### Arithmetic Progressions

— EXERCISE 5A ———

For Basic and Standard Levels **1.** We have 3, 7, 11, 15, ... ÷ 7 - 3 = 11 - 7 = 4... The given progression 3, 7, 11, 15, ... is an AP. Here, First term = a = 3Common difference = d = 42. (*i*) We have 1.7, 2, 2.3, 2.6, ... is an AP. Common difference =  $a_2 - a_1$ = 2 - 1.7= 0.3Now, the term next to 2.6 = 2.6 + 0.3 = 2.9the term next to 2.9 = 2.9 + 0.3 = 3.2and (*ii*) We have 0,  $\frac{1}{5}$ ,  $\frac{2}{5}$ ,  $\frac{3}{5}$ , ... is an AP  $\therefore$  Common difference  $(d) = \frac{1}{5} - 0 = \frac{1}{5}$ the term next to  $\frac{3}{5} = \frac{3}{5} + \frac{1}{5} = \frac{4}{5}$ Now, the term next to  $\frac{4}{5} = \frac{4}{5} + \frac{1}{5} = \frac{5}{5}$  or 1 3. (*i*) We have 150, 141, 132, 123, ... Here. First term = a = 150Common difference = d = 141 - 150 = -9÷  $a_n = a + (n-1)d$  $a_6 = 150 + (6 - 1) (-9)$  $= 150 + 5 \times (-9) = 150 - 45$ = 105 (*ii*) We have 5.7, 5.2, 4.7, 4.2, ... a = 5.7 and d = 5.2 - 5.7 = -0.5Here,  $a_n = a + (n-1)d$ Now,  $\Rightarrow$  $a_{11} = 5.7 + (11 - 1) \times (-0.5)$  $= 5.7 + 10 \times (-0.5)$ = 5.7 - 5.0 = 0.7(*iii*) We have  $\frac{3}{11}, \frac{5}{11}, \frac{7}{11}, \frac{9}{11}, \dots$  $a = \text{First term} = \frac{3}{11}$ Here,  $d = \text{Common diff.} = \frac{5}{11} - \frac{3}{11} = \frac{2}{11}$ Now,  $a_n = a + (n-1)d$  $\Rightarrow$   $a_{29} = \frac{3}{11} + (29 - 1) \times \frac{2}{11} = \frac{3}{11} + 28 \times \frac{2}{11}$ 

 $a_{29} = \frac{3}{11} + \frac{56}{11} = \frac{59}{11}$  $\Rightarrow$ (*iv*) We have -50, -35, -20, -5, 10, ... First term = a = -50Here, Common diff. = d = -35 - (-50)= -35 + 50 = 15 $a_n = a + (n - 1)d$ Now,  $a_{18} = a + (18 - 1)d$  $\Rightarrow$  $a_{18} = -50 + 17 \times 15$  $\Rightarrow$  $a_{18} = -50 + 255$  $\Rightarrow$ = 205 **4.** (*i*) We have 2, 7, 12, 17, ... First term  $(a) = 2 = a_1$  $\Rightarrow$ Common difference (*d*) =  $a_2 - a_1$ = 7 - 2 = 5 $a_n = a + (n-1)d$ Since *:*..  $a_{15} = 2 + (15 - 1) \times 5$ = 2 + 70 = 72(*ii*) We have  $\sqrt{x}$ ,  $3\sqrt{x}$ ,  $5\sqrt{x}$ , ... First term =  $a = \sqrt{x} = a_1$ ⇒ Common difference =  $d = a_2 - a_1$  $= 3\sqrt{x} - \sqrt{x} = \sqrt{x} (3-1)$  $= 2\sqrt{x}$  $a_n = a + (n - 1) d$ Since  $a_{27} = \sqrt{x} + (37 - 1) \times (2\sqrt{x})$ *.*..  $=\sqrt{x}+72\sqrt{x}$  $=\sqrt{x}(1+72) = \sqrt{x}(73)$  $= 73\sqrt{x}$ (*iii*) We have -5, -7, -9, ... First term =  $a = -5 = a_1$  $\Rightarrow$ Common diff. (d) =  $a_2 - a_1$ = [(-7) - (-5)] = (-7) + 5= -2Since  $a_n = a + (n - 1) d$  $a_7 = (-5) + (7 - 1) (-2)$  $\Rightarrow$ = (-5) + 6(-2)= -5 - 12 = -17 (*iv*) We have 15, 9, 3, -3, ... ⇒ First term =  $a = 15 = a_1$ Common diff. (d) =  $a_2 - a_1$ = 9 - 15 = -6

Since 
$$a_n = a + (n - 1) d$$
  
 $\Rightarrow$   $a_r = 15 + (r - 1) (-6)$   
 $= 15 + (-6r + 6)$   
 $= 15 + 6 + (-6r) = 21 - 6r$   
(v) We have  $(18b + x)$ ,  $(19b)$ ,  $(20b - x)$ , ...  
 $\Rightarrow$  First term  $= a = (18b + x) = a_1$   
Common diff.  $= d = a_2 - a_1$   
 $= (19b) - (18b + x)$   
 $= (19 - 18)b - x = b - x$   
Since  $a_n = a + (n - 1) d$   
 $\Rightarrow$   $a_q = (18b + x) + (9 - 1) \times (b - x)$   
 $= 18b + x + 8(b - x)$   
 $= 18b + x + 8(b - x)$   
 $= 18b + x + 8(b - x)$   
 $= 18b + x + 8b - 8x$   
 $= 26b - 7x$   
(v) We have  $2\frac{3}{4}, 3\frac{1}{4}, 3\frac{3}{4}, 4\frac{1}{4}, ...$   
 $\Rightarrow$  First term  $= a = 2\frac{3}{4} = a_1$   
Common diff.  $(d) = a_2 - a_1 = 3\frac{1}{4} - 2\frac{3}{4}$   
 $= (3 - 2) + (\frac{1}{4} - \frac{3}{4})$   
 $= 1 + (-\frac{2}{4}) = 1 + (-\frac{1}{2}) = \frac{1}{2}$   
Or  $d = a_2 - a_1 = 3\frac{1}{4} - 2\frac{3}{4}$   
 $= \frac{13}{4} - \frac{11}{4} = \frac{2}{4} = \frac{1}{2}$   
Since  $a_n = a + (n - 1) d$   
 $\therefore$   $a_{29} = 2\frac{3}{4} + (29 - 1) \times (\frac{1}{2})$   
 $= 2\frac{3}{4} + 28 \times \frac{1}{2}$   
 $= 2\frac{3}{4} + 14 = 16\frac{3}{4}$   
(vii)  $\sqrt{2}, \sqrt{8}, \sqrt{18}, ...$   
 $\sqrt{2}, 2\sqrt{2}, 3\sqrt{2}, ...$   
 $a = \sqrt{2}$   
 $a_{10} = a + (n - 1)d$   
 $= \sqrt{2} + (10 - 1)\sqrt{2}$   
 $= \sqrt{200}$   
(viii)  $-5, \frac{-5}{2}, 0, \frac{5}{2}, ...$   
 $a = -5$ 

 $d = a_2 - a_1$  $=\frac{-5}{2}-(-5)$  $=\frac{-5}{2}+5$  $=\frac{5}{2}$  $a_{25} = a + (n - 1) d$  $= -5 + (25 - 1) \frac{5}{2}$  $= -5 + 24 \times \frac{5}{2}$ = -5 + 60= 55 5. (*i*) We have the *n*th term of an AP = 5n - 2(a) ::  $a_n = 5n - 2$  $a_1 = 5(1) - 2 = 5 - 2 = 3$ *.*..  $\Rightarrow$  First term = 3 (b) Common difference (d) =  $a_2 - a_1$ = [5(2) - 2] - [5(1) - 2]= 8 - 3 = 5 $a_n = 5n - 2$ (c) ∵  $a_{18} = 5(18) - 2$ .... = 90 - 2 = 88 $a_n = 7 - 4n$ (ii) We have ÷.  $a_1 = 7 - 4(1) = 7 - 4 = 3$  $a_2 = 7 - 4(2) = 7 - 8 = -1$  $\Rightarrow$  Common diff. (d) =  $a_2 - a_1$ = (-1) - (3)= -1 - 3 = -4 $a_n = 2n^2 + 1$ (iii)  $a_1 = 2(1)^2 + 1 = 2 + 1 = 3$ *.*..  $a_2 = 2(2)^2 + 1 = 8 + 1 = 9$  $a_3 = 2(3)^2 + 1 = 18 + 1 = 19$  $a_2 - a_1 = 9 - 3 = 6$ Since  $a_3 - a_2 = 19 - 9 = 10$  $(a_2 - a_1) \neq (a_3 - a_2)$ i.e.  $\therefore$   $2n^2 + 1$  is not a term of AP.  $\Rightarrow$  3, 9, 19, ... is not an AP. 6. The given AP is  $\frac{2m+1}{m}, \frac{2m-1}{m}, \frac{2m-3}{m}, ...$  $a_1 = \frac{2m+1}{m}$  and  $a_2 = \frac{2m-1}{m}$ ÷  $d = a_2 - a_1$ ...  $= \frac{2m-1}{m} - \frac{2m+1}{m} = \frac{2m-1-2m-1}{m}$  $= \frac{-1-1}{m} = \frac{-2}{m}$  $a_n = a + (n-1) d$ Since  $a_n = \left[\frac{2m+1}{m}\right] + (n-1)\left(\frac{-2}{m}\right)$ *.*..

© Ratna Sagar

 $\frac{1}{2}$ 

$$= \frac{2m+1}{m} + \left(\frac{-2n}{m}\right) + (-1) \times \left(\frac{-2}{m}\right)$$
$$= \frac{2m+1}{m} + \frac{-2n}{m} + \frac{2}{m}$$
$$= \frac{2m+1-2n+2}{m}$$
$$= \frac{2m-2n+3}{m}$$
Thus, the *n*th term is  $\frac{2m-2n+3}{m}$ 

Again, 
$$a_n = \frac{2m - 2n + 5}{m}$$
  

$$\Rightarrow \qquad a_6 = \frac{2m - (2 \times 6) + 3}{m} = \frac{2m - 9}{m}$$

$$2m - 9$$

Thus, the required 6th term is -

7. Let 'a' be the first term of the AP and 'd' be its common difference.

$$\begin{array}{ll} \therefore & a_n = a + (n-1) \ d \\ \Rightarrow & a_{17} = a + (17-1) \times \frac{3}{4} & [\because \ d = \frac{3}{4}] \\ \Rightarrow & -20 = a + 16 \times \frac{3}{4} & [a_{17} = -20] \\ \Rightarrow & -20 = a + 12 \\ \Rightarrow & a = -20 - 12 = -32 \\ \text{Now,} & a_{33} = a + (33 - 1) \ d \\ \Rightarrow & a_{33} = -32 + 32 \times \frac{3}{4} = -32 + 24 = -8 \\ \text{Thus, the required 33rd term is -8.} \end{array}$$

8. (*i*) Let the *n*th term of the given AP is 0. We have 21, 18, 15, ...

First term  $(a_1) = 21$  $\Rightarrow$ Second term  $(a_2) = 18$  $\therefore$  Common difference =  $a_2 - a_1$ = 18 - 21 = -3 $a_n = a + (n-1) d$ Now,  $0 = 21 + (n - 1) \times (-3)$  [::  $a_n = 0$ ]  $\Rightarrow$ 0 = 21 - 3n + 3 $\Rightarrow$ 3n = 21 + 3 = 24 $\Rightarrow$  $n = \frac{24}{3} = 8$  $\Rightarrow$ 

Thus, the 8th term will be zero (0).

(*ii*) Let the required number of terms be 'n'. We have the AP as 7, 16, 25, ... 349

 $\Rightarrow$  $a = \text{First term} = 7 = a_1$  $a_2$  = Second term = 16  $a_2 - a_1 = \text{common difference} = d$ d = 16 - 7 = 9*.*.. Now,  $a_n = a_1 + (n - 1) d$ 

 $349 = 7 + (n - 1) \times 9$  [::  $a_n = 349$ ]  $\Rightarrow$  $(n-1) \times 9 = 349 - 7 = 342$  $\Rightarrow$  $n-1 = \frac{342}{2} = 38$  $\Rightarrow$ 

$$\Rightarrow \qquad n = 38 + 1 = 39$$

Thus, the required number of terms = 39

- (*iii*) In the given AP, the first term, a = 213, common difference, d = 205 - 213 = -8.
  - Let  $a_n$  be the *n*th term of the AP where *n* is a positive integer.

∴ 
$$a_n = a + (n - 1)d$$
  
= 213 + (n - 1)(-8)  
If  $a_n = 0$ , then  
213 = 8(n - 1)

$$\Rightarrow \quad \frac{213}{8} + 1 = n$$
$$\Rightarrow \quad n = \frac{221}{8}$$

*.*..

*.*..

If

 $\Rightarrow$ 

 $\therefore$  *n* is not a positive integer.

Hence,  $a_n \neq 0$  for any value of *n*, i.e., 0 is **not** a term of the given AP

(*iv*) In the given AP, the first term, a = 11 and common difference, d = 8 - 11 = -3.

Let  $a_n$  be the *n*th term of the AP where *n* is a positive integer.

$$a_n = a + (n - 1)d$$
  
= 11 + (n - 1)(-3)  
$$a_n = -150, \text{ then}$$
  
11 - 3(n - 1) = -150  
3(n - 1) = 11 + 150 = 161

$$\Rightarrow \qquad n = 1 + \frac{161}{3} = \frac{164}{3}$$

which is **not** an integer.

Hence,  $a_n \neq -150$  for any value of *n*.

Hence, -150 is not a term of the given AP.

9. (*i*) The given AP is 2, -4, -10, -16, ...

$$\therefore \quad \text{First term } (a_1) = 2 = a_1$$
  
Second term  $(a_2) = -4$   
$$\Rightarrow \qquad d = \text{Common diff.} = (a_2 - a_1)$$
$$= -4 - 2 = -6$$

$$\therefore k \text{th term} = a + (k - 1) d$$
  
$$\therefore \qquad x = 2 + (k - 1) \times (-6)$$

$$\Rightarrow -448 = 2 + (k - 1) (-6) \qquad [\because x = -448]$$

$$\Rightarrow$$
 -448 = 2 - 6k + 6

$$\Rightarrow \qquad 6k = 448 + 2 + 6 = 456$$

$$\Rightarrow \qquad k = \frac{456}{6} = 76$$

Thus, the required value of k is 76.

$$-43, -35\frac{1}{2}, -28, -20\frac{1}{2}, \dots$$

$$\therefore \quad \text{First term } (a_1) = -43$$
  
Second term  $(a_2) = -35\frac{1}{2}$   
 $\Rightarrow \text{Common difference } (d) = (a_2 - a_1)$   
 $= -35\frac{1}{2} - [-43]$   
 $= -35\frac{1}{2} + 43 = 7\frac{1}{2}$   
Now, kth term  $= a + (k - 1) d$   
 $x = (-43) + (k - 1) \times 7\frac{1}{2}$   
 $\Rightarrow \quad \frac{1399}{2} = (-43) + (k - 1) \times 7\frac{1}{2} \left[ \because x = \frac{1399}{2} \right]$   
 $\Rightarrow \quad (k - 1) \times 7\frac{1}{2} = \frac{1399}{2} + 43$   
 $= \frac{1399 + 86}{2} = \frac{1485}{2}$   
 $\Rightarrow \quad k - 1 = \frac{1485}{2} \div 7\frac{1}{2} = \frac{1485}{2} \times \frac{2}{15} = 99$   
 $\Rightarrow \quad k = 99 + 1 = 100$   
Thus, the required value of k is 100.  
10. The given AP is a, a + d, a + 2d, ...

$$\therefore \qquad a_n = a + (n - 1) d$$

$$a_k = a + (k - 1) d$$

$$\Rightarrow \qquad a_n - a_k = a + (n - 1) d - [a + (k - 1) d]$$

$$= a + nd - d - [a + kd - d]$$

$$= a + nd - d - a - kd + d$$

$$= nd - kd = (n - k) d$$

Thus, the required expression is

$$a_n - a_k = (n - k) d \qquad \dots (1)$$

(*i*) We have 5th term = 17 and 15th term = 67 Let n = 5  $\therefore$   $a_n = 17$  and k = 15  $\therefore$   $a_k = 67$ From (1)

$$a_n - a_k = (n - k) d$$

$$\Rightarrow \qquad d = \frac{a_n - a_k}{(n - k)}$$

$$\Rightarrow \qquad d = \frac{17 - 67}{5 - 15} \qquad \because a_n = 17, a_k = 67 \ n = 5$$

$$\Rightarrow \qquad d = \frac{-50}{-10} = 5$$

Thus the required common difference is 5.

(*ii*) Since,  $a_{10} - a_5 = 1200$ ,  $\therefore n = 10$  and k = 5From (1), we have  $a_1 - a_2 = (n - k) d$ 

$$\Rightarrow \qquad 1200 = (10 - 5) d = 5 d$$
$$\Rightarrow \qquad d = \frac{1200}{5} = 240$$

Thus, the required value of d is 240.

(iii) Since 20th term is 22 more than 18th term

$$\therefore \qquad a_{20} = 22 + a_{18}$$

$$\Rightarrow \qquad a_{20} - a_{18} = 22$$

$$\therefore \qquad \text{Here } n = 20, \ k = 18$$

$$\therefore \qquad n - k = 20 - 18 = 2$$

$$\text{Now,} \qquad d = \frac{a_n - a_k}{n - k}$$

$$\Rightarrow \qquad d = \frac{22}{2} = 11$$

11. *(i)* 

Thus, the required common difference is 11.

6, 13, 20, ..., 216  

$$a = 6$$
  
 $d = 7$   
 $a_n = 216$   
 $a_n = a + (n - 1) d$   
216 = 6 + (n - 1) 7  
210 = (n - 1) 7  
 $n = 31$ 

Since the number of terms are odd. Therefore, the middle term will be  $\frac{n+1}{2}$ 

Middle term =  $\frac{31+1}{2} = \frac{32}{2} = 16$  $a_{16} = a + (n - 1)d$ = 6 + (15) (7)= 6 + 105= 111 (ii) 213, 205, 197, ..., 37 a = 213d = -8 $a_n = 37$  $a_n = a + (n-1)d$ 37 = 213 + (n - 1) (-8)8(n-1) = 176n - 1 = 22n = 23Middle term =  $\frac{n+1}{2}$  $=\frac{23+1}{2}=12$  $a_{12} = a + (12 - 1)d$ = 213 + 11(-8)= 213 - 88= 125

(*iii*) In this given AP, the first term, a = 10 and the common difference, d = 7 - 10 = -3. We now find the total number of terms of the given AP. Let the total number of terms be *n*. Denoting the *n*th term by  $a_n$ , we get

$$a_n = a + (n - 1)d$$
  
= 10 + (n - 1)(-3)

If the last term, -62 be the *n*th term, then

$$a_n = -62 = 10 - 3(n - 3n - 3n - 3n - 1) = 10 + 62 = 72$$

$$\Rightarrow \qquad n - 1 = \frac{72}{3} = 24$$

$$\therefore \qquad n = 24 + 1 = 25$$

... The total number of terms of the given AP is 25 which is odd.

1)

Hence, there is only one middle term which is  $\frac{a_{25+1}}{2}$ 

 $= 10 - 12 \times 3 = -26$ 

 $= a_{13}$ . Now,

Hence, the required middle term is -26.

12. Let *a* be the first term, *d* be the common difference and  $a_n$  be the *n*th term of the given AP.

 $a_{13} = a + (13 - 1)d$ 

Then,  $a = -\frac{4}{3}$ ,  $d = -1 + \frac{4}{3} = \frac{1}{3}$  $a_n = a + (n-1)d$ and  $= -\frac{4}{3} + \frac{n-1}{3}$  $=\frac{-4+n-1}{3}$  $=\frac{n-5}{3}$ 

If *m*th term is the last term,  $4\frac{1}{3} = \frac{13}{3}$ 

Then

 $a_m = \frac{13}{3} = \frac{m-5}{3}$ m - 5 = 13⇒

⇒ m = 18 which is even

Hence, there are two middle terms of the given AP viz.  $a_{\underline{18}}$  and  $a_{\underline{18}+1}$ , i.e.  $a_9$  and  $a_{10}$ .

Now,

and

 $a_9 = -\frac{4}{3} + \frac{1}{3}(9-1) = \frac{8-4}{3} = \frac{4}{3}$  $a_{10} = -\frac{4}{3} + \frac{1(10-1)}{3} = \frac{9-4}{3} = \frac{5}{3}$ 

 $\therefore$  Required sum of two middle terms =  $\frac{4}{3} + \frac{5}{3} = \frac{9}{3} = 3$ .

**13.** (*i*) The given AP is 3, 10, 17, 24, ...

: a = 3 and d = 10 - 3 = 7 $a_n = a + (n-1) d$ Since  $a_{13} = 3 + (13 - 1) \times 7$  $= 3 + 12 \times 7 = 3 + 84 = 87$  $a_n = a_{13} + 84 = 87 + 84 = 171$ Since a + (n - 1) d = 171.... ⇒  $3 + (n - 1) \times 7 = 171$  $(n-1) \times 7 = 171 - 3 = 168$  $\Rightarrow$  $(n-1) = \frac{168}{7} = 24$  $\Rightarrow$ 

n = 24 + 1 = 25 $\Rightarrow$ 

Thus, 25th term is 84 more than 13th term.

- (*ii*) In the given AP, the first term, a = 5 and the common difference, d = 9 - 5 = 4. Let  $a_n$  be the *n*th term.  $a_n = a + (n-1)d = 5 + (n-1)4$ Then =4n+1.If  $a_m = 81$ , then 4m + 1 = 81 $m = \frac{80}{4} = 20$ ⇒ : Required term is **20th term**.
- (*iii*) In the given AP, the first term, a = 9 and the common difference, d = 12 - 9 = 3. Let  $a_n$  be the *n*th term.

Then  

$$a_n = a + (n - 1)d$$
  
 $= 9 + (n - 1)3$   
 $= 3n + 6$   
Now,  
 $a_{36} = 3 \times 36 + 6$   
 $= 108 + 6 = 114$   
If with term is the required term, then according

If *m*th term is the required term, then according to the problem, we have

$$a_m = a_{36} + 39 = 114 + 39$$
 [From (1)]  
= 153

...(1)

3m + 6 = 153· .

 $\Rightarrow$ 

$$m = \frac{153 - 6}{3} = \frac{147}{3} = 49$$

: Required term is **49th term**.

(*iv*) In the given AP, the first term, a = 8 and the common difference, d = 14 - 8 = 6.

Let  $a_n$  be the *n*th term. Then

$$a_n = a + (n - 1)d$$
  
= 8 + 6(n - 1)  
= 6n + 2  
∴  $a_{41} = 6 \times 41 + 2$   
= 246 + 2  
= 248 ....(1)

Let *m*th term be the required term. Then according to the problem, we have

$$a_m = a_{41} + 72$$
  
= 248 + 72 [From (1)]  
= 320

$$\Rightarrow 6m + 2 = 320$$
  

$$\Rightarrow 6m = 318$$
  

$$\Rightarrow m = \frac{318}{53} = 53$$

: Required term is 53rd term.

(v) The given AP is 3, 15, 27, 39, ... a = 3 and d = 15 - 3 = 12

Since 
$$a_n = a + (n-1) d$$

$$\begin{array}{rcl} \therefore & a_{21} = 3 + (21 - 1) \times 12 \\ & = 3 + 20 \times 12 = 243 \end{array}$$
  
Since,  $a_n$  is 120 more than  $a_{21}$   
 $\therefore & a_n = a_{21} + 120$   
 $\Rightarrow & a + (n - 1) d = 243 + 120 = 363$   
 $\Rightarrow & 3 + (n - 1) \times 12 = 363$   
 $\Rightarrow & (n - 1) \times 12 = 363 - 3 = 360$   
 $\Rightarrow & n - 1 = \frac{360}{12} = 30$   
 $\Rightarrow & n - 1 = 30$   
 $\Rightarrow & n = 30 + 1 = 31$   
Hence 31st term is 120 more than 21st term

Hence, **31st term** is 120 more than 21st term.

(vi) In the given AP, the first term, a = 5 and the common difference, d = 15 - 5 = 10. Let  $a_n$  be the *n*th term. Then  $a_n = a + (n - 1)d$ = 5 + 10(n - 1)= 10n - 5Now,  $a_{31} = 10 \times 31 - 5$ = 310 - 5= 305 ....(1)

Let *m*th term be the required term. Then according to the problem, we have

$$a_m = a_{31} + 130$$
  
= 130 + 305 [From (1)]  
= 435  
∴ 10m - 5 = 435  
⇒ 10m = 440  
⇒ m = 44  
∴ Required term = **44th term**.

14. Let *a* be the 1st term, *d* be the common difference and  $a_n$  be the *n*th term of the AP. Given that a = 12.

$$\therefore a_n = a + (n-1)d = 12 + (n-1)d$$
  

$$\therefore a_7 = 12 + (7-1)d = 12 + 6d$$
  
and  $a_{11} = 12 + 10d$   
Given that  $a_{11} - a_7 = 24$   

$$\Rightarrow 12 + 10d - 12 - 6d = 24 \Rightarrow 4d = 24 \Rightarrow d = \frac{24}{4} = 6$$

∴  $a_{20} = 12 + (20 - 1) \times 6 = 12 + 114 = 126$  which is the required value of the 20<sup>th</sup> term.

Let *a* be the first term, *d* be the common difference and *a<sub>n</sub>* be the *n*th term of the AP.

Here given that n = 50,  $a_3 = 12$  and  $a_{50} = 106$ .  $\therefore \qquad a_n = a + (n - 1)d$   $\therefore \qquad a_{50} = a + (50 - 1)d$  = a + 49d  $\Rightarrow \qquad 106 = a + 49d$  ...(1)  $\Rightarrow \qquad a_3 = a + (3 - 1)d$  $\Rightarrow \qquad 12 = a + 2d$  ...(2)

Subtracting (2) from (1), we get  

$$106 - 12 = (49 - 2)d$$
  
 $\Rightarrow 94 = 47d$   
 $\Rightarrow d = \frac{94}{47} = 2$   
 $\therefore$  From (1),  
 $a = 106 - 49 \times 2$   
 $= 106 - 98 = 8$   
Hence,  $a_{29} = a + (29 - 1)d$   
 $= 8 + 28 \times 2$   
 $= 8 + 56$   
 $= 64$ 

Which is the required value of 29th term.

16. (*i*) Let the first term and common difference of an AP be 'a' and 'd' respectively.

