frac{BF}{CE}
$$
.

14.

In ∆XYZ, we have

$$
\frac{XP}{PY} = \frac{XQ}{QZ} = 3 = \frac{3}{1}
$$
 [Given]

By the converse of Thales theorem, PQ || YZ

 In ∆XPQ and ∆XYZ, we have ∠XPQ = ∠XYZ [Corresponding ∠S] ∠PXQ = ∠YXZ
 $ΔXPQ ~ ΔXYZ$ ∴ ∆XPQ ~ ∆XYZ [By AA similarity] ∴ $\frac{\text{ar}(\Delta XPQ)}{\text{ar}(\Delta XYZ)} = \frac{XP^2}{XY^2}$ ar(Δ XYZ) XY^2 $(x \times \mathbb{R})$

$$
\Rightarrow \qquad \frac{\text{ar}(\Delta \text{XPQ})}{32 \text{cm}^2} = \frac{\text{XP}^2}{(\text{XP} + \text{PY})^2}
$$

$$
\Rightarrow \qquad \frac{\text{ar}(\Delta \text{XPQ})}{32 \text{cm}^2} = \frac{3^2}{(3+1)^2} = \frac{9}{16}
$$

$$
\Rightarrow \quad \text{ar}(\Delta \text{XPQ}) = \frac{9}{16} \times 32 \text{ cm}^2 = 18 \text{ cm}^2
$$
\n
$$
\text{ar}(\text{quad PYZQ}) = \text{ar}(\Delta \text{XYZ}) - \text{ar}(\Delta \text{XPQ})
$$

$$
a_1(1) \cdot a_2 = 4a_1(3 \times 12) = a_1(3 \times 12) = 4a_2(3 \times 12) = 4a_1(3 \times 12) = 14 \text{ cm}^2
$$

Hence, ar(quad $PYZQ$) = 14 $cm²$.

UNIT TEST 2

For Standard Level

$$
AB2 = AD2 + BD2
$$

\n
$$
\Rightarrow (8 \text{ cm})2 = AD2 + (4 \text{ cm})2
$$

$$
\Rightarrow \qquad \text{AD}^2 = (64 - 16) \text{ cm}^2 = 48 \text{ cm}^2
$$

$$
\Rightarrow \qquad AD = 4\sqrt{3} \text{ cm}
$$

Hence, $AD = 4\sqrt{3}$ cm.

2. (*c*) **13 m**

Let AB and CD be the two poles of height 9 m and 14 m respectively, standing 12 m apart.

Then, $AB = 9$ m, $CD = 14$ m and $BD = 12$ cm Draw AE ⊥ CD. Then, $AE = BD = 12$ cm and $ED = AB = 9$ m and $CE = CD - ED = 14 m - AB = 14 m - 9 m = 5 m$. In right ∆AEC, we have $AC^2 = AE^2 + CE^2$ $= (12 \text{ m})^2 + (5 \text{ m})^2$ $= 169$ m²

$$
\Rightarrow \qquad \qquad AC = 13 \text{ m}
$$

Hence, the distance between the tops of the poles is 13 m.

3. (*d*) **13 cm**

Let ABCD be a rhombus in which the diagnoals AC and BD intersect at O.

Let $AC = 10$ cm and $BD = 24$ cm. Since the diagonals of a rhombus bisect each other at right angles,

$$
\therefore \qquad \text{AO} = \text{OC} = \frac{\text{AC}}{2} = 5 \text{ cm}
$$

and
$$
BO = OD = \frac{BD}{2} = 12 \text{ cm}
$$

In right ∆AOB, we have

$$
AB2 = AO2 + BO2
$$

= (5 cm)² + (12 cm)²
= 169 cm²
AB = 13 cm

Hence, the length of the side of the rhombus is 13 cm.

4. (*b*) $\frac{ac}{b+c}$

∆RPQ ∼ ∆RDE [By AA similarity]

6. (*c*) **¹**

$$
\Rightarrow \qquad \qquad x = \frac{ac}{b+c}
$$

Hence,
$$
x = \frac{ac}{b+c}
$$
.