Here, 
$$d = 11$$
  
 $\therefore$   $a_{20} = a + (20 - 1)d = a + 19(11) = a + 209$   
Also,  $a_{18} = a + (18 - 1)d = a + 17(11) = a + 187$   
 $\therefore$   $a_{20} - a_{18} = a + 209 - a - 187$   
 $= 22$   
(*ii*)  $a_{21} - a_7 = 84$   
 $a_{21} = a + (21 - 1)d = a + 20d$   
 $a_7 = a + (7 - 1)d = a + 6d$   
 $a_{21} - a_7 = 84$   
 $a + 20d - a - 6d = 84$   
 $14d = 84$   
 $d = 6$ 

Let the first term and common difference of the AP be 'a' and 'd' respectively.

$$a_9 = a + 8d \implies a + 8d = -2.6$$
 ...(1)  
 $a_{23} = a + 22d \implies a + 22d = -5.4$  ...(2)

Subtracting (1) from (2), we have

*.*..

a + 22d = -5.4a + 8d = -2.6(-) (-) (+)(22 - 8) d = -5.4 + 2.6 $\Rightarrow$ 14d = -2.8 $\Rightarrow$  $d = -\frac{2.8}{14} = -0.2$  $\Rightarrow$ Substituting d = -0.2 in (1), a + 8 (-0.2) = -2.6a + (-1.6) = -2.6a = -2.6 + (1.6) = -1 $\Rightarrow$ Now,  $a_2 = a + d = -1 + (-0.2) = -1.2$ Thus 2nd term is -1.2.  $a_k = a + (k - 1) d$ Again,  $= -1 + (k - 1) \times (-0.2)$ = -1 + (-0.2k) + 0.2 = -0.8 - 0.2kThus, *k*th term is (-0.8 – 0.2*k*).

 Let the first term of the AP and common difference are 'a' and 'd' respectively.

$$\begin{array}{rl} \ddots & a_n = a + (n-1) \ d \\ \Rightarrow & a_6 = a + (6-1) \ d = a + 5d \\ a_{10} = a + (10-1) \ d = a + 9d \\ \therefore & a + 5d = -10 \\ a + 9d = -26 \end{array} \qquad \dots (1)$$

Subtracting (1) from (2), we get

$$a + 9d = -26$$
  

$$a + 5d = -10$$
  
(-) (-) (+)  

$$4d = -16 \implies d = \frac{-16}{4} = -4$$

Substituting 
$$d = -4$$
 in (1), we get  
 $a + 5(-4) = -10$   
 $\Rightarrow a - 20 = -10 \Rightarrow a = -10 + 20 = 10$   
Now,  $a_{15} = a + 14d$   
 $\Rightarrow a_{15} = 10 + 14(-4) = 10 - 56$   
 $\Rightarrow a_{15} = -46$ 

- Thus the required 15th term is -46.
- Let the first term and common difference of the given AP are 'a' and 'd' respectively.

$$\therefore \qquad a_n = a + (n-1) d$$

$$\Rightarrow \qquad a_7 = a + 6d \Rightarrow a + 6d = -4 \qquad \dots(1)$$

$$a_{13} = a + 12d \Rightarrow a + 12d = -16 \qquad \dots(2)$$

Subtracting (1) from (2), we get

$$a + 12a = -16$$

$$a + 6d = -4$$

$$(-) (-) (+)$$

$$6d = -12 \implies d = \frac{-12}{6} = -2$$
Substituting  $d = -2$  in (1), we get
$$a + 6(-2) = -4$$

$$a - 12 = -4 \implies a = -4 + 12 = 8$$
Now, the AP is  $a, a + d, a + 3d, ...$ 

$$a + 8, 8 + (-2), 8 + 2(-2), 8 + 3(-2) ...$$

$$a + 8, 6, 8 - 4, 8 - 6, ...$$

 $\Rightarrow$  8, 6, 4, 2,...

Thus, the required AP is

**20.** Let '*a*' and '*d*' be the first term and common difference respectively.

÷.  $a_n = a + (n-1) d$  $a_8 = a + 7d$  $\Rightarrow$ 37 = a + 7d⇒ a + 7d = 37 $[:: a_8 = 37] \dots (1)$ or  $a_{12} = a + 11d$ Also,  $[\because a_{12} = 57] \dots (2)$ a + 11d = 57 $\Rightarrow$ Subtracting (1) from (2), we get (a + 11d) - (a + 7d) = 57 - 37

11d - 7d = 20 $\Rightarrow$  $4d = 20 \text{ or } d = \frac{20}{4} = 5$  $\Rightarrow$ Substituting d = 5 in (1), we get a + 7(5) = 37a = 37 - 35 = 2 $\Rightarrow$ Now, the AP is a + d, a + 2d, a + 3d, a, 2, 2 + 5, 2 + 2(5),2 + 3(5),or . . . 2, 7, 2 + 10,2 + 15, or . . . 2, 7, 17, or 12, . . .  $a_5 = 20$ 21. (*i*) ... (1)  $a_7 + a_{11} = 64$ ... (2) From eq. (1), we get a + 4d = 20a = 20 - 4d... (3) Now from eq. (2), we get a + 6d + a + 10 d = 642a + 16d = 64a + 8d = 32... (4) Putting the value of *a* from eq.(3) in eq.(4) 20 - 4d + 8d = 3220 + 4d = 324d = 12d = 3(ii) Let *a* be the first term, *d*, the common difference and  $a_n$  be the *n*th term of the AP. Then  $a_n = a + (n-1)d$ ...(1) Now,  $a_4 = 11$ [Given] a + 3d = 11...(2)  $a_5 + a_7 = 34$ [Given] and  $\Rightarrow$  (a + 4d) + (a + 6d) = 34[From (1)] 2a + 10d = 34 $\Rightarrow$ a + 5d = 17 $\Rightarrow$ ...(3) Subtracting (2) from (3), we get 2d = 6 $\therefore$  *d* = 3 which is the required common difference. (iii)  $a_{0} = -32$ ... (1)  $a_{11} + a_{13} = -94$ ... (2) From eq. (1), we get a + (9 - 1)d = -32a + 8d = -32... (3) Now, simplifying eq. (2), we get a + 10d + a + 12d = -942a + 22d = -94a + 11d = -47... (4) Putting the value of a from eq. (3) in eq. (4), we get -32 - 8d + 11d = -47-32 + 3d = -47

3d = -15

d = -5

Arit

| (iv) | ) Let $a =$ First term and $d =$ common diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                           |            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------------|
|      | $\therefore$ The first three terms of the AP are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                           |            |
|      | а,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a + d, a +                        | + 2d                      | (1)        |
|      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_4 + a_8$                       | = 24                      |            |
|      | $\therefore$ $(a + 3a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l) + (a + 7d)                     | = 24                      |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a + 10d                          | = 24                      |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a + 5d                            | = 12                      | (2)        |
|      | Also,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a_6 + a_{10}$                    | = 44                      |            |
|      | $\Rightarrow$ (a + 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l) + (a + 9d)                     | = 44                      |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a + 14d                          | = 44                      |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a + 7d                            | = 22                      | (3)        |
|      | Subtracting (2) f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | from (3), we                      | get                       |            |
|      | <i>a</i> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7d - a - 5d                       | = 22 - 12                 |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 <i>d</i>                        | = 10  or  d = 5           |            |
|      | Substituting $d =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 in (2), we                      | e get                     |            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a + 5(5)                          | $= 12 \Rightarrow a = -1$ | .3         |
|      | Now, substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng a = -13 a                      | and $d = 5$ in (1)        | ),         |
|      | -13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-13 + 5),                        | [-13 + 2(5)]              |            |
|      | or –13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -8,                               | -3                        |            |
|      | Thus, the requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | red first 3 te                    | rms are                   |            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -13, -8, -                        | -3.                       |            |
| (v)  | Let <i>a</i> be the first $a_{n'}$ the <i>n</i> th term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t term <i>, d,</i> the of the AP. | e common diff             | erence and |
|      | Then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $a_n = a +$                       | (n-1)d                    | (1)        |
|      | Now, given that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t                                 |                           |            |
|      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_5 + a_9 = 30$                  |                           |            |
|      | $\Rightarrow$ $(a + 4d) + (a + $ | (+ 8d) = 30                       |                           | [From (1)] |
|      | $\Rightarrow$ 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + 12d = 30                        |                           |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a + 6d = 15                       |                           | (2)        |
|      | Also, given that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_{25} = 3a_8$                   | 3                         |            |
|      | $\Rightarrow$ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 24d = 3(a                       | (+7d)                     |            |
|      | $\Rightarrow$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a-3d=0                            |                           |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $a = \frac{3a}{2}$                | <u>!</u>                  | (3)        |
|      | ∴ From (2) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3), we hav                       | 'e                        |            |
|      | $\frac{3a}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{d}{d} + 6d = 15$           |                           |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{15d}{2} = 15$              |                           |            |
|      | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d = 2                             |                           | (4)        |
|      | ∴ From (3),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $a = \frac{3}{2}$                 | ×2 = 3                    | (5)        |

|         | $\Rightarrow$ $(a + 4d)$                       | + (a + 6d) = 52                            | 2                  | [From (1)]          |
|---------|------------------------------------------------|--------------------------------------------|--------------------|---------------------|
|         | $\Rightarrow$                                  | 2a + 10d = 52                              | 2                  |                     |
|         | $\Rightarrow$                                  | a + 5d = 26                                | 5                  | (2)                 |
|         | Also,                                          | $a_{10} = 46$                              | 5                  |                     |
|         | $\Rightarrow$                                  | a + 9d = 46                                | 5                  | [From (1)](3)       |
|         | Subtracting                                    | (2) from (3), w                            | e get              |                     |
|         | -                                              | 4d = 20                                    | )                  |                     |
|         | $\Rightarrow$                                  | d = 5                                      |                    | (4)                 |
|         | ∴ From (2)                                     | and (4), we ha                             | ve                 |                     |
|         |                                                | a = 26                                     | $5 - 5 \times 5 =$ | 1                   |
|         | ∴ The requi                                    | red AP is 1, +                             | 1 + 5, 1 +         | 10, 1 + 15,         |
|         | i.e. 1, 6, 11, 1                               | 16,                                        |                    |                     |
| (vii)   | Let <i>a</i> be the $a_n$ , the <i>n</i> th te | first term, <i>d</i> , therm of the AP.    | ne commor          | n difference and    |
|         | Then,                                          | $a_n = a$                                  | +(n-1)d            | (1)                 |
|         | Now, given                                     | that                                       |                    |                     |
|         |                                                | $a_3 + a_8 = 7$                            |                    |                     |
|         | $\Rightarrow$ ( <i>a</i> + 2 <i>d</i> )        | + (a + 7d) = 7                             |                    | [From (1)]          |
|         | $\Rightarrow$                                  | 2a + 9d = 7                                |                    | (2)                 |
|         | Also, given                                    | that                                       |                    |                     |
|         |                                                | $a_7 + a_{14} = -3$                        | 3                  |                     |
|         | $\Rightarrow$ ( $a + 6d$ ) +                   | (a+13d) = -3                               | 3                  | [From (1)]          |
|         | $\Rightarrow$                                  | 2a + 19d = -3                              | 3                  | (3)                 |
|         | Subtracting                                    | (2) from (3), w                            | e get              |                     |
|         |                                                | 10d = -1                                   | 10                 |                     |
|         | $\Rightarrow$                                  | d = -1                                     | l                  | (4)                 |
|         | : From (2),                                    | we have                                    |                    |                     |
|         |                                                | 2a = 7                                     | – 9 × (–1)         |                     |
|         |                                                | = 7                                        | + 9 = 16           |                     |
|         | $\Rightarrow$                                  | <i>a</i> = 8                               |                    | (5)                 |
|         | <i>.</i>                                       | $a_{10} = a$                               | + 9d               |                     |
|         |                                                | = 8                                        | + 9 × (-1)         |                     |
|         |                                                |                                            | [Fi                | rom (4) and (5)]    |
|         |                                                | = -1                                       | L                  |                     |
|         | which is the                                   | required valu                              | e of the 10        | <sup>th</sup> term. |
| 22. (i) | Let <i>a</i> be the $a_n$ , the <i>n</i> th te | first term, <i>d</i> , the term of the AP. | ne commor          | n difference and    |
|         | Then                                           | $a_n = a$                                  | +(n-1)d            | (1)                 |
|         | Given that                                     | $a_{10} = 52$                              | 2                  |                     |
|         | $\Rightarrow$                                  | a + 9d = 52                                | 2                  | [From (1)]          |

a = 52 - 9d

 $a_{17} = 20 + a_{13}$ 

(a + 16d) = 20 + (a + 12d)

 $a = 52 - 9 \times 5$ 

= 52 - 45 = 7

4d = 20

d = 5

...(2)

...(3)

...(4)

[From (1)]

∴ The required AP is 3, 3 + 2, 3 + 4, 3 + 6, … i.e., **3**, **5**, **7**, **9**, …

(*vi*) Let *a* be the first term, *d*, the common difference and  $a_{n'}$  the *n*th term of the AP.

Then  $a_n = a + (n - 1)d$  ...(1) Now, given that

$$a_5 + a_7 = 52$$

© Ratna Sagar

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

Also, given that

: From (2),

 $\therefore$  From (3) and (4), the required AP is

7, 7 + 5, 7 + 10, 7 + 15, ...

i.e., 7, 12, 17, 22 ...

(ii) Let a be the first term, d, the common difference and  $a_{n'}$  the *n*th term of the AP. Then

|       |                                                                                                                                     | $a_n = a + (n-1)d$                                                                                                                      | (1)                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|       | Given that                                                                                                                          | $a_8 = 31$                                                                                                                              |                          |
|       | $\Rightarrow$ a                                                                                                                     | u + 7d = 31                                                                                                                             | [From (1)]               |
|       | $\Rightarrow$                                                                                                                       | a = 31 - 7d                                                                                                                             | (2)                      |
|       | Also, given that                                                                                                                    | $a_{15} = 16 + a_{11}$                                                                                                                  |                          |
|       | $\Rightarrow$ a                                                                                                                     | + 14d = 16 + (a + 10d)                                                                                                                  | [From (1)]               |
|       | $\Rightarrow$                                                                                                                       | 4d = 16                                                                                                                                 |                          |
|       | $\Rightarrow$                                                                                                                       | d = 4                                                                                                                                   | (3)                      |
|       | ∴ From (2),                                                                                                                         | $a = 31 - 4 \times 7 = 3$                                                                                                               | (4)                      |
|       | : From (2) and                                                                                                                      | (4), the required AP is                                                                                                                 |                          |
|       | 3, 3 + 4, 3 + 8, 3                                                                                                                  | + 12, 3 + 16,                                                                                                                           |                          |
|       | i.e., 3, 7, 11, 15, 1                                                                                                               |                                                                                                                                         |                          |
| (iii) | <i>i</i> ) Let <i>a</i> be the 1st term, <i>d</i> , the common difference and $a_n$ , the <i>n</i> th term of the AP. Then          |                                                                                                                                         |                          |
|       |                                                                                                                                     | $a_n = a + (n-1)d$                                                                                                                      | (1)                      |
|       | Given that                                                                                                                          | $a_5 = 31$                                                                                                                              |                          |
|       | $\Rightarrow$ a                                                                                                                     | u + 4d = 31                                                                                                                             | [From (1)]               |
|       | $\Rightarrow$                                                                                                                       | a = 31 - 4d                                                                                                                             | (2)                      |
|       |                                                                                                                                     |                                                                                                                                         |                          |
|       | Also, given that                                                                                                                    | $a_{25} = 140 + a_5$                                                                                                                    |                          |
|       | Also, given that $\Rightarrow a$                                                                                                    | $a_{25} = 140 + a_5$<br>+ 24d = 140 + (a + 4d)                                                                                          | [From (1)]               |
|       | Also, given that $\Rightarrow$ $a \Rightarrow$                                                                                      | $a_{25} = 140 + a_5$<br>+ 24d = 140 + (a + 4d)<br>20d = 140                                                                             | [From (1)]               |
|       | Also, given that<br>$\Rightarrow \qquad a$<br>$\Rightarrow$<br>$\Rightarrow$                                                        | $a_{25} = 140 + a_5$<br>+ 24d = 140 + (a + 4d)<br>20d = 140<br>d = 7                                                                    | [From (1)]<br>(3)        |
|       | Also, given that<br>$\Rightarrow$ $a$<br>$\Rightarrow$<br>$\therefore$ From (2), we 1                                               | $a_{25} = 140 + a_5$<br>+ 24d = 140 + (a + 4d)<br>20d = 140<br>d = 7<br>have                                                            | [From (1)]<br>(3)        |
|       | Also, given that<br>$\Rightarrow \qquad a \rightarrow$<br>$\Rightarrow$<br>$\therefore$ From (2), we 1                              | $a_{25} = 140 + a_5$<br>+ 24d = 140 + (a + 4d)<br>20d = 140<br>d = 7<br>have<br>$a = 31 - 4 \times 7$                                   | [From (1)]<br>(3)        |
|       | Also, given that<br>$\Rightarrow \qquad a \rightarrow$<br>$\Rightarrow$<br>$\therefore$ From (2), we b                              | $a_{25} = 140 + a_5$<br>+ 24d = 140 + (a + 4d)<br>20d = 140<br>d = 7<br>have<br>$a = 31 - 4 \times 7$<br>= 3                            | [From (1)]<br>(3)<br>(4) |
|       | Also, given that<br>$\Rightarrow \qquad a \rightarrow$<br>$\Rightarrow$<br>$\therefore$ From (2), we l<br>$\therefore$ From (3) and | $a_{25} = 140 + a_5$<br>+ 24d = 140 + (a + 4d)<br>20d = 140<br>d = 7<br>have<br>$a = 31 - 4 \times 7$<br>= 3<br>(4), the required AP is | [From (1)]<br>(3)<br>(4) |

- i.e. 3, 10, 17, 24, ...
- 23. (*i*) Let *a* be the first term, *d*, the common difference and  $a_{n'}$  the *n*th term of the AP. Then

$$a_n = a + (n-1)d \qquad \qquad \dots (1)$$
 Now, given that  $a_{19} = 3a_6$ 

$$\Rightarrow \qquad a + 18d = 3(a + 5d) \qquad \text{[From (1)]}$$
$$\Rightarrow \qquad 2a - 3d = 0$$

$$\Rightarrow \qquad a = \frac{3d}{2} \qquad \dots (2)$$

Also, given that 
$$a_9 = 19$$
  
 $\Rightarrow a + 8d = 19$  [From (1)]

$$\Rightarrow \qquad \frac{3d}{2} + 8d = 19 \qquad [From (2)]$$

$$\Rightarrow$$

d = 2

 $a = \frac{3}{2} \times 2 = 3$ : From (2),

 $\frac{19d}{2} = 19$ 

 $\therefore$  From (3) and (4), the required AP is

$$3, 3 + 2, 3 + 4, 3 + 6, \dots$$

i.e., 3, 5, 7, 9, ...

(ii) Let a be the first term, d, the common difference and  $a_{n'}$  the *n*th term of the AP. Then

$$a_n = a + (n - 1)d \qquad \dots (1)$$
  
Given that 
$$a_9 = 6a_2$$
$$\Rightarrow \qquad a + 8d = 6(a + d) \qquad \text{[From (1)]}$$
$$\Rightarrow \qquad 5a = 2d$$

$$a = \frac{1}{5}d \qquad \dots (2)$$

[From (1)]

Also, given that 
$$a_5 = 22$$
  
 $\Rightarrow a + 4d = 22$ 

$$\Rightarrow \qquad \frac{2d}{5} + 4d = 22$$

 $\frac{22d}{5} = 22$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

$$d = 5$$
 ...(3)

:. From (2), 
$$a = \frac{2}{5} \times 5 = 2$$
 ...(4)

 $\therefore$  From (3) and (4), the required AP is

$$2, 2 + 5, 2 + 10, 2 + 15, \ldots$$

i.e., 2, 7, 12, 17, ...

(iii) Let a be the first term, d, the common difference and  $a_{n'}$  the *n*th term of the AP.

Then 
$$a_n = a + (n-1)d$$
 ...(1)  
Given that  $4a_4 = 18a_{18}$   
 $\Rightarrow 4(a+3d) = 18(a+17d)$  [From (1)]  
 $\Rightarrow 4a + 12d = 18a + 306d$   
 $\Rightarrow 14a + 294d = 0$   
 $\Rightarrow a + 21d = 0$   
 $\Rightarrow a = -21d$  ...(2)  
 $\therefore a_{22} = a + 21d$  [From (1)]  
 $= -21d + 21d$  [From (2)]  
 $= 0$   
which is the required value of  $a_{22}$ .  
(*iv*)  $a_9 = 7a_2$  ...(1)

$$a_{12} = 5a_3 + 2$$
 ... (2)  
From eq. (1), we get  
 $a + 8d = 7(a + d)$   
 $a + 8d = 7a + 7d$ 

Now from eq. (2), we get a + 11d = 5(a + 2d) + 2a + 11d = 5a + 10d + 2

d = 4a + 2... (4) Putting the value of d from eq.(3) in eq.(4) d = 4a + 2

$$6a = 4a + 2$$

d = 6a

# © Ratna Sagar

...(3)

...(4)

$$2a = 2$$
  
 $a = 1$   
We know  
 $d = 6a$   
 $d = 6$   
24. (i) Since  $\frac{3}{5}$ ,  $x$ ,  $\frac{5}{3}x$  are in AP.  
 $\therefore \qquad x - \frac{3}{5} = \frac{5}{3}x - x$   
 $\Rightarrow \qquad x - \frac{5}{3}x + x = \frac{3}{5}$   
 $2x - \frac{5}{3}x = \frac{3}{5}$   
 $\Rightarrow \qquad \frac{x}{3} = \frac{3}{5}$ ,  
 $\Rightarrow \qquad x = \frac{3}{5} \times 3 = \frac{9}{5}$ 

(*ii*) 2k + 1, 3k + 3, 5k - 1

For these three terms to be in an AP, the common difference of first two and last two terms must be equal.

$$3k + 3 - (2k + 1) = 5k - 1 - (3k + 3)$$
  

$$3k + 3 - 2k - 1 = 5k - 1 - 3k - 3$$
  

$$k + 2 = 2k - 4$$
  

$$k = 6$$

$$\therefore \quad 3p + 1 - 2p + 1 = 11 - 3p - 1 \Rightarrow \qquad p + 2 = 10 - 3p \Rightarrow \qquad 4p = 8 \Rightarrow \qquad p = 2$$

which is the required value of p and the required number are  $2 \times 2 - 1$ ,  $3 \times 2 + 1$  and 11, i.e. **3**, **7** and **11**.

(*iv*) Since the given expressions are three consecutive terms of an AP, hence

| $2k^2 + 3k +$                             | $6 - k^2 - 4k - 8 = 3k^2 + 4k + 4 - 2k^2 - 3k - 6$ |  |
|-------------------------------------------|----------------------------------------------------|--|
| $\Rightarrow$                             | $k^2 - k - 2 = k^2 + k - 2$                        |  |
| $\Rightarrow$                             | 2k = 0                                             |  |
| $\Rightarrow$                             | k = 0                                              |  |
| which is the required value of <i>k</i> . |                                                    |  |

(*v*) Since 18, *a*, *b*, –3 are in AP.

$$\therefore \qquad a - 18 = b -$$

$$\therefore \qquad a - 18 = b - a \qquad \dots (1)$$

a = -3 - b

...(4)

© Ratna Sagar

and 
$$b - a = -3 - b$$
 ...(2)

$$\therefore$$
 From (2),  $2b = a - 3$  ...(3)

$$\Rightarrow$$
 2(2*a* - 18) = *a* - 3 [From (3)]

$$\Rightarrow \qquad 3a - 36 + 3 = 0$$

$$a = \frac{+33}{2} = 11$$

:. From (3),  $b = 2 \times 11 - 18 = 4$ 

- $\therefore$  The required values of *a* and *b* are **11** and **4** respectively.
- 25. (i) Two-digit numbers which are divisible by 6 are 12, 18, 24, 30, ...96

which are in AP with first term, a = 12 and the common difference, d = 18 - 12 = 6.

Let *n* be the required number so that  $a_n = 96$  ...(1)

Then 
$$a_n = a + (n-1)d$$
  
 $\Rightarrow \qquad 96 = 12 + (n-1)6 \qquad [From (1)]$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

n = 1 + 14 = 15

 $\frac{84}{6} = n - 1$ 

 $\therefore$  The required number is **15**.

(ii) We need to form an AP

$$14, 21, 28, ..., 98$$

$$a = 14, d = 7, a_n = l = 98$$

$$a_n = a + (n - 1)d$$

$$98 = 14 + (n - 1)7$$

$$84 = (n - 1)7$$

$$n - 1 = 12$$

$$n = 13$$

(*iii*) The three-digit numbers which are divisible by 9 are 108, 117, 126, ..., 999 which are in AP with first term a = 108 and the common difference, d = 117 - 108 = 9. Let the number of terms of this AP is n.

Here the first term = a = 108

Common difference = d = 117 - 108 = 9

$$a_n = n$$
th term

$$= a + (n-1)d \qquad \dots (1)$$

Given that  $a_n = 999$  ...(2)

The last term

 $\Rightarrow$ 

*.*..

 $\therefore$  108 + (*n* - 1)9 = 999 [From (1) and (2)]

$$n-1 = \frac{999-108}{9} = \frac{891}{9} = 99$$

*n* = **100** 

which is the required number.

(*iv*) Integers lying between 200 and 500, which are divisible by 8 are 208, 216, 224, ...496 which are in AP with first term, a = 208, common difference, d = 216 - 208 = 8.

If n be the total number of terms of this AP, then

 $a_n = 496$ Also,  $a_n = a + (n - 1)d$   $\therefore \quad a + (n - 1)d = 496$   $\Rightarrow \quad 208 + (n - 1)8 = 496$   $\Rightarrow \quad (n - 1)8 = 496 - 208 = 288$   $\Rightarrow \quad n - 1 = \frac{288}{8} = 36$   $\Rightarrow \quad n = 37$ which is the required number of term.

**D** Arithmetic Progressions

 $\Rightarrow$ 

**26.** (*i*) Let  $a_1$  be the first term and  $d_1$  be the common difference of the first AP and let  $a_2$  be the first term and  $d_2$  be the common difference of the second AP so that

$$\begin{aligned} a_1 &= 1, \, d_1 = 7 - 1 = 6 & \dots(1) \\ a_2 &= 69, \, d_2 = 68 - 69 = -1 & \dots(2) \end{aligned}$$

We denote the *n*th term of the first AP by  $a_n$  and that of the second AP by  $a'_n$ .

 $a_n = a_1 + (n-1)d_1$ 

= 6n - 5

= 1 + (n - 1)6

and

...

*.*..

[From (1)] ...(3)  $a_n' = a_2 + (n-1)d_2$ = 69 + (n - 1) (-1)= -n + 70[From (2)] ...(4)  $a_n = a_n'$  $\therefore$  From (3) and (4), we have 6n - 5 = -n + 707n = 75

⇒  $\Rightarrow$ 

which is not a natural number.

Hence, **there is no value of** *n* for which the two given AP's, *n*th term are the same.

 $n = \frac{75}{7}$ 

(*ii*) For the AP 6, 3, 0, ...

a =First term = 6 d = Common diff. = 3 - 6 = -3 $a_n = a + (n-1)d = 6 + (n-1)(-3)$ *.*..  $a_n = 6 - 3n + 3 = 9 - 3n$ *.*.. ... (1) For the AP 2, 0, -2, ... a = First term = 2d = Common diff. = 0 - 2 = -2  $a_n = a + (n-1)d$ *.*..  $a_n = 2 + (n - 1)$  (-2)  $\Rightarrow$  $a_n = 2 + (-2n + 2)$  $\Rightarrow$  $\Rightarrow$  $a_n = 2 - 2n + 2 = 4 - 2n$ ... (2) From (1) and (2), we get 4 - 2n = 9 - 3n-2n + 3n = 9 - 4 $\Rightarrow$ n = 5 $\Rightarrow$ (iii) For AP 13, 19, 25, ... a = 13 and d = 19 - 13 = 6*.*..  $a_n = a + (n - 1) d$  $a_n = 13 + (n - 1) \times 6$  $\Rightarrow$  $a_n = 13 + 6n - 6 = 7 + 6n$  $\Rightarrow$ For AP 69, 68, 67, ... a = 69 and d = 68 - 69 = -1 $a_n = a + (n-1)d$  $a_n = 69 + (n - 1) (-1)$  $\Rightarrow$  $\Rightarrow$  $a_n = 69 + 1 - n = 70 - n$  $\therefore$   $a_n$  for both the AP are same.

7 + 6n = 70 - n÷ 6n + n = 70 - 7 = 63 $\Rightarrow$ 7n = 63 $\Rightarrow$ n = 9⇒

Now, for the AP in (*a*),

 $a_n = 7 + 6(9) = 7 + 54 = 61$ 

Thus, the *n*th term = 61.

(*iv*) Let  $a_1$  be the first term and  $d_1$  be the common difference of the first AP and  $a_2$  be the first term and  $d_2$  be the common difference of the second AP so that

$$a_1 = 9, d_1 = 7 - 9 = -2 \qquad \dots(1)$$

 $a_2 = 24, d_2 = 21 - 24 = -3 \dots (2)$ 

We denote the *n*th term of the first and the second AP's by  $a_n$  and  $a'_n$  respectively. Then

$$a_n = a_1 + (n - 1)d_1$$
  
= 9 - 2(n - 1)  
= -2n + 11 [From (1)] ...(3)  
$$a' = a_2 + (n - 1)d_2$$

and

 $\Rightarrow$ 

and

(4)

∴ 
$$a_n = a'_n$$
  
∴  $-2n + 11 = 3n + 27$  [From (3) and (4)]

*n* = 27 – 11 = **16** 

which is the required value of *n*.

Now, from (3)

$$a_{16} = -2 \times 16 + 11$$
  
= -32 + 11  
= -21

which is the required value of  $a_{16}$ .

Let the *n*th term of the given AP is the first negative term.

$$\begin{array}{l} \Rightarrow \qquad a_n < 0 \quad \mathrm{or} \quad [a + (n-1)d] < 0 \\ \Rightarrow \ [114 + (n-1) \times (-5)] < 0 \\ \Rightarrow \quad [114 + (n \times -5) + 5] < 0 \\ \Rightarrow \qquad [119 - 5n] < 0 \\ \Rightarrow \qquad 119 < 5n \quad \mathrm{or} \quad 5n > 119 \\ \Rightarrow \qquad n > \frac{119}{5} \quad \mathrm{or} \quad n > 23\frac{4}{5} \end{array}$$

Since, the natural number just greater than  $23\frac{4}{5}$  is

24.

Thus, 24th term of the given progression is the first negative term.

(*ii*) In this AP, the first term, a = 53 and the common difference, d = 48 - 53 = -5.

Let the *n*th term  $a_n$  of this AP be the first negative term

Then 
$$a_n = a + (n - 1)d$$
$$= 53 - 5(n - 1)$$
$$= -5n + 58$$
Now, 
$$a_n < 0$$
$$\Rightarrow 5n > 58$$
$$\Rightarrow n > \frac{58}{5} = 11\frac{3}{5}$$

Since 12 is the natural number just above 11,

 $\therefore$  We take n = 12.

Hence, the required first negative term of the given AP is **12th term**.

28. Let the three numbers are:

(a - d), a, (a + d)Since, sum of these numbers = 21*.*.. a - d + a + a + d = 213a = 21 $\Rightarrow$ a = 7 $\Rightarrow$ Since, the product of these numbers = 231(a - d)(a)(a + d) = 231*.*..  $(a^2 - d^2) \times a = 231$  $\Rightarrow$  $(7^2 - d^2) \times 7 = 231$  $\Rightarrow$  $49 - d^2 = \frac{231}{7} = 33$  $\Rightarrow$  $-d^2 = 33 - 49 = -16$  $\Rightarrow$  $d^2 = 16 \Rightarrow d = \pm 4$  $\Rightarrow$ Now, the numbers are a - da, a + d $\Rightarrow$  7-4, 7, 7 + 4or 7 + 4, 7, 7 - 4 $\Rightarrow$  3. 7. 11 or 11, 7, 3 So, the required three number are 3, 7, 11 or 11, 7, 3 **29.** Let the three numbers in AP be a - d, a and a + d. : According to the problem, we have (a - d) + a + (a + d) = 123a = 12 $\Rightarrow$  $a = \frac{12}{3} = 4$  $\Rightarrow$ ...(1) Now, given that  $(a - d)^3 + a^3 + (a + d)^3 = 288$  $\Rightarrow$  $(4-d)^3 + (4+d)^3 + 4^3 = 288$ [From (1)]  $\Rightarrow (4 - d + 4 + d)^3 - 3(4 - d) (4 + d)(4 - d + 4 + d)$ = 288 - 64= 224[Using the formula,  $a^3 + b^3 = (a + b)^3 = 3ab(a + b)$ ]  $64 \times 8 - 3(16 - d^2) \times 8 = 224$  $\Rightarrow$ 

 $61 \quad 19 \quad 2 \quad 12 \quad - 29$ 

$$\Rightarrow \qquad 64 - 48 + 5u^2 = 28$$
  
$$\Rightarrow \qquad 3d^2 = -16 + 28 = 12$$
  
$$\Rightarrow \qquad d^2 = 4$$

 $d = \pm 2$ 

 $\Rightarrow$ 

 $\therefore$  From (1) and (2), the required number are either 4 – 2, 4 and 4 + 2, i.e., 2, 4 and 6 or 4 + 2, 4 and 4 - 2, i.e., 6, 4 and 2.

**30.** (*i*) AP : 5, 9, 13, ..., 185

Since we need to find the 9th term from the end therefore we will reverse the AP.

> a = 185, d = -4, n = 9 $a_0 = a + (9 - 1)d$ = 185 + 8(-4)= 185 - 32= 153

(*ii*) AP : 1, 6, 11, 16, ..., 211, 216 Since we need to find the 17th term from the end therefore we will reverse the AP. a = 216, d = -5, n = 17 $a_{17} = a + (17 - 1)d$ = 218 + 16(-5)= 216 - 80= 136 (iii) The given AP is 17, 14, 11, ... (-40). Here, First term = a = 17Common diff. = d = 14 - 17 = -3And the last term l = -40Since, the *n*th term from the end = l - (n - 1)d:. 6th term from the end = -40 - (6 - 1)(-3)= -40 - (5) (-3)= -40 + 15 = -25(iv) The given AP is 8, 10, 12, ..., 126 Here, d = 10 - 8 = 2 and l = 126Since, *n*th term from the end = l - (n - 1)d $\therefore$  10th term from the end =  $126 - (10 - 1) \times 2$  $= 126 - 9 \times 2$ = 126 - 18 = 108(v) In the given AP, the first term, a = 7, the common

difference, d = 10 - 7 = 3 and the last term, l = 184. Let  $a_n$  be the *n*th term from the end.

Then  $a_n = l - (n-1)d$ = 184 - 3(n - 1)= 184 - 3n + 3= 187 - 3n $a_{\rm s} = 187 - 3 \times 8$ = 187 - 24 = **163** 

which is the required term.

*.*..

(vi) In the given AP, the first term, a = 3, the common difference, d = 8 - 3 = 5 and the last term, l = 253. Let  $a_n$  be the *n*th term from the end. Then

$$a_n = l - (n - 1)d$$
  
= 253 - 5(n - 1)  
= 253 + 5 - 5n

...(2)

= 258 - 5n $a_{20} = 258 - 5 \times 20 = 158$ which is the required term. 31. (i) In the orchard, the number of trees in 1st row = 172nd row = 153rd row = 13last row = 3 $\therefore$  15 - 17 = -2 = 13 - 15 : 17, 15, 13, ..., 3 form an AP. Such that number of rows = na = 17, d = -2 and  $a_n = 3$  $a_n = 17 + (n - 1) \times (-2) = 3$  $\Rightarrow$  $(n-1) \times (-2) = 3 - 17 = -14$  $\Rightarrow$  $n-1 = \frac{-14}{-2} = 7$  $\Rightarrow$ n = 7 + 1 = 8⇒ Thus the number rows = 8(ii) Principal (P) = ₹ 2000 Rate of simple interest = (r) = 8% p.a.  $\therefore \quad \text{Interest after 1st year} = \frac{P \times r \times t}{100}$  $= \overline{\mathbf{T}} \frac{2000 \times 8 \times 1}{100} = \overline{\mathbf{T}} \ 160$ Interest after 2 years =  $\overline{<} \frac{2000 \times 8 \times 2}{100} = \overline{<} 320$ Interest after 3 years =  $\overline{\mathbf{T}} \frac{2000 \times 8 \times 3}{100} = \overline{\mathbf{T}} 480$ 320 - 160 = 480 - 320 = 160Since, : 160, 320, 480, ... are in AP. where First term = a = 160Common diff. = d = 160Now, if n = 20then  $a_{20} = a + (20 - 1)d$  $= 160 + 19 \times 160$  [:: a = 160 and d = 160] = 160 + 3040= 3200⇒ Interest at the end of 20 years = ₹ 3200 For Standard Level 32. Let the first term,  $a = -\frac{4}{3}$ , the common difference,

Then

$$a_n = a + (n - 1)a$$
$$= -\frac{4}{3} + \frac{1}{3}(n - 1)a$$
$$= -\frac{4}{3} - \frac{1}{3} + \frac{1}{3}(n - 1)a$$

1)

 $d = -1 + \frac{4}{3} = \frac{1}{3}$  and  $a_n$ , the *n*th term of the AP,

 $= \frac{-5}{3} + \frac{n}{3}$ If  $a_n = \text{last term} = 4\frac{1}{3} = \frac{13}{3}$ , then  $\frac{13}{3} = \frac{n}{3} - \frac{5}{3}$  $\Rightarrow \qquad \frac{n}{3} = \frac{13}{3} + \frac{5}{3} = \frac{18}{3}$  $\Rightarrow \qquad n = 18$  which is even

Hence, there are two middle terms *viz*.  $a_{\frac{18}{2}}$  and  $a_{\frac{18}{2}+1}$ 

 $a_9 = -\frac{5}{3} + \frac{9}{3} = \frac{4}{3}$ 

...(1)

i.e.,  $a_9$  and  $a_{10}$ Now, from (1)

and

....

$$a_{10} = -\frac{5}{3} + \frac{10}{3} = \frac{5}{3}$$
$$a_9 + a_{10} = \frac{4}{3} + \frac{5}{3} = \frac{9}{3} = 3$$

Hence, the required sum of the two middle terms is 3.

**33.** Let *a* be the first term, *d*, the common difference and  $a_n$ , the *n*th term of the AP.

 $a_n = a + (n-1)d$ Then ...(1) Now, given that  $a_{24} = 2a_{10}$ a + 23d = 2(a + 9d)[From (1)] = 2a + 18da - 5d = 0 $\Rightarrow$ a = 5d...(2)  $\Rightarrow$  $a_{72} = a + 71d$ Now, [From (1)] = 5d + 71d[From (2)] = 76d...(3)  $a_{15} = a + 14d$ and [From (1)] = 5d + 14d = 19d [From (2)]...(4)

 $\therefore$  From (3) and (4), we have

$$\frac{a_{72}}{a_{15}} = \frac{76d}{19d} = 4$$
$$a_{72} = 4a_{15}$$

Hence, proved.

**34.** Let *a* be the first term, *d*, the common difference and  $a_{n'}$  the *n*th term of the AP.

Then  $a_n = a + (n-1)d$ ...(1) Now, given that  $a_6 = 0$ a + 5d = 0[From (1)]  $\Rightarrow$ a = -5d $\Rightarrow$ ...(2)  $a_{22} = a + 32d$ *.*.. = -5d + 32d[From (2)] = 27d...(3)  $a_{15} = a + 14d$ = -5d + 14d[From (2)] = 9d...(4)

 $\therefore$  From (3) and (4), we have

$$\frac{a_{33}}{a_{15}} = \frac{27d}{9d} = 3$$
$$a_{33} = 3a_{15}$$

Hence, proved.

*.*..

**35.** Let *a* be the first term, *d*, the common difference and *a*<sub>*n*'</sub> the *n*th term of the AP where *n* is the number of term of the AP.

Then  $a_n = a + (n-1)d$  ...(1)

$$\therefore \qquad a_{26} = a + 25d$$
  

$$\Rightarrow \qquad 0 = a + 25d \qquad [Given]$$

$$\therefore \qquad a = -25d \qquad \dots (2)$$

$$a_{11} = a + 10d$$

$$\Rightarrow \qquad 3 = a + 10d \qquad [Given]$$

$$= -25d + 10d$$
  
= -15d [From (2)]

$$d = -\frac{3}{15} = -\frac{1}{5} \qquad \dots (3)$$

:. From (2), 
$$a = \frac{1}{5} \times 25 = 5$$
 ...(4)

$$\therefore \text{ From (1)}, \qquad a_n = 5 - (n-1) \times \frac{1}{5}$$
$$= \frac{-(n-1) + 25}{5}$$
$$= \frac{26 - n}{5}$$
$$\Rightarrow \qquad -\frac{1}{5} = \frac{26 - n}{5}$$

$$-\frac{1}{5} = \frac{20}{5}$$

[: The last term given is 
$$-\frac{1}{5}$$
]

$$\begin{array}{c} \Rightarrow & n-26 = 1 \\ \Rightarrow & n = 27 \\ \end{array}$$
 ...(5)

∴ The required common difference and the number of term of the AP are  $-\frac{1}{5}$  and 27 respectively.

**36.** Let *a* be the first term, *d*, the common difference and  $a_{n'}$  the *n*th term of the AP. Then

$$a_n = a + (n-1)d \qquad \dots (1)$$

Now, given that

$$a_{17} = 5 + 2a_8$$

$$\Rightarrow \qquad a + 16d = 5 + 2(a + 7d)$$

$$\Rightarrow \qquad a + 16d = 5 + 2a + 14d$$

$$\Rightarrow \qquad a-2d+5=0$$

- 13

d = 4

Also, it is given that

$$a_{11} = 45$$
  
 $a + 10d = 43$  ...(3)

Subtracting (2) from (3), we get 
$$12d = 48$$

$$\Rightarrow$$

 $\Rightarrow$ 

:. From (2), 
$$a = 2d - 5$$
  
= 2 × 4 - 5 = 3 ...(5)

 $\therefore$  From (1), (4) and (5), we have

$$a_n = 3 + (n - 1)4$$

= 4n - 1

which is the required term.

**37.** We know that all numbers ending with 5 or 0 are divisible by 5. But numbers ending with 5 are not divisible by 2, since these numbers are odd. Hence, the numbers which are divisible by both 5 and 2 must be divisible by  $2 \times 5$  i.e., 10. Hence, these numbers must end with 0. Hence, the numbers lying between 101 and 999 which are divisible by both 2 and 5 are 110, 120, 130, 140, 150, ...990.

These numbers are clearly in AP with the first term, a = 110 and the common difference, d = 120 - 110 = 10. Let  $a_n$  be the *n*th term of this AP.

$$\begin{aligned} a_n &= a + (n-1)d \\ &= 110 + (n-1)10 \\ &= 100 + 10n & \dots(1) \\ a_n &= \text{ the last term, then } a_n &= 990 & \text{[From (1)]} \end{aligned}$$

 $\therefore \qquad 990 = 100 + 10n$  $\Rightarrow \qquad \frac{890}{10} = n$ 

If

 $\Rightarrow$ 

which is the requried number of natural numbers which are in AP.

**38.** Let a - d, a and a + d be three numbers in AP.

Then according to the problem, we have

$$(a - d) + a + (a + d) = 207$$

$$\Rightarrow \qquad 3a = 207$$

$$\Rightarrow \qquad a = \frac{207}{3} = 69 \qquad \dots(1)$$
Also, given that  $(a - d)a = 4623$ 

 $\Rightarrow \qquad a^2 - ad = 4623$   $\Rightarrow \qquad 69^2 - 69d = 4623$   $\Rightarrow \qquad 4761 - 4623 = 69d$   $\Rightarrow \qquad 138 = 69d$  $\Rightarrow \qquad d = \frac{138}{69} = 2 \qquad \dots(2)$ 

Hence, from (1) and (2), the required numbers are 69 –2, 69, 69 + 2, i.e. **67, 69 and 71**.

**39.** The three parts are in AP.

Let the parts be a - d, a, a + d.  $\vdots$ 5(smallest number) = (largest number) + 65(a-d) = (a+d) + 6or 5a - 5d = a + d + 6 $\Rightarrow$ 5a - a - 5d - d = 6 $\Rightarrow$ 4a - 6d = 6⇒  $\Rightarrow$ 2a - 3d = 3...(1) (a - d) + a + (a + d) = 54Also, a - d + a + a + d = 54 $\Rightarrow$ 

...(2)

...(4)

 $\Rightarrow$ 3a = 54 or a = 18...(2) From (1), we have 2(18) - 3d = 3 or 36 - 3d = 33d = 36 - 3 = 33 or d = 11 $\Rightarrow$ Now, three parts are a - d, a, a + d(18 - 11),18, (18 + 11) $\Rightarrow$ 7, 18, 29  $\Rightarrow$ 40. Let a - d, a and a + d be three numbers in AP. : According to the problem, we have (a - d) + a + (a + d) = 483a = 48 $\Rightarrow$ a = 16...(1)  $\Rightarrow$  $\therefore$  The third term of the AP is 16 + *d* and the first two terms are 16 – *d* and 16. : According to the second condition of the problem, (16 - d)16 - 4(16 + d) = 12 $\Rightarrow 256 - 16d - 64 - 4d = 12$ -20d = 12 + 64 - 256 $\Rightarrow$ = 76 - 256= -180 $d = \frac{180}{20} = 9$ *.*.. ...(2)  $\therefore$  From (1) and (2), the required three terms of the AP are 16 - 9, 16 and 16 + 9 i.e., 7, 16 and 25. **41.** Let the four parts be a - 3d, a - d, a + d, a + 3dSum = 56 $\Rightarrow a - 3d + a - d + a + d + a + 3d = 56$ 4a = 56 $\Rightarrow$ a = 14 $\Rightarrow$ According to the given condition  $\frac{a_1 \times a_4}{a_2 \times a_3} = \frac{5}{6}$  $\frac{(a-3d)\times(a+3d)}{=}$  $\frac{5}{6}$  $\Rightarrow$  $(a-d) \times (a+d)$  $\frac{a^2 - 9d^2}{a^2 - d^2} = \frac{5}{6}$  $\Rightarrow$  $6a^2 - 54d^2 = 5a^2 - 5d^2$  $\Rightarrow$  $a^2 = 49d^2$  $\Rightarrow$  $49d^2 = (14)^2$  $\Rightarrow$  $49d^2 = 196$  $\Rightarrow$  $d^2 = 4$  $\Rightarrow$  $d = \pm 2$ ⇒

*.*.. m[a + md - d] = n[a + nd - d] $ma + m^2d - md = na + n^2d - nd$  $\Rightarrow$  $(ma - na) + (m^2d - n^2d) - (md - nd) = 0$  $\Rightarrow$  $(m-n) a + (m^2 - n^2)d - (m-n)d = 0$  $\Rightarrow$ (m-n)a + [(m-n)(m+n)]d - (m-n)d = 0 $\Rightarrow$  $[:: x^2 - y^2 = (x - y) (x + y)]$ (m-n)[a + (m+n)d - d] = 0 $\Rightarrow$ [a + (m + n)d - d] = 0⇒ ...(1)  $a_{m+n} = a + [(m + n) - 1)]d$ Now,  $a_{m+n} = a + (m+n)d - d$  $\Rightarrow$ ...(2) From (1) and (2), we have  $a_{m+n} = a + (m+n)d - d = 0$ Hence, (m + n)th term is **0**. 43. Let a = First term and d = Common diff. General term =  $a_n = a + (n - 1)d$ *.*...  $a_{m+1} = a + (m + 1 - 1)d = a + md$  $a_{n+1} = a + (n + 1 - 1)d = a + nd$  $\cdot$  $a_{m+1} = 2a_{n+1}$ [Given] *.*.. a + md = 2[a + nd]a + md = 2a + 2nd $\Rightarrow$  $\Rightarrow 2a - a + 2nd - md = 0$ a = md - 2nd = d(m - 2n) $\Rightarrow$ ... (1)  $a_{3m+1} = a + (3m + 1 - 1)d = a + 3md$ Now. = d(m-2n) + 3md [ $\because a = d(m-2nd)$ ] = md - 2nd + 3 md = 4md - 2nd= 2d(2m - n) $a_{3m+1} = 2d(2m - n)$ ...(2)  $\Rightarrow$ Also,  $a_{(m+n+1)} = a + (m + n + 1 - 1)d$  $a_{m+n+1} = a + (m+n)d$  $\Rightarrow$  $2[a_{m+n+1}] = 2[a + (m + n)d]$  $\Rightarrow$ = 2[d(m-2n) + (m+n)d][Substituting a = d(m - 2n)] = 2[md - 2nd + md + nd]= 2[2md - nd]= 2d[2m - n]...(3) From (2) and (3), we have:  $2[a_{m+n+1}] = a_{3m+1}$ **44.** If *x*, *y*, *z* are in AP then (y - x) = (z - y)...(1) Also, if  $[(y + z)^2 - x^2]$ ,  $[(x + z)^2 - y^2]$ ,  $[(x + y)^2 - z^2]$  are in

 $a_m = a + (m-1)d = a + md - d$ 

 $a_n = a + (n-1)d = a + nd - d$ 

 $m \times a_m = n \times a_n$ 

 $\Rightarrow$ 

Since

AP, then  

$$[(z + x)^2 - y^2] - [(y + z)^2 - x^2] = [(x + y)^2 - z^2] - [(x + z)^2 - y^2]$$
or 
$$[z^2 + x^2 + 2zx - y^2 - y^2 - z^2 - 2yz + x^2]$$

**42.** Let *a* = first term and *d* = common diff. ∴ General term  $a_n = a + (n - 1)d$ 

AP: 8, 12, 16, 20

AP: 20, 16, 12, 8

d = +2

d = -2

If

If

© Ratna Sagar

Arithmetic Progressions | 15

 $= [x^{2} + y^{2} + 2xy - z^{2} - x^{2} - z^{2} - 2xz + y^{2}]$ or  $[2x^2 - 2y^2 + 2zx - 2yz] = [2y^2 - 2z^2 + 2xy - 2xz]$ or (y - x) = (z - y)...(2) From (1) and (2), we have if x, y, z are in AP then  $[(y + z)^2 - x^2]$ ,  $[(z + x)^2 - y^2]$ ,  $[(x + y)^2 - z^2]$  are in AP. **45.** Let a = First term and d = Common difference and  $a_n = a + (n-1)d$ *.*..  $a_1 = a$  $a_2 = a + (2 - 1)d = a + d$  $a_3 = a + (3 - 1)d = a + 2d$  $a_4 = a + (4 - 1)d = a + 3d$ Now,  $a_2 \times a_3 = (a + d) (a + 2d)$  $a_2 \times a_3 = a^2 + 3ad + 2d^2$  $\Rightarrow$ ...(1)  $a_1 \times a_4 = a(a + 3d) = a^2 + 3ad$ ...(2)  $a_2 - a_1 = a + d - a = d$  $(a_2 - a_1)^2 = d^2$  $\Rightarrow$ ...(3)  $2(a_2 - a_1)^2 = 2d^2$ Now, [From 3] From (1) and (2),  $a^{2} + 3ad + 2d^{2} = (a^{2} + 3ad) + 2d^{2}$  $a_2 \times a_3 = (a_1 \times a_4) + 2(a_2 - a_1)^2$ ⇒ **46.**  $\therefore$  The sides of rt  $\Delta$  are in AP. .: Let the sides be a-d, a, a+dUsing Pythagoras theorem, we get  $(a + d)^2 = (a - d)^2 + a^2$  $a^{2} + d^{2} + 2ad = a^{2} + d^{2} - 2ad + a^{2}$  $\Rightarrow$  $a^2 = 2ad + 2ad = 4ad$  $\Rightarrow$  $\frac{a^2}{a} = \frac{4ad}{a} \Rightarrow a = 4d$  $\Rightarrow$ Substituting a = 4d in the sides, we get 4d - d, 4d, 4d + d5d 3d 4dor Now, the required ratio of sides is 3d: 4d: 5d or 3:4:547. (i)  $\therefore$  Angles are in AP.  $\therefore$   $(a-d)^{\circ}$ ,  $(a)^{\circ}$ ,  $(a+d)^{\circ}$  be the angles of a  $\Delta$  $(a - d) + a + (a + d) = 180^{\circ}$  $a - d + a + a + d = 180^{\circ}$  $\Rightarrow$  $3a = 180^\circ \Rightarrow a = 60^\circ$ ...(1)  $\Rightarrow$ [Least angle] =  $\frac{1}{3}$  [Greatest angle] ÷  $(a-d) = \frac{1}{3}(a+d)$ 3(a-d) = a+d⇒ 3a - 3d - a - d = 0 $\Rightarrow$ 2a - 4d = 0 $\Rightarrow$ 