5. (*d*) **2 : 5**

∴ $\frac{OA}{AD} = \frac{OB}{BE}$ [By BPT] \dots (1)

In ∆OEF,
 \therefore BC || EF
 $\frac{OC}{CF} = \frac{OB}{BE}$ ∴ $\frac{OC}{CF} = \frac{OB}{BE}$

From (1) and (2), we get

$$
\frac{\widetilde{OA}}{AD} = \frac{OC}{CF}
$$

[By BPT] \dots (2)

∴ By the converse of Thales Theorem, in ∆ODF, $AC \parallel DF$ In ∆OAC and ∆ODF, we have ∠OAC = ∠ODF [Corresponding ∠s, AC || DF] ∠OCA = ∠OFD [Corresponding ∠s, AC || DF]

∴
$$
\triangle OAC \sim \triangle ODF
$$
 [By AA similarity]
\n∴ $\frac{OA}{OD} = \frac{AC}{DF}$
\n⇒ $\frac{OA}{OA + AD} = \frac{AC}{DF}$
\n⇒ $\frac{2}{(2+3)} = \frac{AC}{DF}$
\nHence, AC: DF = 2 : 5.
\n(c) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$
\n⇒ b
\n $\frac{b}{c}$
\n $\frac{p}{c}$
\n $\frac{b}{c}$
\n $\frac{p}{c}$
\n $\frac{1}{c}$
\n $\frac{1}{2}ab$
\n $\frac{1}{2}ab = \frac{1}{2}cp$ [Taking 'a' as base] ... (1)
\narea of $\triangle ACB = \frac{1}{2}cp$ [Using (1) and (2)]
\n⇒ $\frac{1}{p} = \frac{1}{ab}$
\n⇒ $\frac{1}{p^2} = \frac{c^2}{a^2b^2}$
\n⇒ $\frac{1}{p^2} = \frac{b^2 + a^2}{a^2b^2}$ [∴ $c^2 = b^2 + a^2$]
\n⇒ $\frac{1}{p^2} = \frac{1}{a^2b^2} + \frac{a^2}{a^2b^2}$
\n⇒ $\frac{1}{p^2} = \frac{1}{a^2b^2} + \frac{1}{a^2b^2}$
\nHence, $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$.
\nLet AB = 90 cm be the girl at point B after 4 seconds of

7. Let AB = 90 cm be the girl at point B after 4 seconds of starting from the base of lamp post CD = 3.6 m.

Let CA produced meets DB produced at E. Then, \angle CED = \angle AEB [Angular elevation of the Sun at that time]

Ratna Sagar

Triangles **53**Triangles 53

 $[\cdot]$: Distance DB = Distance covered by the girl in 4 seconds = (1.2×4) m \Rightarrow 4 BE = 4.8 m + BE

 \Rightarrow 3 BE = 4.8 m \Rightarrow BE = 1.6 m

Hence, the length of the shadow of the girl is **1.6 m**

8.

Hence, **BE : EQ = 3 : 1**

9. Let ABC be a right \triangle in which \angle B = 90°, AB = 20 cm and $BC = 10$ cm.

Then, the largest square BPQR which can be inscribed in this triangle will be as shown in the given figure.

Let
$$
RB = x
$$
 cm,
\nSo, $AR = (20 - x)$ cm
\nIn \triangle ARQ and \triangle ABC, we have
\n \angle ARQ = \angle ABC [Each is 90°]
\n \angle RAQ = \angle BAC [Common]
\n \therefore \triangle ARQ ~ \triangle ABC [By AA similarity]
\n \therefore $\frac{AR}{AB} = \frac{RQ}{BC}$
\n \Rightarrow $\frac{20 - x}{20} = \frac{x}{10}$
\n \Rightarrow $200 - 10x = 20x$
\n \Rightarrow $x = \frac{20}{3}$

Thus, the side of the required square is of length $\frac{20}{3}$ **cm** .