 $\Rightarrow$ a - 2d = 0...(2) From (1) and (2), we have 60 - 2d = 02d = 60 or d = 30or Thus, the angles are  $(60 - 30)^{\circ}$ ,  $(60 + 30)^{\circ}$ 60°, 30°, 60°. 90° ⇒ (ii) Let the three angles of the triangle, which are in AP be a - d, a and a + d so that we have  $(a - d) + a + (a + d) = 180^{\circ}$ [Angle sum property of a triangle]  $3a = 180^{\circ}$  $\Rightarrow$  $a = 60^{\circ}$ ...(1) The least angle is  $a - d = 60^{\circ} - d$ *.*.. [From (1)] and the greatest angle is  $a + d = 60^{\circ} + d$ [From (1)] : According to the problem, we have  $60^\circ + d = 2(60^\circ - d)$  $= 120^{\circ} - 2d$  $3d = 60^{\circ}$  $\Rightarrow$  $d = \frac{60^{\circ}}{3} = 20^{\circ}$  $\Rightarrow$ ...(2) : From (1) and (2) The required three angles are  $60^{\circ} - 20^{\circ}$ ,  $60^{\circ}$  and  $60^{\circ} + 20^{\circ}$ , i.e. 40°, 60° and 80°. **48.** Let the three numbers be a - d, a, a + d[:: The numbers are in AP] ÷ The sum of numbers = 6*.*.. a - d + a + a + d = 63a = 6 $\Rightarrow$ a = 2*.*.. ...(1) The sum of their squares = 14÷  $(a - d)^2 + a^2 + (a + d)^2 = 14$ *.*..  $a^{2} + d^{2} - 2ad + a^{2} + a^{2} + d^{2} + 2ad = 14$  $\Rightarrow$  $3a^2 + 2d^2 = 14$  $\Rightarrow$ ...(2) From (1) and (2), we get  $3(2)^2 + 2d^2 = 14$  $12 + 2d^2 = 14$  $\Rightarrow$  $2d^2 = 14 - 12 = 2$  $\Rightarrow$  $d^2 = 1$ or  $d = \pm 1$  $\Rightarrow$ Now substituting a = 2 and  $d = \pm 1$  in a - d, a + d, a, we get or 2 – (–1), 2, 2 + (–1) 2 - 1, 2, 2 + 1or 3, 2, 1 1, 3 2,  $\Rightarrow$ Thus the required numbers are 1, 2, 3 or 3, 2, 1. 49. Let the five numbers in AP are (a - 2d), (a - d), a, (a + d), (a + 2d)Their sum = 35···

$$\therefore a - 2d + a - d + a + a + d + a + 2d = 35$$

$$\Rightarrow 5a = 35 \text{ or } a = 7$$

$$\therefore \text{ Sum of their squares} = 285$$

$$\therefore [a - 2d]^2 + [a - d]^2 + a^2 + [a + d]^2 + [a + 2d]^2 = 285$$

$$\Rightarrow [a^2 + 4d^2 - 4ad] + [a^2 + d^2 - 2ad] + a^2 + [a^2 + d^2 + 4d^2 + 4ad] = 285$$

$$\Rightarrow a^2 + 4d^2 + a^2 + d^2 + a^2 + d^2 + a^2 + 4d^2 + 4d^2 = 285$$

$$\Rightarrow 5a^2 + 10d^2 = 285 \text{ or } a^2 + 2d^2 = 57$$
Substituting  $a = 7$ , we have:  
 $7^2 + 2d^2 = 57 \text{ or } 49 + 2d^2 = 57$ 
Substituting  $a = 7$ , we have:  
 $7^2 + 2d^2 = 57 \text{ or } 49 + 2d^2 = 57$ 

$$\Rightarrow 2d^2 = 57 - 49 = 8 \text{ or } d^2 = \frac{8}{2} = 4 \Rightarrow d = \pm 2$$

$$\therefore \text{ The numbers are}$$
 $(7 - 4), (7 - 2), 7, (7 + 2), (7 + 4)$ 
or  $(7 + 4), (7 + 2), 7, (7 - 2), (7 - 4)$ 
or  $3, 5, 7, 9, 11 \text{ or } 11, 9, 7, 5, 3$ 
b. Let the three numbers be  $a - d, a$  and  $a + d$ 

$$S_3 = 12$$
 $a - d + a + a + d = 12$ 
 $3a = 12$ 
 $a = 4$ 
Now the sum of cubes of these three numbers is equal to 288.  
 $(a - d)^3 + a^3 + (a + d)^3 = 288$ 

 $(4 - d)^{3} + (4)^{3} + (4 + d)^{3} = 288$   $(4 - d)^{3} + (4 + d)^{3} = 288 - 64$   $64 - d^{3} - 12d(4 - d) + 64 + d^{3} + 12d(4 + d) = 224$  128 - 12d [4 - d - 4 - d] = 224 - 12d (-2d) = 96  $d^{2} = 4$   $d = \pm 2$ If d = 2AP: 2, 4, 6 If d = -2AP: 6, 4, 2

#### — EXERCISE 5B

#### For Basic and Standard Levels

5

1. (i) We have 2, 4, 6, ... to 'n' terms  
Here, 
$$a = 2$$
 and  $d = 4 - 2 = 2$   
 $\therefore$   $S_n = \frac{n}{2} [2a + (n - 1)d]$   
 $\Rightarrow$   $S_n = \frac{n}{2} [2 \times 2 + (n - 1) \times 2]$   
 $= \frac{n}{2} [4 + 2(n - 1)]$   
 $= \frac{n}{2} [4 + 2n - 2] = \frac{n}{2} [2 + 2n]$   
 $= \frac{n}{2} [2(1 + n)] = n[1 + n] = n + n^2$   
Thus,  $S_n = n + n^2$  or  $S_n = n^2 + n$ 

© Ratna Sagar

 $S_n = \frac{n}{2} [2a + (n-1)d]$ , we get using  $S_{50} = \frac{50}{2} [2(0.7) + (50 - 1) \times 0.01]$  $= 25[1.4 + 49 \times 0.01]$  $= 25[1.4 + 0.49] = 25 \times 1.89$  $=\frac{25 \times 189}{100} = \frac{4725}{100} = 47.25$ Thus  $S_{50} = 47.25$ (*iii*) We have a, (a + b), (a + 2b), ... to n terms. Here First term = aCommon diff. = a + b - a = b $S_n = \frac{n}{2} [2a + (n-1) \times b]$ *.*..  $=\frac{n}{2}[2a+nb-b]$  $= \frac{n}{2} \times 2a + \frac{n}{2} \times nb - \frac{n}{2} \times b$  $=an+\frac{n^2}{2}b-\frac{nb}{2}$  $S_n = an + \frac{bn^2}{2} - \frac{bn}{2}$  $\Rightarrow$ (*iv*) We have x + y, x - y, x - 3y ... to 20 terms a = x + y; d = (x - y) - (x + y)*.*... = x - y - x - y = -2yand n = 20 $S_n = \frac{n}{2} [2a + (n-1)d]$  $S_{20} = \frac{20}{2} \left[ 2(x+y) + (20-1) \times (-2y) \right]$  $\Rightarrow$  $S_{20} = 10[2x + 2y + 19(-2y)]$  $\Rightarrow$  $S_{20} = 20x + 20y - 380y$  $\Rightarrow$  $S_{20} = 20x - 360y$ ⇒ (v) We have  $(a - b)^2$ ,  $(a^2 + b^2)$ ,  $(a + b)^2$ , ... to *n* terms  $a = (a - b)^2 = a^2 + b^2 - 2ab$ Here.  $d = (a^2 + b^2) - (a - b)^2$  $= (a^2 + b^2) - (a^2 + b^2 - 2ab)$  $= a^2 + b^2 - a^2 - b^2 + 2ab = 2ab$ Using  $S_n = \frac{n}{2} [2a + (n-1)d]$ , we have  $S_n = \frac{n}{2} [2 \times (a^2 + b^2 - 2ab) + (n - 1) \times 2ab]$  $= \frac{n}{2} [2a^2 + 2b^2 - 4ab + 2n.ab - 2ab]$  $=\frac{n}{2}[2a^2+2b^2-6ab+2n.ab]$  $=a^2n+b^2n-3abn+abn^2$ 

(ii) We have 0.7, 0.71, 0.72, 0.73, ... to 50 terms

n = 50

a = 0.7, d = 0.71 - 0.7 = 0.01

Here,

and

2. Let the AP be  $a, a + d, a + 2d, \dots$  $a_n = a + (n-1)d$ *.*.. Let  $S_n$  be the sum of *n* terms of the above AP.  $S_n = a + (a + d) + (a + 2d) + \dots$ *.*..  $+ [a + (n - 2)d] + [a + (n - 1)d] \dots (1)$ Writing the expression (1) in reverse order,  $S_n = [a + (n - 1)d] + [a + (n - 2)d] + \dots$  $+ (a + 2d) + (a + d) + a \dots (2)$ Adding (1) and (2) vertically, we get  $2S_n = [2a + (n-1)d] + [2a + (n-1)d] + \dots$ + [2a + (n - 1)d] + [2a + (n - 1)d] $2\mathbf{S}_n = [2a + (n-1)d] \times n$  $\Rightarrow$ (:: [2a + (n - 1)d] is added *n* times)  $S_n = \frac{n}{2} [2a + (n-1)d]$  $\Rightarrow$ [which is the sum of *n* terms of the given AP] 3. (*i*) The given AP is -3, -7, -11, ... a = -3 and d = -7 - (-3) = -4*:*.. n = 14•.•  $S_{14} = \frac{14}{2} [2 (-3) + (14 - 1) \times (-4)]$ *.*..  $= 7[-6 + 13 \times (-4)]$  $= 7[-6 - 52] = 7 \times (-58) = -406$ Thus, the sum of first 14 terms is -406. (*ii*) The given AP is 2, 7, 12, ... Here a = 2, d = 7 - 2 = 5 and n = 18 $S_{18} = \frac{18}{2} [2 \times 2 + (18 - 1) \times 5]$ *.*..  $= 9[4 + 17 \times 5] = 9[89] = 801$ Thus, the sum of first 18 terms is 801. (*iii*) Let a = first term and d = common diff.  $a_3 = a + 2d = -103$ *:*.. ...(1)  $a_7 = a + 6d = -63$ ...(2) Subtracting (1) from (2), we get a + 6d - a - 2d = -63 + 103 $4d = 40 \Rightarrow d = 10$  $\Rightarrow$ From (1), we get  $a + 2(10) = -103 \implies a = -103 - 20$ a = -123or  $S_n = \frac{n}{2} [2a + (n-1)d]$ , we get Now using  $S_{54} = \frac{54}{2} \left[ 2(-123) + (54 - 1) \times 10 \right]$ = 27[-246 + 530] $= 27 \times 284 = 7668$ Thus, sum of first 54 terms = 7668 4. (i) We have to find 1 + 3 + 5 + 7 + ... + 199Here, a = 1, d = 3 - 1 = 2 and  $a_n = 199$ 

 $a_n = a + (n-1)d = 199$ 

1 + (n - 1)2 = 199 or 2n - 2 = 199 - 1 = 198 $2n = 198 + 2 = 200 \Rightarrow n = 100$ ÷. Using  $S_n = \frac{n}{2}[a+l]$ , we get  $S_{100} = \frac{100}{2} [1 + 199]$ [Here *l* = 199]  $S_{100} = 50[200] = 10000$  $\Rightarrow$ (*ii*) In 25 + 28 + 31 + ... + 100 We have a = 25, d = 28 - 25 = 3, l = 100÷  $a_n = a + (n-1)d$  $100 = 25 + (n - 1) \times 3$  $\Rightarrow$  $\therefore$   $n-1 = \frac{100-25}{3} = 25 \text{ or } n = 25 + 1 = 26$ Now using  $S_n = \frac{n}{2} [a + l]$ , we get

$$S_{26} = \frac{26}{2} [25 + 100] = 13 \times 125 = 1625$$

(iii) We have

$$\left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+\dots \text{ up to } n \text{ terms}$$
  
$$\therefore \qquad a=\left(1-\frac{1}{n}\right) d=1-\frac{2}{n}-1+\frac{1}{n}=\frac{-1}{n}$$
  
$$\therefore \qquad S_n=\frac{n}{2}\left[2\left(1-\frac{1}{n}\right)+(n-1)\times\left(\frac{-1}{n}\right)\right]$$
  
$$=\frac{n}{2}\left[2-\frac{2}{n}+\frac{1}{n}-1\right]=\left[n-1+\frac{1}{2}-\frac{n}{2}\right]$$
  
$$=\left[\frac{2n-n}{2}-\frac{1}{2}\right]=\left[\frac{n}{2}-\frac{1}{2}\right]=\left[\frac{n-1}{2}\right]$$

Alternative Solution:

$$S_n = \left(1 - \frac{1}{n}\right) + \left(1 - \frac{2}{n}\right) + \left(1 - \frac{3}{n}\right) + \dots \text{ to } n \text{ terms}$$
  
=  $(n \times 1) - \left[\frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \dots + \frac{n}{n}\right]$   
=  $n - \left[\frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \dots + 1\right]$   
=  $n - \left\{\frac{n}{2}\left[\frac{2}{n} + (n-1) \times \frac{1}{n}\right]\right\}$   
=  $n - \left\{\frac{n}{2} \times \frac{2}{n} + (n-1) \times \frac{1}{n} \times \frac{n}{2}\right\} = n - \left\{1 + \frac{n-1}{2}\right\}$   
=  $n - 1 - \frac{n-1}{2} = \frac{n}{2} - \frac{1}{2} = \frac{n-1}{2}$ 

(iv) We have

$$\left(4 - \frac{1}{n}\right) + \left(4 - \frac{2}{n}\right) + \left(4 - \frac{3}{n}\right) + \dots \text{ to } n \text{ term}$$
  
=  $(4 + 4 + \dots \text{ to } n \text{ terms}) - \frac{1}{n}(1 + 2 + 3 + \dots + n)$   
=  $4n - \frac{1}{n} \times \frac{n(n+1)}{2}$ 

81 Arithmetic Progressions

*:*..

$$= 4n - \frac{n+1}{2}$$
$$= \frac{8n - n - 1}{2}$$
$$= \frac{7n - 1}{2}$$
 which is the required sum.

5. (*i*) We have

 $a_n = 2n + 1$ [Given] ...(1) ∴ From (1),  $a_1 = 2 \times 1 + 1 = 3$ ,  $a_2 = 2 \times 2 + 1 = 5$  $a_3 = 2 \times 3 + 1 = 7$ and *.*.. Required sum =  $a_1 + a_2 + a_3$ = 3 + 5 + 7 = 15(ii) Here, a = 36 and d = -5 $a_n = a + (n-1)d$ -49 = 36 + (n - 1) (-5)⇒ (n-1)(-5) = -49 - 36 = -85⇒  $n-1 = \frac{-85}{-5} = 17$  $\Rightarrow$ n = 17 + 1 = 18 $S_n = \frac{n}{2} [2a + (n-1)d]$ Now,  $S_{18} = \frac{18}{2} [2(36) + (18 - 1) (-5)]$ *.*..  $S_{18} = 9[72 + (-85)]$  $\Rightarrow$ = 9[-13] = -117 6. AP: 5, 12, 19, ... a = 5, d = 7, n = 50 $a_{50} = a + (n-1)d$ = 5 + (49) (7)= 5 + 343 = 348 Last term (l) = 348Now to find the sum of last 15 terms a = 348, d = -7, n = 15 $S_n = \frac{15}{2} [348 \times 2 + (14) (-7)]$  $=\frac{15}{2}$  [696 - 98]  $=\frac{15}{2} \times 598$  $= 15 \times 299$ = 4485 7. Let First term = a and Common diff. = dSince,  $a_n = a + (n-1)d$ *.*..  $a_{29} = a + (29 - 1)d = a + 28d$  $\Rightarrow$  a + 28d = 248 ...(1) [: It is given that  $a_n = 248$ ]  $S_n = \frac{n}{2} [2a + (n-1)d]$ ÷

$$S_{29} = \frac{29}{2} [2a + (29 - 1)d]$$

$$\Rightarrow \frac{29}{2} [2a + 28d] = 3538 [\because \text{ It is given that } S_{29} = 3538]$$

$$\Rightarrow 2a + 28d = 3538 \times \frac{2}{29} = 244 \qquad \dots (2)$$
Subtracting (1) from (2), we get
$$2a + 28d = 244$$

$$a + 28d = 248$$

$$\frac{(-)}{a} = -4$$

Now, from (1), we get

-4 + 28d = 248 or 28d = 252

$$d = \frac{252}{28} =$$

 $\Rightarrow$ 

Then

and

 $\Rightarrow$ 

 $\Rightarrow$ 

9.

Thus, Common difference = 9

First term 
$$= -4$$

8. Let the first term and the common difference of the AP be *a* and *d* respectively. Let  $a_n$  be its *n*th term and  $S_n$  be the sum of first n terms of the AP

> $a_n = a + (n-1)d$ ...(1)

9

$$S_n = \frac{n}{2} \lfloor 2a + (n-1)d \rfloor \qquad \dots (2)$$

 $a_{14} = 40$ Now, given that a + 13d = 40[From (1)]  $\Rightarrow$  $\Rightarrow$ a = 40 - 13d...(3)  $S_{14} = 287$ Also, given that  $287 = \frac{14}{2}[2a + 13d]$ [From (2)]  $\Rightarrow$ = 7(2a + 13d)41 = 2a + 13d⇒ ...(4)

 $\therefore$  From (3) and (4), we have 2(40 - 13d) + 13d = 4180 - 41 = 13d39 = 13d

$$\Rightarrow \qquad d = 3 \qquad \dots (5)$$

: From (3), we have  $a = 40 - 13 \times 3 = 1$ ...(6)

: From (5) and (6), the required common difference and the first term are 3 and 1 respectively.

Let First term = 
$$a$$
 and Common diff. =  $d$   
 $\therefore$   $a_n = a + (n - 1)d$   
 $a_7 = a + 6d = 10$  ...(1)

Also, 
$$S_{9} = \frac{9}{2} [2a + (9 - 1) \times d] = 0$$
$$\Rightarrow 2a + 8d = 0 \qquad \dots (2)$$
Solving (1) and (2), we get

$$a = -20 \text{ and } d = 5$$
  
Now, 
$$S_{23} = \frac{23}{2} [2(-20) + (23 - 1) \times 5]$$

$$= \frac{23}{2} [-40 + 110]$$
  
=  $\frac{23}{2} \times 70 = 23 \times 35$   
= 805  
 $a_{12} = -13$ 

10.

 $S_4 = 24$ From eq.(1) we get

$$a + 11d = -13$$

a = -13 - 11d<br/>From eq.(2) we get

 $\frac{4}{2}[2a+3d] = 24$  2a + 3d = 12 ... (4) Putting the value of a from eq.(3) in eq.(4) 2(-13 - 11d) + 3d = 12 -26 - 22d + 3d = 12-19d = 38

We know

$$a = -13 - 11d$$
  
= -13 + 22  
= 9  
$$S_{10} = \frac{10}{2} [2a + (10 - 1)d]$$
  
= 5[18 + 9(-2)]  
= 5[18 - 18]  
= 0

d = -2

11. Let a = first term and d = common diff.

Since, 
$$a_n = a + (n - 1)d$$
  
 $\Rightarrow \quad a_2 = a + (2 - 1)d = a + d$   
 $a_9 = a + (9 - 1)d = a + 8d$   
Now,  $a_2 = 2$   
 $\Rightarrow \quad a + d = 2$  ...(1)  
and  $a_9 = 37$   
 $\Rightarrow \quad a + 8d = 37$  ...(2)  
Subtracting (1) from (2), we get  
 $7d = 35$   
 $\Rightarrow \quad d = 5$   
From (1),  $a + 5 = 2$   
 $\Rightarrow \quad a = -3$   
Now  $S_{40} = \frac{40}{2} [2(-3) + (40 - 1) \times 5]$   
 $= 20[-6 + 195] = 20 \times 189$   
 $= 3780$ 

12. Let *a* be the first term, *d*, the common difference,  $a_n$ , the *n*th term and  $S_n$ , the sum of the first *n* terms of the AP

Then 
$$a_n = a + (n-1)d$$
 ...(1)

| and                                | $S_n = \frac{n}{2} \Big[ 2a + (n-1)d \Big]$ | (2)        |
|------------------------------------|---------------------------------------------|------------|
| Now, given that                    | $a_4 = -15$                                 |            |
| $\Rightarrow$ a +                  | -3d = -15                                   | [From (1)] |
| $\Rightarrow$                      | a = -3d - 15                                | (3)        |
| Also, given that                   | $a_9 = -30$                                 |            |
| $\Rightarrow$ a +                  | -8d = 30                                    | [From (1)] |
| $\Rightarrow$ (-3 <i>d</i> - 15) + | -8d = -30                                   | [From (3)] |
| $\Rightarrow$                      | 5d = -15                                    |            |
| <i>∴</i>                           | d = -3                                      | (4)        |
| ∴ From (3) and (4),                | we have                                     |            |
|                                    | $a = 3 \times 3 - 15 = -6$                  | (5)        |

:. From (2),

... (1) ... (2)

... (3)

$$S_{17} = \frac{17}{2} [2 \times (-6) + (17 - 1)(-3)]$$
$$= \frac{17}{2} (-12 - 48)$$
$$= -\frac{17}{2} \times 60 = -510$$

which is the required sum.

**13.** Let First term = aCommon difference = d÷  $a_n = a + (n-1)d$  $a_1 = a + (1 - 1)d = a$ *.*..  $a_3 = a + (3 - 1)d = a + 2d$  $a_{17} = a + (17 - 1)d = a + 16d$  $a_1 + a_3 + a_{17} = 216$ Now,  $\Rightarrow a + a + 2d + a + 16d = 216$ 3a + 18d = 216 $\Rightarrow$ a + 6d = 72 $\Rightarrow$ ...(1)  $S_n = \frac{n}{2} [2a + (n-1)d]$ , we get Now, using  $S_{13} = \frac{13}{2} [2a + (13 - 1)d]$  $-\frac{13}{12}[2a+12d]$ 

$$= \frac{13}{2} \times 2[a + 6d]$$
  
= 13[a + 6d] ...(2)

...(1)

From (1) and (2), we have

$$S_{13} = 13[72] = 936$$

Thus, the sum of first thirteen terms of the AP is 936.

14. Let *a* be the first term, *d*, the common difference, *a<sub>n</sub>*, the *n*th term and S<sub>n</sub>, the sum of first *n* term of the AP. Given that *a* = 22.

$$a_n = a + (n - 1)d$$
$$= 22 + (n - 1)d$$
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

### © Ratna Sagar

÷.

and

$$= \frac{n}{2} [44 + (n-1)d] \qquad \dots (2)$$

Given that 
$$a_n = -11$$
  
 $\therefore \quad 22 + (n-1)d = -11$  [From (1)]  
 $\Rightarrow \quad (n-1)d = 22$  (2)

(n-1)d = -33...(3)

Also, given that  $S_n = 66$ ηг

$$\Rightarrow \quad \frac{n}{2} \lfloor 44 + (n-1)d \rfloor = 66 \qquad [From (2)]$$

 $\frac{n}{2}[44 - 33] = 66$ [From (3)]  $\Rightarrow$ 11n = 132

 $\Rightarrow$ 

$$\Rightarrow \qquad n = \frac{132}{11} = 12 \qquad \dots (4)$$

:. From (3), 
$$d = \frac{-33}{12 - 1} = \frac{-33}{11} = -3$$
 ...(5)

Hence, from (4) and (5), the required value of n and d are 12 and -3 respectively.

**15.** Let First term = a and Common difference = d

$$S_n = \frac{n}{2}[a+l]$$

$$S_{26} = \frac{26}{2}[a+67] \quad [\text{It is given that } l = 67]$$

$$\Rightarrow \quad 1092 = 13[a+67]$$
or
$$a+67 = \frac{1092}{13} = 84$$

$$\Rightarrow \quad a = 84 - 67 = 17$$

$$\Rightarrow \quad \text{First term = 17}$$
Again
$$S_{26} = 1092$$

$$\Rightarrow \quad \frac{26}{2}[2(17) + (26 - 1)d] = 1092$$

$$[\text{Using } S_n = \frac{n}{2}[2a + (n-1)]d]$$

$$\Rightarrow \quad 13[34 + 25d] = 1092$$

$$\Rightarrow \quad 34 + 25d = \frac{1092}{13} = 84$$

$$\Rightarrow \quad 25d = 84 - 34 = 50$$

$$\Rightarrow \quad d = \frac{50}{25} = 2$$

$$\therefore \text{ Common difference = 2}$$

16. Let the two first terms of the first and the second AP's be  $a_1$  and  $a_2$  respectively and let d be their same common difference. Then  $a_1 = 3$  and  $a_2 = 8$ .

Let S and S' be the sums of the first 50 terms of the two AP's respectively.

Then

$$S = \frac{50}{2} [2a_1 + (50 - 1)d]$$
  
= 25 (2 × 3 + 49d)  
= 150 + 25 × 49d ...(1)  
S' =  $\frac{50}{2} [2a_2 + 49d]$ 

and

$$= 25(2 \times 8 + 49d) = 400 + 25 \times 49d \qquad \dots (2)$$

Subtracting (1) from (2), we get

S' - S = 400 - 150 = 250

which is the required difference.

17. Let *a* be the first term, *d*, the common difference,  $a_n$ , the *n*th term and  $S_n$ , the sum of the first *n* terms of the AP. Then we have

$$a_n = a + (n-1)d \qquad \dots (1)$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 ...(2)

Given that

and

Given that 
$$a_{16} = 5a_3$$
  
 $\Rightarrow \qquad a + 15d = 5(a + 2d)$  [From (1)]  
 $\Rightarrow \qquad 4a - 5d = 0$ 

$$\Rightarrow \qquad a = \frac{5d}{4} \qquad \dots (3)$$

Also, given that  $a_{10} = 41$ 

$$\Rightarrow \qquad a + 9d = 41 \qquad [From (1)]$$

$$\Rightarrow \qquad \frac{5d}{4} + 9d = 41 \qquad [From (3)]$$

$$\Rightarrow \qquad \frac{41d}{4} = 41$$
$$\Rightarrow \qquad d = 4 \qquad \dots (4)$$

:. From (3), 
$$a = \frac{5}{4} \times 4 = 5$$
 ...(5)

∴ From (2), (4) and (5), we have

41d

$$S_{15} = \frac{15}{2} [2 \times 5 + (15 - 1)4]$$
$$= \frac{15}{2} (10 + 56)$$
$$= 15 \times 33 = 495$$

which is the required sum.

$$a_{5} = a + 4d = 8 \qquad \dots(1)$$

$$a_{8} = a + 7d$$

$$a_{2} = a + d$$

$$\therefore \qquad a_{8} = 3(a_{2}) + 2$$

$$\therefore \qquad a + 7d = 3(a + d) + 2$$

$$\Rightarrow \qquad a - 3a + 7d - 3d = 2$$

$$\Rightarrow \qquad -2a + 4d = 2$$

$$\Rightarrow \qquad a - 2d = -1 \qquad \dots(2)$$
Solving (1) and (2), we get

Now

18.

$$\Rightarrow \qquad S_{15} = \frac{15}{2} \left[ 2(2) + (15 - 1) \times \frac{3}{2} \right] = \frac{15}{2} [4 + 21]$$
$$= \frac{15}{2} \times 25 = \frac{375}{2} = 187.5$$

a = 2 and  $d = \frac{3}{2}$  or 1.5

 $S_n = \frac{n}{2} [2a + (n-1)d]$ 

Thus, a = 2, d = 1.5 and  $S_{15} = 187.5$ 

19. 
$$a_{13} = 4a_3$$
 ... (1)  
 $a_5 = 16$  ... (2)  
 $a + 4d = 16$  ... (3)  
Now from eq.(1) we get  
 $a + 12d = 4(a + 2d)$   
 $a + 12d = 4a + 8d$   
 $3a = 4d$  ... (4)  
Now putting the value of *d* from eq.(4) in eq.(3), we get  
 $a + 4d = 16$   
 $a + 3a = 16$   
 $4a = 16$   
 $a = 4$   
We know  
 $d = \frac{3a}{4} = \frac{12}{4} = 3$   
 $S_{10} = \frac{n}{2}[2a + (n - 1)d]$   
 $= \frac{10}{2}[8 + 9(3)]$   
 $= 5[8 + 27]$   
 $= 5 \times 35$   
 $= 175$   
20.  $S_7 = 49$  ... (1)  
 $S_{17} = 289$  ... (2)  
 $S_n = ?$   
From equation (1) we get  
 $\frac{7}{2}[2a + (6)d] = 49$ 

2a + 6d = 14

$$a + 3d = 7$$
 ... (3)  
From equation (2) we get

$$\frac{17}{2} [2a + 16d] = 289$$
  

$$2a + 16d = 34$$
  

$$a + 8d = 17$$
 ... (4)

Subtracting equation (1) from equation (2) we get

$$a + 8d = 17$$
$$\underline{a + 3d} = \underline{7}$$
$$5d = 10$$
$$d = 2$$

We know

$$a = 7 - 3d$$
  
= 1  
$$S_n = \frac{n}{2} [2(1) + (n - 1)2]$$
  
=  $\frac{n}{2} [2 + 2n - 2]$   
=  $\frac{2n^2}{2}$   
=  $n^2$ 

**21.** Let *a* be the first term, *d*, the common difference and  $S_{n'}$  the sum of the first *n* term of the AP.

the sum of the first *n* term of the AP.  
Then 
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 ...(1)  
Now,  $S_9 = 81$   
 $\Rightarrow \frac{9}{2} [2a + 8d] = 81$   
 $\Rightarrow 9(a + 4d) = 81$   
 $\Rightarrow a + 4d = 9$   
 $\therefore a = 9 - 4d$  ...(2)  
Also, it is given that  
 $S_{20} = 400$   
 $\Rightarrow \frac{20}{2} (2a + 19d) = 400$   
 $\Rightarrow 2a + 19d = 40$  [From (2)]  
 $\Rightarrow 11d = 40 - 18 = 22$   
 $\Rightarrow d = \frac{22}{11} = 2$  ...(3)  
 $\therefore$  From (2),  $a = 9 - 4 \times 2 = 1$  ...(4)  
 $\therefore$  From (2),  $a = 9 - 4 \times 2 = 1$  ...(4)  
 $\therefore$  From (4) and (3), the required first term and the common difference of the AP are 1 and 2 respectively.  
Let *a* be the first term, *d*, the common difference and  $S_{n'}$   
the sum of the first *n* terms of the AP. Then  
 $S_n = \frac{n}{2} [2a + (n-1)d]$  ...(1)  
Given that  $S_4 = 40$   
 $\Rightarrow 2a + 3d = 20$  ...(2)  
Also, given that  $S_{14} = 280$   
 $\Rightarrow 2a + 13d = 40$  ...(3)  
Subtracting (2) from (3), we get  
 $10d = 20$   
 $\therefore d = 2$  ....(4)  
Also, from (2)  $2a = 20 - 3 \times 2 = 14$   
 $\Rightarrow a = 7$  ....(5)

.:. From (1), (4) and (5), we get

$$S_n = \frac{n}{2} [14 + (n-1)2]$$
  
= n(7 + n - 1)  
= n(n + 6)  
= n<sup>2</sup> + 6n

which is the required sum.

**23.** Let *a* be the first term, *d*, the common difference,  $a_{n'}$  the *n*th term and  $S_{n'}$  the sum of the first *n* terms of the AP. Then

$$a_n = a + (n-1)d \qquad \dots (1)$$

## © Ratna Sagar

22.

and 
$$S_n = \frac{n}{2}[2a + (n - 1)d]$$
 ...(2)  
Given that  $S_7 = 63$   
 $\Rightarrow \frac{7}{2}(2a + 6d) = 63$  [From (2)]  
 $\Rightarrow 7(a + 3d) = 63$   
 $\Rightarrow a + 3d = 9$   
 $\Rightarrow a = 9 - 3d$  ...(3)  
Also, given that  
 $S_{14} = 63 + 161 = 224$   
 $\Rightarrow \frac{14}{2}(2a + 13d) = 224$   
 $\Rightarrow 7(2a + 13d) = 224$   
 $\Rightarrow 2a + 13d = 32$  [Using (3)]  
 $\Rightarrow 7d = 32 - 18 = 14$   
 $\Rightarrow d = \frac{14}{7} = 2$  ...(4)  
 $\therefore$  From (3) and (4),  
 $a = 9 - 3 \times 2 = 3$  ...(5)  
Hence, from (1), (4) and (5), we have  
 $a_{28} = 3 + 27 \times 2 = 57$   
which is the required term.  
 $\therefore$  Sum of first 10 terms of the AP = -150  
 $\Rightarrow 5[2a + 9d] = -150$   
 $\Rightarrow 2a + 9d = -\frac{150}{5} = -30$   
 $\therefore 2a + 9d = -\frac{150}{5} = -30$   
 $\therefore 2a + 9d = -\frac{150}{5} = -30$   
 $\therefore 2a + 9d = -30$  ...(1)  
Since, sum of next 10 terms = -550  
 $\therefore$  Sum of first 10 + 10, i.e. 20 terms  
 $= -550 + (-150) = -700$   
 $\therefore 2a + 19d = -70$   
 $\therefore 2a + 19d = -70$  ...(2)  
Solving (1) and (2), we have:  
 $a = 3$  and  $d = -4$   
Now, an AP is given by:  
 $a + d, a + 2d, a + 3d, ...$   
 $The required AP$  is  
 $[3], [3 + (-4)], [3 + 2(-4)], [3 + 3(-4)], ...$   
or  $3, -1, -5, -9, ...$ 

24.

25.

 $S_n =$ Sum of first *n* terms  $= \frac{n}{2} [2a + (n-1)d]$ ÷  $S_3 = Sum of first three terms$ *.*..  $= \frac{3}{2} \left[ (2 \times 6) + (3 - 1)d \right]$  $=\frac{3}{2}[12+2d]=18+3d$ ...(1)  $S_6 = Sum of first six terms$  $= \frac{6}{2} \left[ (2 \times 6) + (6 - 1)d \right]$ = 3[12 + 5d] = 36 + 15d...(2)  $S_3 = \frac{1}{2}(S_6 - S_3)$   $\Rightarrow 2S_3 = S_6 - S_3$ Now,  $\Rightarrow 2S_3 + S_3 = S_6 \text{ or } 3S_3 = S_6$ ...(3) From (1), (2) and (3), we get 3[18 + 3d] = 36 + 15d54 + 9d = 36 + 15d or 9d - 15d = 36 - 54 $\Rightarrow$ -6d = -18 :  $d = \frac{-18}{6} = 3$  $\Rightarrow$ Thus, the common difference = 3**26.** Here, a = 20 and common difference = dSum of first 6 terms =  $S_6$ Sum of first 12 terms =  $S_{12}$  $S_6 = 5[S_{12} - S_6]$ Since,  $S_6 = 5S_{12} - 5S_6$  $\Rightarrow$  $S_6 + 5S_6 = 5S_{12}$  $\Rightarrow 6S_6 = 5S_{12}$  $\Rightarrow$  $\therefore \quad 6\left\lceil \frac{6}{2} \{(2 \times 20) + (6 - 1)d\} \right\rceil = 5\left\lceil \frac{12}{2} \{(2 \times 20) + (12 - 1)d\} \right\rceil$  $6[3\{40 + 5d\}] = 5[6\{40 + 11d\}]$  $\Rightarrow$  $6 \times 3(40 + 5d) = 6 \times 5(40 + 11d)$  $\Rightarrow$ 3(40 + 5d) = 5(40 + 11d) $\Rightarrow$ 120 + 15d = 200 + 55d $\Rightarrow$ 55d - 15d = 120 - 200 or 40d = -80 $\Rightarrow$  $d = -\frac{80}{40} = -2$  $\Rightarrow$ Thus, the required common difference = -227. Let *a* be the first term and *d*, the common difference of the AP.

Now,  

$$S_{n} = \frac{n}{2} [2a + (n-1)d]...(1)$$
Given that  

$$S_{5} + S_{7} = 167$$

$$\Rightarrow \frac{5}{2}(2a + 4d) + \frac{7}{2}(2a + 6d) = 167$$
[From (1)]  

$$\Rightarrow 5(a + 2d) + 7(a + 3d) = 167$$

$$\Rightarrow 12a + 31d = 167$$
...(2)
Also, given that  

$$S_{10} = 235$$

$$\Rightarrow \frac{10}{2}(2a + 9d) = 235$$
[From (1)]  

$$\Rightarrow 2a + 9d = 47$$

Arithmetic Progressions | 23

⇒ 
$$a = \frac{47 - 9d}{2}$$
 ...(3)  
∴ From (2) and (3), we have  
 $12 \times \frac{(47 - 9d)}{2} + 31d = 167$   
⇒  $282 - 54d + 31d = 167$   
⇒  $23d - 282 - 167 = 115$   
∴  $d = \frac{115}{23} = 5$  ...(4)  
∴ From (3), we have  $a = \frac{47 - 9 \times 5}{2} = \frac{2}{2} = 1$  ...(5)  
∴ From (4) and (5), the required AP is 1, 1 + 5, 1 + 10, 1  
+ 15 ..., i.e. 1, 6, 11, 16,...  
28. First term =  $a = 4$   
Let Common diff. =  $d$   
Last term,  $l = 61$   
and  $S_n = 650$   
∴  $S_n = \frac{n}{2}(a + l)$   
⇒  $\frac{n}{2}(4 + 61) = 650$   
⇒  $n \times 65 = 2 \times 650$   
⇒  $n = \frac{2 \times 650}{65} = 20$   
Now,  $S_n = \frac{n}{2}[2a + (n - 1)d]$   
∴  $S_{20} = \frac{20}{2}[(2 \times 4) + (20 - 1)d] = 650$   
⇒  $8 + 19d = \frac{650}{10} = 65$   
⇒  $19d = 65 - 8 = 57$   
∴  $d = \frac{57}{19} = 3$   
29. First term =  $a = 2$   
Last term =  $l = 29$   
Sum of the terms = 155  
Let the term of the AP be  $n$   
∴ Using  $S_n = \frac{n}{2}(a + l)$ , we have  
 $\frac{n}{2}(2 + 29) = 155$   
⇒  $n(31) = 155 \times 2$   
⇒  $n = \frac{155 \times 2}{31} = 10$ 

Now, using  $S_n = \frac{n}{2} [2a + (n-1)d]$ We get  $155 = \frac{10}{2} [2 \times 2 + (10-1)d]$  $\Rightarrow 5[4 + 9d] = 155$ 

$$\Rightarrow \qquad 4 + 9d = \frac{155}{5} = 31$$
$$\Rightarrow \qquad 9d = 31 - 4 = 27$$
$$\therefore \qquad d = \frac{27}{9} = 3$$

Thus, the common difference = 3

**30.** Let the first term a = 7, d, the common difference, last term, l = 49,  $a_n$  be the nth term and  $S_n$  be the sum of the first *n* terms of the AP.

 $a_n = a + (n-1)d$ 

 $S_n = \frac{n}{2} \left[ 2a + (n-1)d \right]$ 

$$= 7 + (n - 1)d$$
 ...(1)

$$= \frac{n}{2} \Big[ 14 + (n-1)d \Big] \qquad \dots (2)$$

If *n* is the total number of terms of the AP, then  $l = a_n$ 

 $\Rightarrow 49 = 7 + (n - 1)d \qquad [From (1)]$   $\Rightarrow (n - 1)d = 49 - 7 = 42 \qquad ...(3)$   $\therefore \text{ From (2),} S_n = 420$   $\Rightarrow \frac{n}{2} [14 + (n - 1)d] = 420$   $\Rightarrow \frac{n}{2} [14 + 42] = 420 \qquad [From (3)]$ 

$$\Rightarrow \frac{n}{2}[14+42] = 420$$
 [From (3)]

$$\Rightarrow \qquad \frac{n}{2} \times (56) = 420$$

$$n = \frac{420}{28} = 15 \qquad \dots (4)$$

:. From (3), 
$$d = \frac{42}{n-1} = \frac{42}{14} = 3$$
 ...(5)

 $\therefore$  From (5), the required common difference is **3**.

**31.** Given that the first term, a = -4, the last term, l = 29. If *n* be the total number of terms of the AP, then

$$a_n = l = 29$$
Now,
$$a_n = a + (n - 1)d$$

$$= -4 + (n - 1)d$$

$$\Rightarrow \qquad 29 = -4 + (n - 1)d$$

$$\Rightarrow \qquad (n - 1)d = 33 \qquad \dots (1)$$
If S he the sum of the first is terms of the AB, then

If  $S_n$  be the sum of the first *n* terms of the AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2a + 33]$  [From (1)]

$$= \frac{n}{2} [-8 + 33] = \frac{25n}{2} \qquad \dots (2)$$

It is given that  $S_n = 150$ .

*.*..

[From (2)]

$$\Rightarrow \qquad n = \frac{300}{25} = 12$$

 $\frac{25n}{2} = 150$ 

:. From (1), 
$$d = \frac{33}{12 - 1} = 3$$
 ...(3)

.:. The required common difference is 3.

**32.** Given that first term, a = 5 and the last term, l = 45Let *n* be the number of terms of the AP,  $a_n$ , the *n*th term and  $S_{n'}$  the sum of first *n* terms of the AP.

$$a_n = l = 45$$
 ...(1)  
 $a_n = 5 + (n-1)d$  (2)

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [10 + (n-1)d]$  ...(3)

From (1) and (2), 45 = 5 + (n - 1)d1)d = 45 = 5 = 40

⇒ 
$$(n-1)d = 45 - 5 = 40$$
 ...(4)  
Now,  $S_n = 400$ 

$$\Rightarrow \frac{n}{2}[10+40] = 400$$
 [From (3) and (4)]

$$\Rightarrow \qquad n = \frac{800}{50} = 16 \qquad \dots(5)$$

:. From (4), 
$$d = \frac{40}{16 - 1} = \frac{40}{15} = \frac{8}{3}$$
 ...(6)

 $\therefore$  From (5) and (6), the required values of *n* and *d* are respectively 16 and  $\frac{8}{3}$ 

33.

Then

|               | u = -3, u = 96 and $t = 66$                              |
|---------------|----------------------------------------------------------|
| <i>∴</i>      | $a_n = 66$                                               |
| $\Rightarrow$ | a + (n-1)d = 66                                          |
| $\Rightarrow$ | 96 + (n - 1) (-3) = 66                                   |
| $\Rightarrow$ | (n-1)(-3) = -30                                          |
| $\Rightarrow$ | (n-1) = 10                                               |
| <i>∴</i> .    | n = 11                                                   |
| No            | w $S_{11} = \frac{11}{2} [96 + 66] = \frac{11}{2} [162]$ |
|               | = 891                                                    |

**34.** Here the first term, a = 5

The common difference, d = 12 - 5 = 7

It  $a_n$  be the *n*th term and  $S_n$  be the sum of the first *n* terms of the AP, then

 $a_n = a + (n-1)d$ 

= 5 + (n - 1)7= 7n - 2

and

*.*..

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} [2 \times 5 + (n-1)7]$$

$$= \frac{n}{2} [10 + 7n - 7]$$

$$= \frac{n(7n+3)}{2} \qquad \dots (2)$$

It is given that the AP has 50 terms.

$$a_{50} = 7 \times 50 - 2$$
  
= 350 - 2 = 3

.:. Required last term = 348

Now, the sum of the last 15 terms of the AP

= the sum of the whole 50 terms of the AP - the sum of 50 - 15, i.e. 35 terms of the AP from the beginning  $= S_{50} - S_{35}$ 

$$= \frac{50 \times (7 \times 50 + 3)}{2} - \frac{35 \times (7 \times 35 + 3)}{2}$$
[From (2)]  
=  $25 \times 353 - \frac{35 \times 248}{2}$   
=  $8825 - 35 \times 124$   
=  $8825 - 4340$   
=  $4485$ 

: Required sum of the last 15 terms of the AP is 4485.

**35.** In the given AP, the first term, a = 8, the common difference, d = 10 - 8 = 2, n =total number of terms = 60. Let  $a_n$  be the *n*th term and  $l = \text{last term} = a_{60}$ .

Now,  

$$a_n = a + (n - 1)d$$
  
 $= 8 + (n - 1)2$   
 $= 2n + 6$  ...(1)  
∴  $l = a_{60} = 2 \times 60 + 6$  [From (1)]  
 $= 126$ 

which is the required last term.

Now,

$$S_{n} = \frac{n}{2} [2a + (n - 1)d]$$
  
=  $\frac{n}{2} [2 \times 8 + (n - 1)2]$   
=  $n(8 + n - 1)$   
=  $n(7 + n)$   
=  $7n + n^{2}$  ...(2)

: Sum of the last 10 terms of the AP Course of the first (O terms - Cours

= Sum of the first 60 terms – Sum of the first 50 terms  
= 
$$S_{60} - S_{50}$$
  
= 7 × 60 + 60<sup>2</sup> - (7 × 50 + 50<sup>2</sup>)  
= 420 + 3600 - 350 - 2500  
= 70 + 1100 = **1170**

which is the required Sum of the last 10 terms of the AP. **36.** Let a = First term, and

d =Common difference

Now, substituting a = -16 and d = 2, in (1), we get

© Ratna Sagar

...(1)

$$\frac{n}{2} [2(-16) + (n - 1)2] = 18$$
  

$$\Rightarrow -16n + n^2 - n = 18$$
  

$$\Rightarrow n^2 - 17n - 18 = 0$$
  
Solving  $n^2 - 17n - 18 = 0$ , we get  
 $n = -1$  or  $n = 18$ 

Rejecting the negative value of n, we get

$$n = 18$$

37. In the given AP, the first term, a = -12, the common difference, d = -9 + 12 = 3

Let the number of terms of the original AP be n.

Let  $a_n$  be the *n*th term of the original AP and  $S_n$  be the sum of its first *n* terms.

| Then          | $a_n = \text{last term}$ |
|---------------|--------------------------|
| $\Rightarrow$ | 21 = a + (n-1)d          |
|               | = -12 + 3(n - 1)         |
|               | = 3n - 15                |
| $\Rightarrow$ | 21 + 15 = 3n             |
| $\Rightarrow$ | 36 = 3n                  |
| $\Rightarrow$ | <i>n</i> = 12            |
|               |                          |

which is the required number of terms.

Also,

$$= \frac{n}{2} \left[ -2 \times 12 + (n-1)3 \right]$$
$$= \frac{n}{2} \left[ -24 + 3n - 3 \right]$$
$$= \frac{n(3n-27)}{2} \qquad \dots(1)$$

 $S_n = \frac{n}{2} \left\lceil 2a + (n-1)d \right\rceil$ 

 $\therefore$  When n = 12, then from (1)

$$S_n = \frac{12 \times (3 \times 12 - 27)}{2}$$
  
= 6 × (36 - 27)  
= 54 ...(2)

Now, if 1 is added to each of 12 terms of the original AP, then the sum of all the 12 new terms of the AP is  $54 + 12 \times 1 = 66$  which is the required sum of all the terms of the new AP.

**38.** We have 54, 51, 48, ... are in AP.

:. 
$$a = 54$$
  
 $d = 51 - 54 = (-3)$ 

Let the number of terms be 'n'.



⇒ 
$$37n - n^2 = 342$$
  
⇒  $n^2 - 37n + 342 = 0$   
⇒  $n^2 - 18n - 19n + 342 = 0$   
⇒  $n(n - 18) - 19 (n - 18) = 0$   
⇒  $(n - 19) (n - 18) = 0$   
∴  $n = 18 \text{ or } n = 19$   
Thus,  $n = 18 \text{ or } n = 19$   
39. AP: 27, 24, 21, 18, ...  
Given that  $S_n = 0, a = 27, d = -3$   
 $S_n = \frac{n}{2} [2a + (n - 1)d]$   
⇒  $0 = \frac{n}{2} [54 + (n - 1)(-3)]$   
⇒  $54n + n(n - 1)(-3) = 0$   
⇒  $54n + (-3)(n^2 - n) = 0$   
⇒  $54n - 3n^2 + 3n = 0$   
⇒  $n(3n - 57) = 0$   
⇒  $n = 0 \text{ or } n = \frac{57}{3} = 19$   
 $n = 0 \text{ does not satisfy the condition.$ 

 $\therefore$  n = 19

40. In the given AP, the first term, a = 9, common difference, d = 17 - 9 = 8. Let n be the required number of terms of the AP, with sum S<sub>n</sub> = 363 ...(1)

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 9 + (n-1)8]$   
=  $n (9 + 4n - 4)$   
=  $n(5 + 4n)$   
=  $4n^2 + 5n$  ...(2)

 $\therefore$  From (1) and (2), we have

$$4n^2 + 5n - 636 = 0$$

Comparing this quadratic equation with the standard quadratic equation  $Ax^2 + Bx + C = 0$ , we have A = 4, B = 5 and C = -636.

$$\therefore \qquad n = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$
$$= \frac{-5 \pm \sqrt{5^2 + 4 \times 636 \times 4}}{2 \times 4}$$
$$= \frac{-5 \pm \sqrt{25 + 10176}}{8}$$
$$= \frac{-5 \pm \sqrt{10201}}{8}$$
$$= \frac{-5 \pm 101}{8}$$
$$= \frac{96}{8}, -\frac{106}{8}$$

$$= 12, -\frac{53}{4}$$

Neglecting the negative value of *n*, i.e. neglecting  $n = -\frac{53}{4}$  which is not a natural number, we get n = 12.  $\therefore$  Required number of terms = **12**.

a = 78

41.

d = 71 - 78 = -7  $S_n = 468$   $\therefore \qquad S_n = \frac{n}{2} [2a + (n - 1)d]$   $\therefore \qquad \frac{n}{2} [2(78) + (n - 1)(-7)] = 468$ Solutions the supervise and rejection the preservities

Solving the quadratic equation and rejecting the negative value, we get

n = 13

 $\therefore$  The required number of terms = 13

Again, using

$$S_n = \frac{n}{2} (a + l), \text{ we get}$$

$$\frac{13}{2} (78 + l) = 468$$

$$\Rightarrow 78 + l = 468 \times \frac{2}{13} = 72$$

$$\Rightarrow l = 72 - 78 = -6$$

$$\therefore \text{ Last term} = -6$$
42. Terms of the AP are -7,  $\frac{-13}{2}$ , -6,  $\frac{-11}{2}$ , -5, ...

Here,

$$d = \frac{-13}{2} - (-7) = \frac{-13 + 14}{2} = \frac{1}{2}$$

Let the required number of terms be n

a = -7

 $S_n = -45$ 

Using

*.*..

 $\Rightarrow$ 

⇒

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\hat{\uparrow}$  $\hat{\uparrow}$  $\hat{\uparrow}$ 

÷.

g 
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
, we get  
 $\frac{n}{2} \left[ 2(-7) + (n-1) \left(\frac{1}{2}\right) \right] = -45$   
 $n \left[ -14 - \frac{1}{2} + \frac{n}{2} \right] = -90$   
 $n \left[ \frac{-29}{2} + \frac{n}{2} \right] = -90$   
 $\frac{-29n}{2} + \frac{n^2}{2} = -90$   
 $-29n + n^2 = -180$   
 $n^2 - 29n + 180 = 0$   
 $n^2 - 20n - 9n + 180 = 0$   
 $n(n-20) - 9(n-20) = 0$   
 $(n-9)(n-20) = 0$   
 $n = 9$  and  $n = 20$ 

Thus, the required number of terms is 9 or 20.  $\Rightarrow$  Sum of first 9 terms = Sum of first 20 terms. It means sum of all terms of 10th to 20th is **zero**.

**43.** 
$$\therefore$$
  $a_n = 4 + 3n$  [Given]  
 $\therefore$   $a_1 = \text{First term} = 4 + 3(1) = 7$   
 $a_2 = \text{Second term} = 4 + 3(2) = 10$   
 $\Rightarrow$   $d = (a_2 - a_1) = 10 - 7 = 3$   
Now  $S_n = \frac{n}{2} [2a + (n - 1)d]$  [ $\because a = 7, d = 3$ ]  
 $\therefore$   $S_n = \frac{n}{2} [2(7) + 3n - 3]$   
 $\Rightarrow$   $S_n = \frac{n}{2} [14 - 3 + 3n]$   
 $\Rightarrow$   $S_n = \frac{n}{2} [11 + 3n]$   
**44.**  $\because$  The *n*th term of AP = 2n + 1

$$\begin{array}{ll} \therefore & a_n = 2n + 1 \\ \Rightarrow & a_1 = 2(1) + 1 = 3 & [First term] \\ & a_2 = 2(2) + 1 = 5 & [Second term] \\ \therefore & d = a_2 - a_1 = 5 - 3 = 2 \\ \\ \text{Now,} & S_n = \frac{n}{2} \left[ 2a + (n - 1)d \right] \\ & = \frac{n}{2} \left[ 2(3) + (n - 1) \left( 2 \right) \right] \\ & = \frac{n}{2} \left[ 6 + 2n - 2 \right] \\ & = \frac{n}{2} \left[ 4 + 2n \right] = \frac{n}{2} \times 2 \left[ 2 + n \right] \\ & = n \left[ 2 + n \right] = 2n + n^2 \end{array}$$

Thus, the sum of *n* terms =  $n^2 + 2n$ 

45. 
$$\therefore$$
 *n*th term =  $\frac{31-n}{3}$   
 $\therefore$   $a_n = \frac{31-n}{3}$   
 $\Rightarrow$   $a_1 = \frac{31-1}{3} = \frac{30}{3} = 10$   
 $a_2 = \frac{31-2}{3} = \frac{29}{3} = 9\frac{2}{3}$   
 $a_3 = \frac{31-3}{3} = \frac{28}{3} = 9\frac{1}{3}$   
 $a_4 = \frac{31-4}{3} = \frac{27}{3} = 9$ 

 $\therefore$  The required sequence is

... ...