10. PQ || BC and RS || BC \Rightarrow PQ || RS

 $\frac{\text{AP}}{\text{PR}} = \frac{\text{AQ}}{\text{QS}}$

 $\frac{\text{AR}}{\text{RB}} = \frac{\text{AS}}{\text{SC}}$

In \triangle ARS, PQ \parallel RS

[By BPT]

$$
\frac{4 \text{ cm}}{3 \text{ cm}} = \frac{3 \text{ cm}}{\text{QS}}
$$

 \Rightarrow QS = $\frac{9}{4}$ cm In $\triangle ABC$, RS $\parallel BC$

⇒

 $\ddot{\cdot}$

[By BPT]

$$
\Rightarrow \qquad \frac{(4+3)\,\text{cm}}{5\,\text{cm}} = \frac{\left(3+\frac{9}{4}\right)\text{cm}}{\text{SC}}
$$

$$
\Rightarrow \qquad \qquad \text{SC} = \frac{15}{4} \text{ cm}
$$

In ∆APQ and ∆ABC, we have ∠APQ = ∠ABC [Corresponding ∠s, PQ || BC] ∠PAQ = ∠BAC [Common] ∴ ∆APQ ~ ∆ABC [By AA similarity] ∴ $\ar(\Delta APQ)$
 $ar(\Delta ABC)$ (ΔAPQ) $(AABC)$ $\frac{\Delta APQ)}{\Delta ABC} = \frac{(AP)}{(AB)}$ 2 2 $\sqrt{2}$

$$
= \frac{(4 \text{ cm})^2}{[(4 + 3 + 5) \text{ cm}]^2}
$$

$$
= \frac{(4 \text{ cm})^2}{(12 \text{ cm})^2}
$$

$$
= \frac{16}{144}
$$

$$
= \frac{1}{9}
$$

$$
\Rightarrow \qquad \frac{\text{ar}(\triangle APQ)}{48 \text{ cm}^2} = \frac{1}{9}
$$

$$
\Rightarrow \qquad \text{ar}(\triangle APQ) = \frac{1}{9} \times 48 \text{ cm}^2
$$

$$
= \frac{16}{3} \text{ cm}^2
$$

Hence, QS = $\frac{9}{4}$ cm, SC = $\frac{15}{4}$ cm
and ar($\triangle APQ$) = $\frac{16}{3}$ cm².

11.

In right ∆ADB, we have $AB^2 = AD^2 + BD^2$

[By Pythagoras' Theorem] \Rightarrow AB² = AD² + (BP – PD)² \Rightarrow AB² = AD² + (PQ – PD)² [: $BP = PQ = \frac{BC}{3}$] ... (1) In right ∆ADC, we have $AC^2 = AD^2 + DC^2$ [By Pythagoras' Theorem] \Rightarrow AC² = AD² + (DQ + QC)² $= AD² + (DQ + PQ)²$ [: $QC = PQ = \frac{BC}{3}$] ... (2) Adding (1) and (2), we get $AB^2 + AC^2$ $= AD² + (PQ - PD)² + AD² + (DQ + PQ)²$ $= AD^2 + PQ^2 - 2 PQ \times PD + PD^2 + AD^2 + DQ^2$ $+ 2$ DQ \times PQ $+$ PQ² $= (AD² + PD²) + PQ² – 2 PQ × PD + (AD² + DQ²)$ $+ 2$ DQ \times PQ $+$ PQ² $= AP^2 + PQ^2 - 2 PQ \times PD + AQ^2 + PQ^2 + 2 DQ \times PQ$ $= AP^2 + AQ^2 - 2 PQ^2 + 2 PQ (DQ - PD)$ $= AP² + AQ² + 2 PQ² + 2 PQ (PQ)$ $= AP² + AQ² + 2 PQ² + 2 PQ²$ $= AP^2 + AQ^2 + 4 PQ^2$ Hence, $AB^2 + AC^2 = AP^2 + AQ^2 + 4 PQ^2$.

Triangles **55**Triangles 55