10, 
$$9\frac{2}{3}$$
,  $9\frac{1}{3}$ , 9, ...

Now a = 10

÷

$$d = a_2 - a_1 = \frac{29}{3} - 10 = \frac{29 - 30}{3} = -\frac{1}{3}$$
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

$$S_{12} = \frac{12}{6} \left[ 2(10) + (12 - 1)\left(-\frac{1}{3}\right) \right]$$
$$= 6 \left[ 20 + \left(-\frac{11}{3}\right) \right]$$
$$= 6 \left[ \frac{60 - 11}{3} \right] = 6 \times \frac{49}{3}$$
$$= 2 \times 49 = 98$$
$$\Rightarrow S_{12} = 98$$

$$\Rightarrow$$
 S<sub>12</sub> = 9

**46.** It  $a_r$  denote any *r*th term of the AP,  $a_r = 5r - 1$ then

 $S_n = \sum_{r=1}^n a_r = \sum_{r=1}^n (5r - 1) [From (1)]$  $= 5\sum_{r=1}^{n} r - n$  $= \frac{5 \times n(n+1)}{2} - n$  $=\frac{5n^2+5n-2n}{2}$  $=\frac{5n^2+3n}{2}$ 

[Given] ...(1)

50.

51.

which is the required sum of the first n terms of the AP. From this, we have

$$S_{20} = \frac{5 \times 20^2 + 3 \times 20}{2}$$
$$= \frac{2000 + 60}{2}$$
$$= \frac{2060}{2}$$
$$= 1030$$

which is the required value of  $S_{20}$ .

47. Let  $a_p$  be the *p*th term and  $S_p$  be the sum of the first *p* terms of the AP.

Then

$$S_{p} = ap^{2} + bp \qquad \dots(1)$$

$$a_{p} = S_{p} - S_{p-1} \qquad \text{[Given]}\dots(2)$$

$$= ap^{2} + bp - a(p-1)^{2} - b(p-1)$$

$$= ap^{2} + bp - ap^{2} + 2ap - a - bp + b$$

$$= 2ap + b - a \qquad \dots(3)$$

If d be the common difference, then

$$d = a_p - a_{p-1}$$
  
= 2ap + b - a - 2a(p - 1) - b + a [Using(3)]  
= 2ap + b - a - 2ap + 2a - b + a  
= 2a

which is the required common difference.

**48.** Let  $S_n$  be the sum of the first *n* terms of the AP.  $S_n = n^2$ Then [Given] ...(1)  $\therefore$  If  $a_n$  be the *n*th term of the AP, then  $a_n = S_n - S_{n-1}$ ...(2)

$$= n^{2} - (n - 1)^{2}$$
 [From (1)]  
=  $(n + n - 1) (n - n + 1)$   
=  $2n - 1$  ...(3)

Hence,  $a_{10} = 2 \times 10 - 1 = 19$  which is the required 10th term.

**49.** It  $a_n$  be the *n*th term, then

$$a_n = S_n - S_{n-1}$$
  
=  $2n^2 + 3n - 2(n-1)^2 - 3(n-1)$   
=  $2n^2 + 3n - 2n^2 + 4n - 2 - 3n + 3$   
=  $4n + 1$  ...(1)  
  
 $\therefore$   $a_{16} = 4 \times 16 + 1$  [From (1)]  
=  $65$  which is the required 16th term.  
  
 $\therefore$   $S_n = 3n^2 - 4n$   
  
 $\therefore$   $S_1 = 3(1)^2 - 4(1) = -1$   $\Rightarrow a = -1$   
 $S_2 = 3(2)^2 - 4(2) = 4$   
Since,  $S_2 =$  sum of first two terms =  $4$   
  
 $\therefore$   $a + (a + d) = 4$   
  
 $\Rightarrow$   $(-1) + (-1 + d) = 4$  or  $d = 4 + 2 = 6$   
Now  $a_n = a + (n - 1)d$   
  
 $\therefore$   $a_n = -1 + (n - 1) \times 6$   
 $= -1 + 6n - 6 = 6n - 7$   
Thus the *n*th term is  $6n - 7$ .

$$S_n = \frac{1}{2} (3n^2 + 7n)$$
  
=  $\frac{3}{2}n^2 + \frac{7}{2}n$  ... (1)

We know

$$S_{n} = \frac{n}{2} [2a + (n - 1)d]$$
  
=  $an + n(n - 1)\frac{d}{2}$   
=  $an + n^{2}\frac{d}{2} - n\frac{d}{2}$   
=  $n^{2}\frac{d}{2} + n\left(a - \frac{d}{2}\right)$  ... (2)

Comparing equations (1) and (2) we get

$$\frac{d}{2} = \frac{3}{2} \qquad a - \frac{d}{2} = \frac{7}{2}$$

$$d = 3 \qquad a - \frac{3}{2} = \frac{7}{2}$$

$$a = 5$$

$$a_n = a + (n - 1)d$$

$$= 5 + (n - 1)3$$

$$= 5 + 3n - 3$$

$$= 3n + 2$$

$$a_{20} = a + (n - 1)d$$

$$= a + 19d$$

$$= 5 + 57$$

$$= 62$$

### © Ratna Sagar

Arithmetic Progressions \_ 28 **52.** Let  $S_n$  be the sum of the first *n* terms of the AP and  $a_n$  be its *n*th term.

Then 
$$S_n = \frac{3n^2 + 5n}{2}$$
 ...(1)

Then  $a_n = S_n - S_{n-1}$  [Given]

$$= \frac{3n^2 + 5n - 3(n-1)^2 - 5(n-1)}{2} [From (1)]$$
  
=  $\frac{3n^2 + 5n - 3n^2 + 6n - 3 - 5n + 5}{2}$   
=  $\frac{6n+2}{2}$   
=  $3n + 1$  ....(2)

which is the required *n*th term.

$$a_{25} = 3 \times 25 + 1 = 76$$

which is the required **25th** term. [From (2)]

53. Let S<sub>n</sub> be the sum of the first *n* terms of the AP and *a*<sub>n</sub> be its *n*th term.

Then 
$$S_n = \frac{5n^2 + 3n}{2}$$
 [Given] ...(1)  
Then  $a_n = S_n - S_{n-1}$ 

$$= \frac{5n^2 + 3n - 5(n-1)^2 - 3(n-1)}{2}$$
$$= \frac{5n^2 + 3n - 5n^2 + 10n - 5 - 3n + 3}{2}$$
$$= \frac{10n - 2}{2}$$
$$= 5n - 1$$

which is the required *n*th term.

- ∴ From (2),  $a_{20} = 5 \times 20 1 = 99$  which is the required 20th term.
- 54. (i) If  $a_n$  be the *n*th term, then

$$\begin{aligned} a_n &= S_n - S_{n-1} \\ &= 3n^2 - n - 3(n-1)^2 + (n-1) \\ &= 3n^2 - n - 3n^2 + 6n - 3 + n - 1 \\ &= 6n - 4 \qquad \dots (1) \end{aligned}$$

...(2)

which is the required *n*th term.

(*ii*) Putting n = 1 in (1), we have

$$a_1 = \text{first term} = 6 - 4 = 2$$

which is the required first term.

(iii) If *d* be the common difference, then

$$d = a_n - a_{n-1}$$
  
= 6n - 4 - 6(n - 1) + 4  
= 6n - 4 - 6n + 6 + 4  
= 6

which is the required common difference.

55. :: Sum of *n* terms is  $5n^2 - 3n$ 

$$\therefore \qquad S_n = 5n^2 - 3n$$
  
$$\therefore \qquad S_1 = 5(1)^2 - 3(1)$$
  
$$= 5 - 3 = 2$$

⇒ a = 2 $S_2 = 5(2)^2 - 3(2) = 20 - 6 = 14$ Now,  $S_2 = sum of first two terms = 14$ (a) + (a + d) = 14 $\Rightarrow$ 2a + d = 14 $\Rightarrow$ 2(2) + d = 14 $\Rightarrow$ d = 14 - 4 = 10⇒ Since, a, a + d, a + 2d, ... are in AP.  $\Rightarrow$  2, (2 + 10), [2 + 2(10)], ... are in AP.  $\Rightarrow$  2, 12, 22, ... are in AP. ... The required AP is 2, 12, 22, ... Now, using  $a_n = a + (n - 1)d$ , we get  $a_{10} = 2 + (10 - 1) \times 10$  $= 2 + (9 \times 10) = 92$  $S_n = 3n^2 - n$ 56. ∵  $\mathbf{S}_1 = 3(1)^2 - 1 = 3 - 1 = 2 \Longrightarrow a = 2$ *.*...  $S_2 = 3(2)^2 - 2 = 12 - 2 = 10$  $\Rightarrow$  [1st term] + [2nd term] = 10 (a) + (a + d) = 10 $\Rightarrow$ 2 + 2 + d = 10 $\Rightarrow$  $[\because a = 2]$ d = 10 - 2 - 2 = 6⇒ Let *n*th term = 50 $\Rightarrow$  $a_n = a + (n-1)d$  $a_n = 2 + (n - 1)6 = 50$  $\Rightarrow$ 6(n-1) = 50 - 2 = 48 $\Rightarrow$ n = 8 + 1 = 9 $\Rightarrow$ 

Hence, 9th term of the AP is 50.

$$S_m = 4m^2 - m \qquad \dots (1)$$

$$a_n = S_n - S_{n-1}$$
  
=  $4n^2 - n - 4(n-1)^2 + (n-1)$  [From (1)]  
=  $4n^2 - n - 4n^2 + 8n - 4 + n - 1$   
=  $8n - 5$  ....(2)

Given that

*.*..

$$a_n = 107$$
  
 $\therefore$  From (2),  
 $8n - 5 = 107$ 

 $a_{21}$ 

:. 
$$n = \frac{112}{8} = 14$$
 ...(3)

: From (2),

Then

$$= 8 \times 21 - 5$$

= 
$$168 - 5 = 163$$
 ....(4)  
m (3) and (4), the required values of *n* and *a*<sub>22</sub> are

:. From (3) and (4), the required values of n and  $a_{21}$  are 14 and 163 respectively.

**58.** Let  $S_q$  be the sum of first q terms of the AP and  $a_q$  be its qth term.

$$S_q = 63q - 3q^2$$
 [Given] ...(1)

$$\therefore \qquad a_q = S_q - S_q - 1 \\ = 63q - 3q^2 - 63(q - 1) + 3(q - 1)^2 \\ = 63q - 3q^2 - 63q + 63 + 3q^2 - 6q + 3 \\ = 66 - 6q \qquad \dots (2)$$

It is given that

*.*..

 $a_p = -60$ 66 - 6p = -606p = 60 + 66 = 126 $\Rightarrow$ ÷. p = 21...(3) Also, from (2),

> $a_{11} = 66 - 6 \times 11 = 0$ ...(4)

> > ., 99

 $\therefore$  From (3) and (4), the required values of *p* and *a*<sub>11</sub> are 21 and 0 respectively.

59. (*i*)  $\therefore$  Odd numbers between 0 and 100 are

$$1, 3, 5, 7, ...$$
  
$$a = 1$$
  
$$d = 3 - 1 = 2$$
  
$$l = 99$$

Let number odd numbers between 0 and 100 = n

$$\therefore \qquad a_n = a + (n-1)d = 99$$

$$\Rightarrow \qquad 1 + (n-1)2 = 99$$

$$\Rightarrow \qquad (n-1)2 = 99 - 1 = 98$$

$$\Rightarrow \qquad n-1 = \frac{98}{2} = 49$$

$$\therefore \qquad n = 49 + 1 = 50$$
Using 
$$S_n = \frac{n}{2}(a+l), \text{ we get}$$

 $S_{50} = \frac{50}{2} (1 + 99) = 25(100) = 2500$ Thus, the sum of all odd numbers (between 0 and

(*ii*) :: Three digit numbers are

100) is **2500.** 

100, 101, 102, 103, 104, ..., 999.

... The 3-digit numbers which when divided by 5 leaves remainder 3, are : 103, 108, 113, 118, ..., 998

$$a = 103$$
  
 $d = 108 - 103 = 5$   
 $l = 998$ 

Let such numbers be *n*.

$$\therefore \text{ Using } a_n = a + (n - 1)d, \text{ we get} \\ a_n = 103 + (n - 1) \times 5 = 998 \\ \Rightarrow (n - 1) \times 5 = 998 - 103 = 895 \\ \Rightarrow n - 1 = \frac{895}{5} = 179 \\ \therefore n = 179 + 1 = 180 \\ \text{Now, using } S_n = \frac{n}{2}(a + l), \text{ we get} \\ S_{180} = \frac{180}{2}(103 + 998) \\ \end{cases}$$

= 90(1101)= 99090

Thus, the required sum = 99090

(iii) :: Odd numbers between 50 and 100 and divisible by 3 are

51, 57, 63, ..., 99 a = 51, d = 57 - 51 = 6, l = 99÷. Now, using  $a_n = a + (n - 1)d$ , we get  $a_n = 51 + (n-1)6 = 99$  $n-1 = \frac{99-51}{6} = \frac{48}{6} = 8$  $\Rightarrow$ ÷. n = 8 + 1 = 9 $S_n = \frac{n}{2}(a+l)$ Since,  $S_9 = \frac{9}{2}(51 + 99)$ *.*..  $= 9 \times 75 = 675$ (*iv*) :: Two digit natural numbers are 10, 11, 12, 13, ..., 99 a = 10, d = 1 and l = 99*.*..  $a_n = a + (n - 1)d$ , we get Using  $a_n = 10 + (n - 1)1 = 99$ n - 1 = 99 - 10 = 89 $\Rightarrow$ n = 89 + 1 = 90 $\Rightarrow$ Now, using  $S_n = \frac{n}{2}(a+l)$ , we get  $S_{90} = \frac{90}{2} (10 + 99)$  $= 45 \times 109 = 4905$ ∴ Required sum = 4905 (v) Natural numbers less than 100 and divisible by 4 are 4, 8, ... 96 a = 4, d = 4 and l = 96÷.  $a_n = a + (n-1)d$ Using, 4 + (n - 1) 4 = 96 $\Rightarrow$ (n-1) 4 = 92 $\Rightarrow$ (n-1) = 23 $\Rightarrow$ n = 24 $\Rightarrow$  $S_n = \frac{n}{2}(a+l)$ , we get Now, using  $S_{24} = \frac{24}{2} (4 + 96)$  $= 12 \times 100$ = 1200 (vi) Three digit numbers which are multiples of 7 are 105, 112, 119, ..., 994 ÷. a = 105, d = 112 - 105 = 7 and l = 994 $a_n = a + (n-1)d$ *.*..  $994 = 105 + (n - 1) \times 7$ 

$$\Rightarrow n-1 = \frac{994-105}{7}$$
$$\Rightarrow n-1 = \frac{889}{7} = 127$$
$$\Rightarrow n = 127 + 1 = 128$$

Now, using  $S_n = \frac{n}{2}(a+l)$ , we get 100

$$S_{128} = \frac{128}{2} (105 + 994)$$
$$= 64 \times 1099 = 70336$$

Thus, the required sum = 70336

(vii) :: Numbers between 101 and 304 which are divisible by 3 are

102, 105, 108, 111, ..., 303 a = 102, d = 105 - 102 = 3 $\Rightarrow$ l = 303and Using  $a_n = a + (n - 1)d$ , we get a + (n - 1)d = 303 $102 + (n - 1) \times 3 = 303$ or  $n-1 = \frac{303-102}{3} = \frac{201}{3} = 67$  $\Rightarrow$ n = 67 + 1 = 68 $\Rightarrow$  $S_{68} = \frac{68}{2} [102 + 303]$  [Using  $S_n = \frac{n}{2} (a + l)$ ] *.*..  $= 34 \times 405 = 13770$ ...(1) : Numbers between 101 and 304 which are divisible by 5 are 105, 110, 115, 120, ..., 300 *.*.. a = 105, d = 110 - 105 = 5l = 300and  $a_n = a + (n-1)d$  $a_n = 105 + (n-1)5 = 300$  $\Rightarrow$  $n-1 = \frac{300-105}{5} = \frac{195}{5} = 39$  $\Rightarrow$ n = 39 + 1 = 40 $\Rightarrow$ Now,  $S_{40} = \frac{40}{2} [105 + 300]$  [Using  $S_n = \frac{n}{2} (a + l)$ ]  $= 20 \times 405 = 8100$ ...(2) : Numbers between 101 and 304, which are divisible by 3 × 5 i.e. 15 are 105, 120, 135, ..., 300 a = 105, d = 120 - 105 = 15 and l = 300÷.  $\Rightarrow$ 300 = 105 + (n-1)15[Using  $a_n = a + (n-1)d]$  $\Rightarrow (n-1) = \frac{300 - 105}{15} = \frac{195}{15} = 13$ n = 13 + 1 = 14 $\Rightarrow$  $S_{14} = \frac{14}{2} [105 + 300]$  $= 7 \times 405 = 2835$ ...(3)

Since the multiples of 15, i.e. 105, 120, 135, ..., 300 are included in the multiples of 3 as well of 5, from (1), (2) and (3), we have

The sum of numbers between 101 and 304 which are divisible by 3 or 5 :

[13770 + 8100] - 2835 = 21870 - 2835 = 19035

Thus, the required sum = 19035

- (viii) We know that odd numbers are not divisible by 2. Also all odd numbers that are not divisible by 5 do not have 5 in ones place.
  - .:. Required sum

$$= [Sum of all odd numbers up to 1000] - [Sum of odd numbers up to 1000 that are divisible by 5] 
= [1 + 3 + 5 + 7 + ... + 999] - [5 + 15 + 25 + ... + 995] ... (1) 
 $\therefore$  1, 3, 5, ... 999 are in AP such that  $a = 1, d = 2, l = 999$   
 $a_n = a + (n - 1)d$   
 $\Rightarrow 1 + (n - 1) \times 2 = 999$   
 $\Rightarrow (n - 1) \times 2 = 999 - 1 = 998$   
or  $(n - 1) = \frac{998}{2} = 499$   
 $\Rightarrow n = 499 + 1 = 500$   
 $\therefore S_{500} = \frac{500}{2} (1 + 999)$   
 $= 250 \times 1000 = 250000 \dots (2)$   
Also, 5, 15, 25, ..., 995 are in AP such that  
 $a = 5, d = 10$  and  $l = 995$   
 $a_n = a + (n - 1)d$   
 $\Rightarrow 5 + (n - 1)10 = 995$   
 $\Rightarrow (n - 1)10 = 995 - 5 = 990$   
 $\Rightarrow n - 1 = \frac{990}{10} = 99$   
 $\Rightarrow n = 99 + 1 = 100$   
 $\therefore S_{100} = \frac{100}{2} (5 + 995)$   
 $= 50 \times 100 = 50000 \dots (3)$$$

Now from (1), (2) and (3) we have

=

=

- Required sum = 250000 50000 = 200000
- (ix) First seven multiples of 2 as well as 9 are

18, 36, 54, 72, 90, 108, 126.

$$\therefore \qquad a = 18, d = 36 - 18 = 18 \text{ and } l = 126$$
  
$$\therefore \qquad n = 7$$
  
$$\therefore \qquad \text{Using} \qquad \text{S}_n = \frac{n}{2}(l + a), \text{ we get}$$

$$S_7 = \frac{7}{2}(126 + 18) = \frac{7}{2} \times 144$$
  
= 7 × 72 = 504

 $\therefore$  The required sum = 504

(x)  $\therefore$  Two digit numbers which leave remainder 1, when divided by 3 are 10, 13, 16, 19, ..., 97

$$\therefore \qquad a = 10, d = 13 - 10 = 3 \text{ and } l = 97$$
Using  $a_n = a + (n - 1)d$ , we get  
 $10 + (n - 1) \times 3 = 97$ 

$$\Rightarrow \qquad (n - 1) \times 3 = 97 - 10 = 87$$

$$\Rightarrow \qquad n - 1 = \frac{87}{3} = 29$$

$$\therefore \qquad n = 29 + 1 = 30$$
Now, using  $S_n = \frac{n}{2}(l + a)$ , we get  
 $S_{30} = \frac{30}{2}(10 + 97)$   
 $= 15 \times 107 = 1605$   

$$\therefore \qquad \text{The required sum} = 1605$$
(xi) Let  $a = \text{first term}$  and  $d = \text{common difference}$   
Here, the middle term = 6th term  
[ $\because$  Total number of terms = 11]  
 $\therefore \qquad 6\text{th term} = 20$   
 $\Rightarrow \qquad a + (6 - 1)d = 20$   
 $\Rightarrow \qquad a + 5d = 20 \qquad \dots(1)$ 

Now, using, 
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
, we get  
 $S_{11} = \frac{11}{2} [2a + (10)d]$   
 $= \frac{11}{2} \times 2[a + 5d]$   
 $= 11[a + 5d] \dots (2)$ 

From (1) and (2), we get

$$S_{11} = 11[20] = 220$$

Hence, the required sum = 220

- (xii) We have 8, 10, 12, ..., 126
  - *.*.. d = 10 - 8 = 2

To find the sum from the end, we take -d (i.e. common difference is taken negative) and start with the last term (as the first term)

i.e. 
$$l = 126, d = -2, n = 10$$

Using 
$$S_n = \frac{n}{2} [2l + (n - 1)d]$$
, we get  
 $S_{10} = \frac{10}{2} [2(126) + (10 - 1) (-2)]$   
 $\Rightarrow S_{10} = 5[252 + 9 \times (-2)]$ 

$$\Rightarrow \qquad S_{10} = 5[252 - 18] = 5 \times 234 = 1170$$

Thus, sum of the 10 term from the end = 1170

(xiii) All three-digit natural numbers which are multiples of 11 are 110, 121, 132, 143, 154 ...990.

This sequence is in AP with the first term, a = 110 and common difference, d = 121 - 110 = 11.

Let  $a_n$  be the *n*th term and  $S_n$  be the sum of the first *n* terms of the AP.

Then 
$$a_n = a$$

$$a_n = a + (n-1)d$$

$$= 110 + (n - 1)11$$
  

$$= 11n - 99 \qquad \dots(1)$$
  

$$S_n = \frac{n}{2} [2a + (n - 1)d]$$
  

$$= \frac{n}{2} [2 \times 110 + (n - 1)11]$$
  

$$= \frac{n(220 - 11 + 11n)}{2}$$
  

$$= \frac{(11n + 209)n}{2}$$
  

$$= \frac{11n^2 + 209n}{2} \qquad \dots(2)$$

...(2)

If  $a_n = 990$ , where *n* is the total number of terms of the AP.

Then from (1),

and

$$11 \times n - 99 = 990$$

$$\Rightarrow \qquad 11n = 990 - 99 = 891$$

$$\Rightarrow \qquad n = \frac{891}{11} = 81 \qquad \dots (3)$$

: There are 81 terms of this AP.

 $\therefore$  From (2), we have

...(1)

$$S_{81} = \frac{11 \times 81^2 + 209 \times 81}{2}$$
$$= \frac{81(11 \times 81 + 209)}{2}$$
$$= \frac{81 \times (891 + 209)}{2}$$
$$= \frac{81 \times 1100}{2}$$
$$= \frac{89100}{2}$$
$$= 44550$$

which is the required sum.

(xiv) 40 positive integers which are divisible by 6 are 6, 12, 18, 24 ... to 440 terms.

All these numbers are in AP with the first term

a = 6 and the common difference, d = 12 - 6 = 6.

If  $S_n$  denote the sum of the first *n* terms of the AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 6 + (n-1) \times 6]$   
=  $n(6 + 3n - 3)$   
=  $n(3n + 3)$   
=  $3n^2 + 3n$  ...(1)

If n = 40, then

$$S_{40} = 3 \times 40^2 + 3 \times 40$$
 [From (1)]  
= 4800 + 120  
= 4920

which is the required sum of 40 terms of the AP.

(*xv*) The first 8 multiples of 3 are 3, 6, 9, 12, 15, 18, 21 and 24. These numbers form an AP with the first term, a = 3 and the common difference, d = 6 - 3 = 3. If  $S_n$  be the sum of the first *n* terms of this AP, then

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} \times [2 \times 3 + (n-1)3]$   
=  $\frac{n}{2} [6 + 3n - 3]$   
=  $\frac{3n^{2} + 3n}{2}$  ...(1)

When n = 8, then

From (1),

$$= \frac{192 + 24}{2}$$
$$= \frac{216}{2} = 108$$

 $S_8 = \frac{3 \times 8^2 + 3 \times 8}{2}$ 

which is required sum.

(*xvi*) All three-digit natural numbers which are divisible by 13 are 104, 117, 130, 143 ...988.

These numbers form an AP with the first term, a = 104 and the common difference, d = 117 - 104 = 13. If S<sub>n</sub> be the sum of the first such natural numbers, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 104 + (n-1)13]$   
=  $\frac{n}{2} [208 + 13n - 13]$   
=  $\frac{n(13n + 195)}{2}$   
=  $\frac{13n(n+15)}{2}$  ...(1)

If  $a_n$  be the *n*th term of this AP, then

$$a_n = a + (n - 1)d$$
  
= 104 + (n - 1)13  
= 104 + 13n - 13  
= 13n + 91  
= 13(n + 7) ....(2)

If  $a_n = 988$ , i.e. if the total number of terms is n,

Then 
$$13(n + 7) = 988$$
  
 $\Rightarrow n + 7 = 76$ 

$$\Rightarrow$$
 n

.:. From (1),

$$S_{69} = \frac{13 \times 69 \times (69 + 15)}{2}$$
$$= \frac{13 \times 69 \times 84}{2}$$
$$= 13 \times 69 \times 42$$
$$= 37674$$

= 76 - 7 = 69

[From (2)]

© Ratna Sagar

which is the required sum.

(*xvii*) All natural numbers between 200 and 400, which are divisible by 7, are 203, 210, 217, 224, ...,399.

These numbers form an AP with the first term, a = 203 and the common difference, d = 210 - 203 = 7If S<sub>n</sub> be the sum of the first *n* terms of this AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 203 + (n-1)7]$   
=  $\frac{n}{2} [406 + 7n - 7]$   
=  $\frac{n}{2} (7n + 399)$   
=  $\frac{7n(n+57)}{2}$  ...(1)

Also, if  $a_n$  be the *n*th term, then

$$a_n = a + (n - 1)d$$
  
= 203 + (n - 1)7  
= 7n + 196  
= 7(n + 28) ...(2)

...(3)

If n be the total number of terms of this AP, then

 $a_n = 399$ , the last term.

 $\Rightarrow$ 

$$7(n+28) = 399$$

$$n = \frac{399}{7} - 28$$
  
= 57 - 28 - 29

 $\therefore$  From (1), we have

$$S_{29} = \frac{7 \times 29}{2} (29 + 57)$$
  
=  $\frac{7 \times 29}{2} \times 86$   
=  $7 \times 29 \times 43$   
= 8729

which is the required sum.

(*xviii*) We know that all natural numbers which are divisible by 5 must end with 0 or 5. But natural numbers ending with 5 are not even numbers and all natural numbers ending with 0 are even natural numbers divisible by 5.

Hence, all 100 even numbers divisible by 5 (which are clearly divisible by  $2 \times 5 = 10$ ) are 10, 20, 30, 40, ... 100 term.

All these numbers form an AP with the first term, a = 10, and the common difference, d = 20 - 10 = 10. If S<sub>n</sub> be the sum of the first *n* terms of this AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 10 + (n-1)10]$   
=  $\frac{n}{2} [20 + 10n - 10]$ 

$$= \frac{(10n+10)n}{2}$$
$$= 5n(n+1) \qquad \dots (1)$$
When  $n = 100$ , then from (1), we have

$$S_{100} = 5 \times 100 \times 101$$
  
= 50500

which is the required sum.

(xix) (a) Natural numbers between 100 and 200 which are divisible by 9 are 108, 117, 126, ..., 198.

These numbers form an AP with the first term, a = 108, the common difference, d = 117 - 108 = 9 and the last term, l = 198.

If  $a_n$  be the *n*th term of the AP, then

$$a_n = a + (n - 1)d$$
  
= 108 + (n - 1)9  
= 9n + 99  
= 9(11 + n) ...(1)

It  $S_n$  be the sum of the first *n* terms of this AP, then

$$S_{n} = \frac{n}{2} [2a + (n - 1)d]$$

$$= \frac{n}{2} [2 \times 108 + (n - 1)9]$$

$$= \frac{n}{2} [216 + 9n - 9]$$

$$= \frac{n(9n + 207)}{2}$$

$$= \frac{9n(n + 23)}{2} \dots (2)$$

If n be the total number of terms of the AP, then

$$a_n = \text{last term} = 198$$

$$\Rightarrow \qquad 9(11 + n) = 198 \qquad \text{[From (1)]}$$

$$\Rightarrow \qquad n + 11 = 22$$

$$\Rightarrow \qquad n = 11$$

 $\therefore$  Total number of terms of the AP is 11.

: From (2),

$$S_{11} = \frac{9 \times 11(11 + 23)}{2}$$
$$= \frac{99 \times 34}{2}$$
$$= 17 \times 99 = 1683 \qquad \dots (3)$$

which is the required sum.

(b) We shall first find the sum  $S'_n$  of all natural numbers between 100 and 200, i.e. 101, 102, 103, ..., 199 with first term,  $a_1 = 101$ , common difference,  $d_1 = 1$  and the total number of terms, n = 200 - 100 - 1 = 99

Then

$$S'_{99} = \frac{99}{2} \times (2 \times 101 + 98)$$
$$= \frac{99}{2} \times (202 + 98)$$
$$= \frac{99 \times 300}{2}$$

$$= 150 \times 99$$
  
= 14850

... Required sum of all numbers from 100 to 200, not divisible by 9, is

$$S'_{99} - S_{11} = 14850 - 1683$$

[From (3) and (4)]

60. Two digit numbers divisible by 7 are

а

*.*..

\_

\_

Now 
$$a_n = a + (n - 1)$$
  
 $\Rightarrow 14 + (n - 1) \times 7 = 98$   
 $\Rightarrow n - 1 = \frac{98 - 14}{7} = \frac{84}{7} = 12$ 

$$n = 12 + 1 = 13$$

using  $S_n = \frac{n}{2}(a+l)$ , we get Now,

$$S_{13} = \frac{13}{2} (14 + 98)$$
$$= \frac{13}{2} \times 112 = 13 \times 56 = 728$$

Thus, number of terms = 13

Required sum = 728

61. Let *a* be the first term and *d* be the common difference of the AP. If  $a_n$  be the *n*th term of the AP and  $S_n$  is the sum of its first term, then

$$a_n = a + (n-1)d \qquad \dots (1)$$

...(2)

and

⇒

*:*..

- $S_6 = 42$ Given that
- $42 = \frac{6}{2}[2a + 5d]$ : From (2),
  - 2a + 5d = 14...(3)

 $S_n = \frac{n}{2} \left[ 2a + (n-1)d \right]$ 

 $\frac{a_{10}}{a_{30}} = \frac{1}{3}$ Also, given that

$$\Rightarrow \qquad \frac{a+9d}{a+29d} = \frac{1}{3} \qquad [From (1)]$$

$$\Rightarrow \qquad 3a+27d = a+29d$$

$$\Rightarrow \qquad 2a-2d = 0$$

$$\Rightarrow \qquad a = d \qquad \dots(4)$$

$$\therefore From (3), \qquad 2a+5a = 14$$

$$\Rightarrow \qquad 7a = 14$$

$$\Rightarrow \qquad a = 2 \qquad \dots(5)$$

$$d = 2$$
 [From (4)] ...(6)

... Required first term and the 13th term are respectively 2 and 26.

**62.** Let the first term of the first AP be  $a_1$  and the common difference be  $d_1$ . Then  $a_1 = 8$  and  $d_1 = 20$ . If  $S_n$  be sum of first n terms of this AP, then

$$S_n = \frac{n}{2} [2a_1 + (n-1)d_1]$$

$$= \frac{n}{2} [2 \times 8 + (n-1)20]$$
  
= n[8 + (n - 1) 10]  
= n(10n - 2) ...(1)

For the second AP, the first term  $a_2$  and the common difference  $d_2$ , are given by  $a_2 = -30$  and  $d_2 = 8$ . Let S'<sub>2n</sub> be the sum of the first 2*n* terms.

Then

$$S'_{2n} = \frac{2n}{2} [2 \times a_2 + (2n - 1)8]$$
  
=  $n[-2 \times 30 + (2n - 1)8]$   
=  $n[-60 + 16n - 8]$   
=  $n(16n - 68)$  ....(2)

It is given that

 $S_n = S'_{2n}$ ∴ From (1) and (2), we have n(10n - 2) = n(16n - 68)⇒ 16n - 10n = 68 - 2⇒ 6n = 66∴ n = 11which is the required value of n.

63. We need to form an AP of 3 digit numbers which leave

remainder 5 on dividing by 7.  
AP: 103, 110, 117, ..., 992, 999  

$$a = 103, d = 7, l = a_n = 999$$
  
 $a_n = a + (n - 1)d$   
 $999 = 103 + (n - 1)7$   
 $896 = (n - 1)7$   
 $n - 1 = 128$   
 $n = 129$   
Middle term  $= \frac{n+1}{2} = \frac{130}{2} = 65$   
 $a_{65} = a + 64d$   
 $= 103 + 64(7)$   
 $= 103 + 448$   
 $= 551$ 

To find the sum of numbers on the former side of middle term

$$a = 103, \ d = 7, \ n = 64$$
$$S_n = \frac{n}{2} \ [2a + (n - 1)d]$$
$$= \frac{64}{2} \ [206 + (64 - 1)7]$$
$$= 32 \times 647$$
$$= 20704$$

Now we will find the sum of numbers on the latter side of middle term

$$a = 999, d = -7, n = 64$$
  
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

$$= 32 [1998 + 63 \times (-7)]$$
  
= 32 [1998 - 441]  
= 32 × 1557

= 49824

64. Let a = first term and d = common difference Here,  $S_n =$  sum of 'n' terms

$$\therefore \qquad S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow \qquad S_{n-1} = \frac{(n-1)}{2} [2a + (n-2)d]$$

$$\Rightarrow \qquad S_{n-2} = \frac{(n-2)}{2} [2a + (n-3)d]$$

Now, 
$$\mathbf{S}_n - 2\mathbf{S}_{n-1} + \mathbf{S}_{n-2} = \frac{n}{2} [2a + (n-1)d] - \frac{2(n-1)}{2} [2a + (n-2)d] + (\frac{n-2}{2}) [2a + (n-3)d]$$
  

$$= an + \frac{(n)(n-1)d}{2} - 2(n-1) \times a - (n-1) (n-2)d + (n-2)a + \frac{(n-2)(n-3)d}{2}$$

$$= [an - 2(n-1)a + (n-2)a] + [\frac{(n)(n-1)d}{2} - (n-1)(n-2)d + \frac{(n-2)(n-3)d}{2}]$$

$$= [an - 2an + 2a + an - 2a] + [\frac{n^2d}{2} - \frac{nd}{2} - n^2d + 3nd - 2d + \frac{n^2d}{2} - \frac{5nd}{2} + \frac{6d}{2}]$$

$$= 0 + [3d - 2d]$$

$$= d$$

$$\Rightarrow S_{1} = \frac{n}{2} [2a + (n - 1)d]$$

$$S_{2} = \text{Sum of } '2n' \text{ terms}$$

$$\Rightarrow S_{2} = \frac{2n}{2} \{2a + (2n - 1)d\}$$

$$S_{3} = \text{Sum of } '3n' \text{ terms}$$

$$\Rightarrow S_{3} = \frac{3n}{2} [2a + (3n - 1)d]$$
Now,  $3S_{1} - 3S_{2} + S_{3}$ 

$$= 3\{S_{1}\} - 3\{S_{2}\} + \{S_{3}\}$$

$$= 3\left\{\frac{n}{2} [2a + (n - 1)d]\right\} - 3\left\{\frac{2n}{2} [2a + (2n - 1)d]\right\}$$

$$+ \frac{3n}{2} [2a + (3n - 1)d]$$

$$= \frac{3n}{2} (2a) + \frac{3n}{2} (n - 1)d - 3n(2a) - 3n(2n - 1)d$$

$$+ 3an + \frac{3n}{2}(3n-1)d$$

$$\begin{split} &= 3an + \frac{3n^2d}{2} - \frac{3nd}{2} - 6an - 6n^2d + 3nd \\ &+ 3an + \frac{9n^2d}{2} - \frac{3nd}{2} \\ &= (3an + 3an - 6an) + \left(\frac{3n^2d}{2} - 6n^2d + \frac{9n^2d}{2}\right) \\ &+ \left(\frac{-3nd}{2} + 3nd - \frac{3nd}{2}\right) \\ &= (0) + (0) + (0) = 0 \\ \text{Hence, } 3S_1 - 3S_2 + S_3 = 0 \\ \textbf{66.} \quad & \text{AP}_1 \qquad \text{AP}_2 \qquad \text{AP}_3 \\ a = 1 \qquad a = 1 \qquad a = 1 \\ d = 1 \qquad d = 2 \qquad d_3 = 3 \\ S_n = S_1 \qquad S_n = S_2 \qquad S_n = S_3 \\ \text{S}_1 = \frac{n}{2} \left[2a + (n - 1)d\right] \\ &= \frac{n}{2} \left[2 + (n - 1)d\right] \\ &= \frac{n}{2} \left[2 + (n - 1)d\right] \\ &= \frac{n}{2} \left[2a +$$

67. Odd numbers are 1, 3, 5, 7, ...,  

$$a = 1, d = 2, n = p$$
  
∴  $S_p = \frac{p}{2} [2(1) + (p - 1) \times 2] = p(p) = p^2$  ...(1)  
Even numbers are 2, 4, 6, 8, ...  
 $a = 2, d = 2$  and  $n = p$   
∴  $S'_p = \frac{p}{2} [2(2) + (p - 1)2] = p[2 + p - 1]$   
 $= p[1 + p] = p^2 + p$ 

$$= p^2 \left[ 1 + \frac{1}{p} \right] \qquad \dots (2)$$

From (1) and (2), we have

$$\mathbf{S}'_p = \mathbf{S}_p \left( \mathbf{1} + \frac{1}{p} \right)$$

 $\Rightarrow$  [Sum of *p* even numbers]

= [Sum of 
$$p$$
 odd numbers]  $\left(1 + \frac{1}{p}\right)$ 

68. Let S<sub>n</sub> be the first n terms of the AP, and let a<sub>n</sub> be its nth term.Now, it is given that

Now, it is given that  

$$S_{k} = 3k^{2} + 5k \qquad \dots(1)$$
and  

$$a_{k} = 164 \qquad \dots(2)$$
Also,  

$$a_{k} = S_{k} - S_{k} - 1$$

$$\Rightarrow \qquad 164 = 3k^{2} + 5k - 3(k - 1)^{2} - 5(k - 1)$$
[From (1) and (2)]  

$$= 3k^{2} + 5k - 3k^{2} + 6k - 3 - 5k + 5$$

$$= 6k + 2$$

$$\therefore \qquad 6k = 164 - 2$$

$$= 162$$

$$\Rightarrow \qquad k = \frac{162}{6} = 27$$

which the required value of *k*.

69. 
$$\frac{S_{1n}}{S_{2n}} = \frac{7n+1}{4n+27}$$

$$AP_{1} \qquad AP_{2}$$

$$a = a_{1} \qquad a = a_{2}$$

$$d = d_{1} \qquad d = d_{2}$$

$$S_{1n} = \frac{n}{2} [2a_{1} + (n-1)d_{1}]$$

$$S_{2n} = \frac{n}{2} [2a_{2} + (n-1)d_{2}]$$

$$\frac{S_{1n}}{S_{2n}} = \frac{\frac{n}{2} [2a_{1} + (n-1)d_{1}]}{\frac{n}{2} [2a_{2} + (n-1)d_{2}]} = \frac{2a_{1} + (n-1)d_{1}}{2a_{2} + (n-1)d_{2}}$$

$$\frac{2a_{1} + (n-1)d_{1}}{2a_{2} + (n-1)d_{2}} = \frac{7n+1}{4n+27} \qquad \dots (1)$$

The ratio of  $m^{\text{th}}$  terms is

$$\frac{a_{m1}}{a_{m2}} = \frac{a_1 + (m-1)d_1}{a_2 + (m-1)d_2}$$

(*i*) To obtain the ratio of  $m^{\text{th}}$  terms, we used to put n = 2m - 1 in eq. (1)  $\frac{2a_1 + (2m - 1 - 1)d_1}{2a_2 + (2m - 1 - 1)d_2} = \frac{7(2m - 1) + 1}{4(2m - 1) + 27}$ 

$$\frac{2a_1 + (2m-2)d_1}{2a_2 + (2m-2)d_2} = \frac{14m-7+1}{8m-4+27}$$
$$\frac{2}{2} \left[ \frac{a_1 + (m-1)d_1}{a_2 + (m-1)d_2} \right] = \frac{14m-6}{8m+23}$$

$$\frac{a_{m1}}{a_{m2}} = \frac{14m - 6}{8m + 23}$$

(*ii*) To obtain the ratio of 9th terms, put m = 9

$$\frac{a_{9(1)}}{a_{9(2)}} = \frac{14(9)-6}{8(9)+23}$$
$$= \frac{126-6}{72+23}$$
$$= \frac{120}{95} = \frac{24}{19}$$
$$\Rightarrow 24:19$$
We have:  $1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots$ 

- 70. V .. up to 2n terms :.  $S = (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + \dots$  up to *n* brackets  $= (1 - 4) + (9 - 16) + (25 - 36) + \dots$  up to *n* brackets
  - $= (-3) + (-7) + (-11) + \dots$  up to *n* terms

a = -3, d = -7 - (-3) = -4

which is an AP.

Here,

Usir

Using 
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$
, we get  
 $S_n = \frac{n}{2} [2 (-3) + (n - 1) (-4)]$   
 $= \frac{n}{2} [-6 - 4n + 4]$   
 $= \frac{n}{2} [-2 - 4n]$   
 $= \frac{n}{2} [1 + 2n] (-2)$   
 $= n[1 + 2n] (-1)$   
 $= -n[2n + 1]$   
Hence,  $[1^2 - 2^3 + 3^2 - 4^2 + 5^2 - 6^2 + \dots$  up to  $2n$  terms]  
 $= -n[2n + 1]$ 

EXERCISE 5C -

#### For Basic and Standard Levels

1. Here, P = ₹ 2000, r = 7% p.a. (simple interest) ... Interest at the end of 1st year

$$= ₹ \frac{2000 \times 7 \times 1}{100} = ₹ 140 \left[ \text{Using S.I.} = \frac{P \times r \times t}{100} \right]$$

Similarly,

S.I. at the end of 2nd year = 
$$\overline{\mathbf{x}} = \frac{2000 \times 7 \times 2}{100} = \overline{\mathbf{x}} = 280$$
  
S.I. at the end of 3rd year =  $\overline{\mathbf{x}} = \frac{2000 \times 7 \times 3}{100} = \overline{\mathbf{x}} = 420$   
and so on

∴ 280 - 140 = 420 - 280 = 140  
∴ 140, 280, 420 ... form an AP with  

$$a = 140$$
 and  $d = 140$   
Using  $a_n = a + (n - 1)d$ , we get  
 $a_{20} = 140 + (20 - 1) \times 140$ 

$$= 140 + 19 \times 140 = 140 + 2660 = 2800$$

Hence, the interest at the end of 20 years = ₹ 2800

2. Original cost of the machine = ₹ 62,500 Let the annual depreciation = ₹ x:. Value of the machine at the end of 1st year =  $\mathbf{E}$  (62500 – x) end of 2nd year =  $\mathbf{E}$  (62500 – 2x) end of 3rd year =  $\mathbf{E}$  (62500 – 3*x*) end of 5th year = ₹ 57500 Obviously, the depreciated values for an AP with First term  $a_1 = (62500 - x)$ and Common difference = d = (-x): The depreciated value of the machine at the end of 5th year = ₹ 57500 *.*..  $a_5 = 57500$ using  $a_n = a + (n - 1)d$ , we have Now,  $a_5 = [62500 - x] + (5 - 1) (-x)$ = 5750062500 - x - 4x = 57500 $\Rightarrow$ -5x = -62500 + 57500 = -5000 $\Rightarrow$  $x = \frac{-5000}{-5} = ₹ 1000$  $\Rightarrow$  $a_{15} = a + (n-1)d$ Again,  $a_{15} = (62500 - x) + (15 - 1) (-x)$ *.*...  $= (62500 - 1000) + 14 \times (-1000)$ = 61500 - 14000= 47500 Thus, the value of the machine after 15 years = ₹ 47500  $a_3 = 600$  $a_7 = 700$ a + 2d = 600... (1) a + 6d = 700... (2) Subtract eq. (2) from eq. (1) we obtain a + 2d = 600-a + (-6d) = -700-4d = -100d = 25Putting the value of d in eq. (1) we get  $a + 2 \times 25 = 600$ a = 550(*i*) Production in first year = a = 550(ii)  $a_{10} = a + (10 - 1)d$ = 550 + (10 - 1)25 $= 550 + 9 \times 25$ = 550 + 225= 775  $S_7 = \frac{7}{2} [2a + (7 - 1) d]$ (iii)  $=\frac{7}{2}$  [1100 + 6 × 25]

3.

$$= \frac{7}{2} [1100 + 150]$$
$$= \frac{7}{2} \times 1250 = 4375$$

4. The distances 60 m, 54 m, 48 m, ... climbed during 1st minute, 2nd minute, 3rd minute, ... respectively form an AP with

$$a = 60 \text{ m}, d = 54 - 60 = -60$$

(*i*) Distance covered (climbed) during 5th minute =  $a_5$ Now using  $a_5 = a + (n - 1)d_5$  we have

Now using 
$$a_n = a + (n - 1)a$$
, we have  
 $a_5 = 60 + (5 - 1) \times (-6)$   
 $= 60 - 24 = 36$ 

Thus, the boy will climb **36 m** in 5th minute.

(*ii*) The total distance climbed in 5 minutes is given by  $S_5$ .

Now, using 
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$
, we get  
 $S_5 = \frac{5}{2} [2(60) + (5 - 1) \times (-6)]$   
 $= \frac{5}{2} \times [2 \times (60) + 4 \times (-6)]$   
 $= \frac{5}{2} \times 2[60 - 12]$   
 $= 5 \times 48 = 240$ 

Thus, total distance climbed in 5 minutes = 240 m

**5.** The distances covered 20 m, 18 m, 16 m ... during 1st minute, 2nd minute, 3rd second ... respectively, form an AP with

$$a =$$
first term = 20  
 $d =$ common difference = 18 - 20 = -2

(*i*) The distances climbed during 10th minute is  $a_{10}$ .

Now using 
$$a = a + (n - 1)d$$
, we have  
 $a_{10} = 20 + (10 - 1) \times (-2)$   
 $= 20 + [9 \times (-2)] = 20 + (-18)$   
 $= 20 - 18 = 2$ 

Thus, distance climbed during 10 minute = 2 m

(ii) Total distance covered in 10 minutes will be given by  $\mathrm{S}_{10}.$ 

$$\therefore \quad \text{Using } S_n = \frac{n}{2} [(2a) + (n-1)d], \text{ we have}$$
$$S_{10} = \frac{10}{2} [2(20) + (10-1) \times (-2)]$$
$$= \frac{10}{2} [2 \times 20 + 9 \times (-2)]$$
$$= \frac{10}{2} \times 2[20 - 9]$$
$$= 10 \times 11 = 110$$

Hence, distance covered in 10 minutes = 110 m

6. Let the face value of the bonds bought in first year =  $\overline{\mathbf{x}} x$ 

The face value of bonds increase every year uniformly by a fixed amount of ₹ 500. Therefore, they form an AP, i.e. x, (x + 500), [x + 2(500)], ... are in AP with

a =First term = x

d = Common difference = 500

∵ Total value of the bonds after 10 years is ₹ 72500

Using 
$$S_n = \frac{n}{2} [2\underline{a} + (n-1)d]$$
, we have  
 $S_{10} = \frac{10}{2} [2 \times x + (10-1) \times 500] = 72500$ 

$$\Rightarrow 2x + 9 \times 500 = 72500 \times \frac{2}{10} = 14500$$

$$\Rightarrow \qquad 2x + 4500 = 14500$$

=

 $\Rightarrow$ 

÷

=

 $\Rightarrow$ 

$$\Rightarrow$$
  $2x = 14500 - 4500$ 

$$2x = 10000 \text{ or } x = \frac{10000}{2} = 5000$$

Thus, the face value of the bond in the first year is ₹ 5000.

7. Let the number of visitors on 1st Nov. be x

Number of visitors on Nov. 30 = 6150

 $\therefore$  Number of visitor is increasing uniformly with a constant number 10 daily.

 $\therefore$  No. of visitors on 1st day = x

No. of visitors on 2nd day = x + 10

No. of visitors on 3rd day = x + 10 + 10 = x + 20

$$= x + (2 \times 10) = x + 20$$

No. of visitors on 4th day =  $x + (3 \times 10) = x + 30$ 

: x, (x + 10), (x + 20), (x + 30), ... up to 30 terms form on AP with

First term = 
$$a = x$$
  
Common difference =  $d = 10$ 

$$n = 30$$
 and  $S_n = 6150$ 

... Using  $S_n = \frac{n}{2} [2a + (n-1)d]$ , we get  $S_{30} = \frac{30}{2} [2x + (30-1) \times 10] = 6150$ 

$$\Rightarrow 15[2x + 29 \times 10] = 6150$$

$$\Rightarrow \qquad 15[2x + 290] = 6150$$

$$\Rightarrow$$
  $2x + 290 = \frac{6150}{15} = 410$ 

$$2x = 410 - 290 = 120$$

$$x = \frac{120}{2} = 60$$

Thus, the number of visitors on 1st Nov. = 60

8. Money collected on 1st day = ₹ 8100

Money collected on 2nd day = ₹ 8100 - ₹ 150 = ₹ 7950Money collected on 4th day = ₹ 7800 - ₹ 150 = ₹ 7650Money collected on *n*th day = ₹ 1650 - ₹ 150 = ₹ 1500We note that money ₹ 8100, ₹ 7950, ₹  $7800 \dots$  ₹ 1500collected from the sale of tickets on 1st, 2nd, 3rd, …, *n*th days respectively, form an AP with

$$a = ₹ 8100$$
  
 $d = (-₹ 150)$   
 $l = ₹ 1500$ 

Note that, the sale of tickets on *n*th day is  $\gtrless$  1500 because, the show in profitable so long as the sale of tickets for the day fetches more than ₹ 1500.

$$\begin{array}{ll} \therefore & a_n = l = 1500 \\ \mbox{Now, using } a_n = l = a + (n - 1)d, \mbox{ we get} \\ & 8100 + [(n - 1) (-150)] = 1500 \\ \Rightarrow & 8100 + [-150n + 150] = 1500 \\ \Rightarrow & -150n = 1500 - 150 - 8100 \\ & = 1500 - 8250 \\ \Rightarrow & -150n = -6750 \\ \Rightarrow & n = \frac{-6750}{-150} = 45 \end{array}$$

Hence, the show ceases to be profitable on 45th day.

9. Here, the daily saving form an AP, as the savings increase uniformly by a fixed amount of  $\mathbf{E}$  1 each day.

We have

First term = a = 1, common difference = d = 1

and 
$$n = 144$$
 (days)

Now, the total savings in 144 days will be  $S_{144}$  $S_n = \frac{n}{2} \{2a + (n-1)d\}$ 

Using

 $\Rightarrow$ 

$$S_{144} = \frac{144}{2} \{2 \times 1 + (144 - 1) \times 1\}$$

$$= 72\{2 + 143\} = 72 \times 145 = 10440$$

Hence, the total savings in 144 days

= ₹ 10440

- 10. ∵ The monthly increment of ₹ 100 is fixed.
  - : Here annual salaries form an AP with

First term = *a* = ₹ 8000 × 12 = ₹ 96000

Common difference = *d* = ₹ 100 × 12 = ₹ 1200

Since, total earnings from salary in 10 years is given by S<sub>10</sub>.

$$\therefore \quad \text{Using } S_n = \frac{n}{2} [2a + (n-1)d], \text{ we have}$$
$$S_{10} = \frac{10}{2} [2 \times 96000 + (10-1) \times 1200]$$
$$= 5[2 \times 96000 + 9 \times 1200]$$
$$= 5[192000 + 10800]$$
$$= 5 \times 202800 = 1014000$$

Thus, the woman will earn ₹ 1014000 in a period of 10 years.

11. The savings ₹ 200, ₹ 250, ₹ 300, ₹ 350, ... form an AP with

a =first term = 200,

$$d = \text{common difference} = 50$$

Thus, total savings in 12 months of the year 2019 is given by S<sub>12</sub>.

Using

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
, we have

$$S_{12} = \frac{12}{2} [2 \times 200 + (12 - 1) \times 50]$$
  
= 6[400 + 11 × 50]  
= 6 × [400 + 550] = 6 × 950  
= 5700

Thus, the savings in the year 2019 = ₹ 5700.

12 We see that the numbers 32, 36, 40, 44, ... form an AP with the first term, a = 32 and the common difference, d = 36 - 32 = 4.

If *n* be the number of terms of this AP and  $S_{n'}$  the sum of the first n terms of the AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 32 + (n-1)4]$   
=  $\frac{n}{2} [64 + 4n - 4]$   
=  $\frac{n}{2} (4n + 60)$   
=  $n(2n + 30)$  ...(1)

If the sum is 2000, then  $S_n = 2000$ 

: From (1),

$$2n^2 + 30n - 2000 = 0$$

$$\Rightarrow$$
  $n^2 + 15n - 1000 = 0$ 

Solving this quadratic equation in *n*, we get

$$n = \frac{-15 \pm \sqrt{15^2 + 4 \times 1000}}{2}$$
$$= \frac{-15 \pm \sqrt{225 \times 4000}}{2}$$
$$= \frac{-15 \pm \sqrt{4225}}{2}$$
$$= \frac{-15 \pm 65}{2}$$
$$= \frac{50}{2}, -\frac{80}{2}$$
$$= 25, -40$$

Since *n* is a natural number, we reject n = -40

$$n = 25$$

*.*...

Hence, the required number of months in which she saves ₹2000 in 25 months.

**13.** Let the value of the first prize be  $\overline{\mathbf{x}}$ . Then the values of 3 successive prizes are ₹(x – 20), ₹(x – 40) and ₹(x – 60). Now, the numbers x, x - 20, x - 40, form an AP, with the first term, a = x and the common difference, d= x - 20 - x = -20.

If  $S_n$  be the sum of the first *n* terms of this AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2x - (n-1)20]$   
=  $n(x - 10n + 10)$  ...(1)

Arithmetic Progressions \_ 39

When n = 4, then  $S_n$  is given to be 280.

$$280 = 4 (x - 40 + 10)$$

$$\Rightarrow \qquad x - 30 = 70$$

$$\Rightarrow \qquad x = 100$$

Required values of 4 prizes will be ₹100, ₹80, ₹60 and *.*.. ₹40.

14. Resham's savings in successive months will be ₹450, ₹470, ₹490, ₹510, ... for 12 months.

Now, the numbers 450, 470, 490, ... form an AP with first term, a = 450 and the common difference, d = 470 - 450= 20.

If  $S_n$  be the sum of the first *n* terms of this AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 450 + (n-1)20]$   
=  $n(450 + 10n - 10)$   
=  $n(10n + 440)$ 

If n = 12, then from (1), we have

$$S_{12} = 12(10 \times 12 + 440)$$
  
= 12(120 + 440)  
= 12 × 560  
= 6720

... Required total amount of Resham's savings for 12 months is ₹6720. Since this amount is ₹6500, hence, she will be able to send her daughter to the school next year.

15. The child's daily savings of five-rupee coins will be 1 coin, 2 coins, 3 coins, 4 coins,... Now, the numbers 1, 2, 3, 4... form an AP with the first term, a = 1 and the common difference, d = 2 - 1 = 1. If S<sub>n</sub> be the sum of the first n terms of this AP, then

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 + (n-1)]$   
=  $\frac{n(n+1)}{2}$  ...(1)

When the piggy bank holds a total of 190 coins, then

$$S_n = 190$$

 $\therefore$  From (1), we have

$$\frac{n(n+1)}{2} = 190$$

 $n^2 + n - 380 = 0$  $\Rightarrow$ 

This is a quadratic solution.

∴ Its solutions are

$$n = \frac{-1 \pm \sqrt{1^2 + 4 \times 380}}{2}$$
$$= -1 \pm \sqrt{1 + 1520}$$
$$= \frac{-1 \pm \sqrt{1521}}{2}$$

$$= \frac{-1 \pm 39}{2}$$
$$= \frac{38}{2}, -\frac{40}{2}$$
$$= 19, -20$$

Since *n* is a natural number, we reject n = -20.

$$n = 19$$

*.*..

...(1)

: Required number of days = 19 days

Also, the total amount of her savings = 
$$\overline{190} \times 5 = \overline{950}$$

16. 
$$a = 8$$
,  $d = \frac{4}{12} = \frac{1}{3}$ ,  $S_n = 168$   
 $S_n = \frac{n}{2} [2a + (n - 1) d]$   
 $\Rightarrow 168 = \frac{n}{2} [16 + (n - 1) \frac{1}{3}]$   
 $\Rightarrow 168 = 8n + \frac{n(n - 1)}{6}$   
 $\Rightarrow 1008 = 48n + n^2 - n$   
 $\Rightarrow n^2 + 47n - 1008 = 0$   
 $\Rightarrow n = \frac{-47 \pm \sqrt{2209 + 4032}}{2}$   
 $= \frac{-47 \pm \sqrt{6241}}{2}$   
 $= \frac{-47 \pm 79}{2}$   
 $\Rightarrow n = 16, -63$ 

Since number of students cannot be negative, hence we will neglect -63.

$$n = 16$$
  

$$a_{16} = a + (16 - 1)d$$
  

$$= 8 + 15 \times \frac{1}{3} = 13$$

Age of the eldest participant = 13 years

17. Number of sides of the polygon = 31

Let the smallest side = x... The largest side  $= 16 \times (\text{smallest side})$ = 16x

: The lengths of sides of the polygon starting from the smallest are in AP.

 $\therefore$  The smallest side = First term of the AP = *x* The largest side = 31st side of AP

$$\Rightarrow a_{31} = 16x$$
  
Perimeter of the polygon = Sum of 31 terms of AP

= 527

 $S_{31} = 527$  $S_n = \frac{n}{2}$ 

Now using

 $\Rightarrow$ 

....

 $\Rightarrow$ 

$$S_n = \frac{\pi}{2} [2a + (n-1)d]$$
  

$$S_{31} = \frac{31}{2} [2 \times x + (31-1)d] = 527$$

$$\frac{31}{2}[2x+30d] = 527$$

$$\Rightarrow \qquad 31[x + 15d] = 527$$
$$\Rightarrow \qquad x + 15d = \frac{527}{31} = 17 \qquad \dots(1)$$

 $a_n = a + (n-1)d$ 

Also ⇒

·..

 $a_{31} = x + (31 - 1)d = 16x$ x + 30d = 16x

x + 30d - 16x = 0⇒

-15x + 30d = 0⇒

-x + 2d = 0 $\Rightarrow$ Solving (1) and (2), we get

d = 1 and  $a = 2 \Longrightarrow x = 2$ 

### Smallest side = 2 cm

#### Common difference = 1 cm

- 18. Numbers of trees that each section of each class will plant are 2, 4, 6, 8, 10,...24 for class I to XII. Now, these numbers form an AP, with the first term, a = 2 and the common difference, d = 4 - 2 = 2. If *n* be the number of terms of this AP and if  $S_n$  be the first *n* terms of this AP, then

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 2 + (n-1)2]$   
=  $n(2 + n - 1)$   
=  $n(n + 1)$  ...(1)

When n = 12 for 12 classes, then from (1)

 $S_{12} = 12 \times 13 = 156$ 

: Required number of trees planted by the students for 2 sections of each class =  $156 \times 2 = 312$ 

Value: Concern for the pollution of the environment and its remedial measures.

#### For Standard Level

**19.** Let the 2nd cyclist overtakes the first cyclist after 't' hours. Then, the two cyclists travel the same distance in 't' hours.

 $\therefore$  Distance travelled by the 1st cyclist in 't' hours

 $= 11 \times t \text{ km}$ 

...(2)

а d  $S_n$ 

⇒

Distance travelled by 1st cyclist in 't' hours = 11 t kmBut the distance covered by 2nd cyclist in 't' hours

= Sum of t terms of an AP with first term,

$$a = 10$$
 and common difference  $(d) = \frac{1}{3}$ 

$$= \frac{t}{2} \left[ 2 \times 10 + (t-1)\frac{1}{3} \right]$$

$$\left[ \text{ using, } S_n = \frac{n}{2} [2a + (n-2)d] \right]$$

$$= \frac{t}{2} \left[ 20 - \frac{1}{3} + \frac{1}{3}t \right] = \frac{t}{2} \left[ \frac{59}{3} + \frac{1}{3}t \right]$$

$$\therefore \qquad 11t = \frac{t}{2} \left[ \frac{59}{3} + \frac{1}{3}t \right]$$

$$\Rightarrow \qquad 11t = \frac{59t}{6} + \frac{1}{6}t^2$$

$$\Rightarrow \frac{59t}{6} - 11t + \frac{1}{6}t^2 = 0$$
  

$$\Rightarrow \frac{1}{6}t^2 - \frac{7}{6}t = 0$$
  

$$\Rightarrow t\left[\frac{t}{6} - \frac{7}{6}\right] = 0$$
  

$$\therefore \qquad \text{Either } t = 0 \qquad \text{[Not required]}$$
  
or  $\frac{t}{6} - \frac{7}{6} = 0$   

$$\Rightarrow \qquad \frac{t}{6} = \frac{7}{6}$$
  

$$\Rightarrow \qquad t = \frac{7}{6} \times 6 = 7$$

Thus, second cyclist will overtake the first one after 7 hours.

20. When the police starts running, the thief is 100 m apart. Speed for 1st minute is 60 m/minute and increases by 5 m/minute.

AP: 10, 15, ...  

$$a = 10 \text{ m/minute}$$
 (distance reduced in 1st min)  
 $d = 5$   
 $S_n = 100$   
 $S_n = \frac{n}{2} [2a + (n - 1) d]$ 

$$100 = \frac{n}{2} \left[ 20 + (n-1) 5 \right]$$

200 = n [20 + 5n - 5] $\Rightarrow$ 200 = n [15 + 5n] $\Rightarrow$  $200 = 15n + 5n^2$  $\rightarrow$  $n^2 + 3n - 40 = 0$  $\Rightarrow$ n(n-5) + 8(n-5) = 0 $\Rightarrow$ ⇒ (n+8)(n-5) = 0 $\Rightarrow$ n = -8 n = 5

Since time cannot be negative, hence we will reject - 8. Policeman will catch the thief in 5 minutes.

#### CHECK YOUR UNDERSTANDING

#### **MULTIPLE-CHOICE QUESTIONS**

#### For Basic and Standard Levels

1. (c)  $\sqrt{162}$  $\sqrt{18} = \sqrt{3^2 \times 2} = 3\sqrt{2}$  $\sqrt{50} = \sqrt{5^2 \times 2} = 5\sqrt{2}$  $d = 5\sqrt{2} - 3\sqrt{2} = 2\sqrt{2}$  $\Rightarrow$ Now use  $a_4 = a + (n - 1)d$  where n = 42. (b) 5.5  $a_n = a + (n-1)d$ Use:

where a = -1, d = -1.5 - (-1) = -0.5and n = 103. (d) 10 - 3nd = 4 - 7 = -3a = 7Using i.e.  $a + (n-1)d \implies 7 + (n-1)$  (-3)  $\Rightarrow$  7 + 3 - 3n or (10 - 3n) 4. (c) 20  $a_{11} = (-5) + (11 - 1) \left(\frac{5}{2}\right) \left(\because d = -\frac{5}{2} - (-5) = \frac{5}{2}\right)$ = -5 + 25 = 205. (c) **1331**  $a_n = (-1)^{n-1} \times n^3$  $\Rightarrow a_{11} = (-1)^{10} \times 11^3 = 1 \times 11 \times 11 \times 11 = 1331$ 6. (b) 74 d = 4 - (-3) = 4 + 3 = 7 $a_{12} = -3 + 11(7) = -3 + 77 = 74$ 7. (c) 78  $a_{18} = a + 17d = -7 + 17 \times 5 = -7 + 85 = 78$ 8. (b) 8  $a_n = a + (n-1)d$  $\Rightarrow \quad a + (31 - 1)\left(-\frac{1}{4}\right) = \frac{1}{2}$  $\Rightarrow$   $a + 30\left(-\frac{1}{4}\right) = \frac{1}{2}$  $a - \frac{15}{2} = \frac{1}{2}$  or  $a = \frac{1}{2} + \frac{15}{2} = 8$  $\Rightarrow$ 9. (b) -2.5  $a_n = a + (n-1)d$ = -2.5 + 0 = -2.5 [::  $d = 0 \Rightarrow (n - 1)d = 0$ ] **10.** (*b*) **83** From end,  $= 107 + (7 - 1) \times (-4) = 107 - 24 = 83$  $a_7$ [Note that first term equal to last term and d is taken as negative] 11. (*d*) 20  $a_{15} = a + 14d$ and  $a_{11} = a + 10d$  $\Rightarrow a_{15} = a + 14 \times 5$  $a_{11} = a + 10 \times 5$ = a + 70= a + 50 $\therefore a_{15} - a_{11} = (a + 70) - (a + 50) = 20$ 12. (b) -4  $a_{20} - a_{12} = a + 19d - (a + 11d) = -32$ 19d - 11d = -328d = -32 $d = \frac{-32}{8} = -4$ 13. (c) an AP with d = 4 $\begin{array}{ccc} \ddots & -1-(-5)=-1+5=4\\ & 3-(-1)=3+1=4 \end{array} \right\} \ d=4$ 14. (b) 0.3, 0.55, 0.80, 1.05 AP [0.30 + 0], [0.30 + 0.25], [0.30 + 2(0.25)],

 $(0.30 + 3(0.25)] \dots = [0.30], [0.55], [0.80], [1.05] \dots$ 15. (b) 28 n = 29 $a_{29} =$ First term + (n - 1)d= First term + (29 - 1)d= First term + 28dd = 2816. (*d*) 37  $a_n = 111$ 3 + (n - 1)3 = 111 $\Rightarrow$  $(n-1) = \frac{111-3}{3} = 36$  $\Rightarrow$ n = 36 + 1 = 37*.*.. 17. (a) k = 40*k*th term =  $a_k = 1000 = x$ a + (k - 1)d = 100025 + (k - 1) 25 = 1000 $k - 1 = \frac{1000 - 25}{25} = 39$  $\Rightarrow$ k = 39 + 1 = 40· · . 18. (d) 16  $S_n = \frac{n}{2}(a+l) = 400$  $\frac{n}{2}(5+45) = 400$  $\Rightarrow$  $\frac{n}{2} = \frac{400}{50} = 8$  $\Rightarrow$ n = 16

**19.** (*b*) **3** 

$$3(a_1) = a_4 \Longrightarrow 3a = a + 3d \Longrightarrow 2a = 3d \qquad \dots(1)$$
  

$$a_7 = 2(a_3) + 1 \Longrightarrow a + 6d = 2(a + 2d) + 1$$
  

$$\implies -a + 2d = 1 \qquad \dots(2)$$

Solving (1) and (2), we get a = 3

20. (c) -1  

$$\frac{1-p}{p} - \frac{1}{p} = \frac{1-2p}{p} - \frac{1-p}{p}$$

$$\Rightarrow \frac{1-p-1}{p} = \frac{1-2p-1+p}{p}$$

$$\Rightarrow -1 = -1 \Rightarrow \text{Common difference} = -1$$
21. (c) 30  
Two digits numbers divisible by 3 are  
12, 15, 18, ..., 99  
They are in AP with  $a = 12, d = 3$  and  $l = 99$   
 $a_n = a + (n-1)d = 99$   
 $\Rightarrow 12 + (n-1)3 = 99$   
 $\Rightarrow n - 1 = \frac{99-12}{3} = 29$   
 $\Rightarrow n = 29 + 1 = 30$   
22. (b)  $S_n - S_{n-1}$   
Sum of  $n$  terms =  $S_n$   
Sum of  $(n-1)$  term =  $S_{n-1}$ 

 $\therefore$  *n*th term = [Sum of *n* terms] - [Sum of (n - 1) terms]  $= [\mathbf{S}_n] - [\mathbf{S}_{n-1}]$ 23. (b)  $\frac{5}{2}, \frac{9}{2}, \frac{13}{2}, \frac{17}{2}$  $a_n = \frac{4n+1}{2}$  $\Rightarrow$   $a_1 = \frac{4+1}{2} = \frac{5}{2}, a_2 = \frac{4(2)+1}{2} = \frac{9}{2}$ Similarly,  $a_3 = \frac{13}{2}$  and  $a_4 = \frac{17}{2}$ 24. (c) 6  $a_n = 6n + 1$  and  $d = a_2 - a_1$  $\therefore a_1 = 6 + 2 = 8$  $a_2 = 6(2) + 2 = 14$ d = 14 - 8 = +6**25.** (*b*) **3** (2k + 1) - (2k - 1) = (2k - 1) - (k) =common diff. 2k + 1 - 2k + 1 = 2k - 1 - k $\Rightarrow$ 2 = k - 1 $\Rightarrow$ k = 3 $\Rightarrow$ 26. (b) -2, -2, -2, -2  $a_1 = a$  $a_2 = a + d$  $a_3 = a + 2d$  $a_4 = a + 3d$  $a_1 = -2$  $\Rightarrow$  $a_2 = a + d = -2 + 0 = -2$  $a_2 = -2 + 2d = -2 + 0 = -2$ a + 3d = -2 + 0 = -2and 27. (c) Gauss **28.** (c) **0**  $5(a_5) = 10(a_{10})$  $a_5 = 2(a_{10})$  $\Rightarrow$ a + 4d = 2(a + 9d)*.*.. a + 14d = 0 $\Rightarrow$ ...(1)  $a_{15} = a + (15 - 1)d$  $a + 14d = a_{15}$ ⇒ ⇒  $a_{15} = 0$ [From (1)] 29. (c) 25th term  $a = 19, d = \left(18\frac{1}{5}\right) - 19 = \frac{-4}{5}$ Let  $a_n$  be the first negative term a = 0

$$\Rightarrow \qquad \begin{bmatrix} a + (n-1)d \end{bmatrix} < 0$$
  
$$\Rightarrow \qquad \begin{bmatrix} 19 + (n-1)\left(-\frac{4}{5}\right) \end{bmatrix} < 0$$
  
$$\Rightarrow \qquad \begin{bmatrix} 19 + \frac{4}{5} - \frac{4}{5}n \end{bmatrix} < 0$$

 $\frac{99}{5} < \frac{4}{5}n$  or  $\frac{4}{5}n > \frac{99}{5}$  $\Rightarrow$  $n > \frac{99}{5} \times \frac{5}{4}$  $\Rightarrow$  $n > \frac{99}{4}$  or  $n \ge 24\frac{3}{4}$ or  $\therefore$  Natural number next to  $24\frac{3}{4}$  is 25. 30. (b) 2, 7, 12, ...  $a_7 = 32$ a + 6d = 32 $\Rightarrow$  $a_{13} = 62$ d = 5 and a = 2 $\rightarrow$ a + 12d = 62 $\Rightarrow$  $\therefore$  AP is 2, (2 + 5), (2 + 10), (2 + 15)  $\dots$  i.e. 2, 7, 12,  $\dots$ 31. (c) 25th term AP 3, 10, 17, ...  $\Rightarrow$ a = 3, d = 10 - 3 = 7 $a_n = 84 + a_{13}$ Let  $3 + (n - 1)7 = 84 + 3 + (13 - 1) \times 7$ *.*..  $\Rightarrow$ -4 + 7n = 84 + 3 + 847n = 84 + 3 + 84 + 4 = 175 $\Rightarrow$  $n = \frac{175}{7} = 25$  $\Rightarrow$ 32. (b) 55 a = 3, d = 7 - 3 = 4:.  $S_5 = \frac{5}{2} [2(3) + (5-1)4] = \frac{5}{2} [22] = 55$ 33. (c) 676 a = 1, d = 1 $\Rightarrow$  S<sub>26</sub> =  $\frac{26}{2}$  [2(1) + (26 - 1)2] = 13(2 + 50)  $= 13 \times 52 = 676$ 34. (b) 4  $a_n$  from the end is determined by  $a_n = l + (n - 1) (-d)$ where l = last term and d = common diff. $a_8$  from the end = 119 + (8 - 1) (-d) = 91 *.*.. 119 - 7d = 91 $\Rightarrow$ -7d = 91 - 119or  $d = \frac{-28}{-7} = 4$  $\Rightarrow$ 35. (*d*) 6  $S_n = 3n^2 + 4n$ ÷ *:*.  $S_1 = 3(1) + 4(1) = 7 = a$  $S_2 = 3(4) + 4(2) = 20 = a_1 + a_2$  $a_2 = 20 - a = 20 - 7 = 13$  $\Rightarrow$ Now  $d = a_2 - a_1 = 13 - 7 = 6$ 

© Ratna Sagar

Arithmetic Progressions | 43

36. (b) 
$$p = 65$$
  
 $a = 3 \text{ and } d = 15 - 3 = 12$   
 $a_{50} = a + 49d \text{ and } a_p = a + (p - 1)d$   
 $a_p - a_5 = 180$   
 $\Rightarrow [a + (p - 1) \times 12] - [a + 49 \times 12] = 180$   
 $\Rightarrow p = 65$   
37. (b)  $\frac{1}{4}$   
 $a_{19} = a_{12} + \frac{7}{4}$   
 $\Rightarrow a + 18d = a + 11d + \frac{7}{4}$   
 $\therefore (a + 18d) - (a + 11d + \frac{7}{4}) = 0$   
 $\Rightarrow 18d - 11d = \frac{7}{4}$   
 $\Rightarrow 7d = \frac{7}{4} \text{ or } d = \frac{1}{4}$   
38. (d)  $n = 20$   
 $a_1 = 21 \Rightarrow \text{ First term } = 21$   
 $a_2 = 42$   
 $\Rightarrow a + d = 42 \text{ or } d = 42 - 21 = 21$   
Now,  $a_n = 21 + (n - 1) \times 21 = 420$   
or  $(n - 1) = \frac{420 - 21}{21}$   
 $\Rightarrow n - 1 = \frac{399}{21} = 19$   
 $\therefore n = 19 + 1 = 20$   
39. (d)  $5n - 1$   
 $\therefore S_n = \frac{5n^2}{2} + \frac{3n}{2}$   
 $\therefore S_1 = \frac{5(1)^2}{2} + \frac{3(1)}{2} = \frac{8}{2} = 4$   
 $\Rightarrow \text{ First term } a = 4$   
 $S_2 = \frac{5(2)^2}{2} + \frac{3(2)}{2} = 10 + 3 = 13$   
 $\therefore S_2 = a_1 + a_2$   
 $\Rightarrow a_2 = 13 - 4 = 9$   
 $\therefore d = 9 - 4 = 5$   
Now,  $a_n = a + (n - 1)d$   
 $\Rightarrow a_n = 4 + (n - 1)5 = 4 + 5n - 5 \text{ or } d = 5n - 1$   
40. (a)  $-3$   
 $a_4 + a_8 = 24$   
 $\Rightarrow a + 5d + a + 9d = 44$   
 $\Rightarrow 2a + 10d = 24 \Rightarrow a + 5d = 12 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a + 7d = 22 \dots (2a + 14d = 44 \Rightarrow a +$ 

Subtracting (1) from (2), we get d = 5From (1), a + 25 = 12a = -13 $\Rightarrow$  $a_3 = a + 2d = -13 + 2(5)$ Now,  $a_3 = -3$  $\Rightarrow$ For Standard Level 41. (*d*) 5 AP with a = 8 $a_{30} = 8 + 29d$ AP with a = 3 $a_{30} = 3 + 29d$  $\therefore$  'd' for these AP's is the same  $\therefore$  [8 + 29d] - [3 + 29d] = 8 - 3 = 5 42. (c)  $\frac{b-a}{n-1}$ ÷  $a_n = b$ a + (n-1)d = b÷. (n-1)d = b - a $\Rightarrow$  $d = \frac{b-a}{n-1}$  $\Rightarrow$ 43. (b) 735  $a_2 = a + d = 8$  $a_4 = a + 3d = 14$ d = 3 and a = 5 $\Rightarrow$  $S_n = \frac{n}{2} [2a + (n-1)d]$ Now, using  $S_{21} = \frac{21}{2} [2(5) + (21 - 1)3]$  $=\frac{21}{2}[10+60]=\frac{21}{2}\times70=735$ 44. (d) 2, 6, 10, 14 Four numbers in AP are (a - 3 - d), (a - d), (a + d) and (a + 3d) $\therefore$  (a - 3d) + (a - d) + (a + d) + (a + 3d) = 32 $\Rightarrow a = 8$  $(a - 3d) = \frac{1}{7}(a + 3d)$ Also 7a - 21d = a + 3d $\Rightarrow$ d = 2 $\Rightarrow$  $\therefore$  AP [8 - 3(2)], [8 - 2], [8 + 2], [8 + 3(2)]  $\Rightarrow$  2, 6, 10, 14 45. (b) k = 0, 2 $a_1 = (4k + 8),$  $a_2 = 2k^2 + 3k + 6$ and  $a_3 = 3k^2 + 4k + 4$ For an AP  $a_2 - a_1 = a_3 - a_2$  $\Rightarrow [(2k^2 + 3k + 6) - (4k + 8)]$  $= [(3k^2 + 4k + 4) - (2k^2 + 3k + 6)]$  $\Rightarrow k = 0 \text{ or } k = 2$ 

© Ratna Sagar

...(1)

...(2)

$$d = \frac{5}{4},$$

$$a_{9} = a + 8d = -6$$

$$\Rightarrow a + 8\left(\frac{5}{4}\right) = -6$$

$$\Rightarrow a = -16$$
Now,  $a_{25} = a + 24d = (-16) + 24\left(\frac{5}{4}\right) = -16 + 30 = 14$ 
47. (b) 10
$$a_{1} = a = 4$$

$$a + d = 7 \Rightarrow d = 7 - 4 = 3$$

$$a_{n} = 31 \Rightarrow a + (n - 1)d = 31$$

$$\Rightarrow 4 + (n - 1)3 = 31$$

$$\Rightarrow n = 10$$
48. (b) 3 : 1
$$\frac{a_{18}}{a_{11}} = \frac{a + 17d}{a + 10d} = \frac{3}{2}$$

$$\Rightarrow a = 4d$$

$$\frac{a_{21}}{a_{5}} = \frac{a + 20d}{a + 4d} = \frac{4d + 20d}{4d + 4d} = \frac{24d}{8d} = \frac{3}{1}$$

$$\Rightarrow a_{21} : a_{5} = 3 : 1$$
49. (c)  $\frac{\sqrt{3} n(n + 1)}{2}$ 

$$a = \sqrt{3}, d = \sqrt{12} - \sqrt{3} = 2\sqrt{3} - \sqrt{3} = \sqrt{3}$$

$$S_{n} = \frac{n}{2} [2(\sqrt{3}) + (n - 1)\sqrt{3}]$$

$$= n\sqrt{3} [\frac{2}{2} + \frac{n - 1}{2}] = \sqrt{3} \cdot n (1 + \frac{n - 1}{2})$$

$$= \sqrt{3} \cdot n (\frac{2 + n - 1}{2}) = \frac{\sqrt{3} n (n + 1)}{2}$$
50. (b) 9

Let three consecutive terms of an AP be (a - d), a, (a + d)

$$\therefore (a-d) + a + (a+d) = 21$$

$$\Rightarrow \qquad a = 7$$

$$(a-d) (a+d) = 45$$

$$\Rightarrow \qquad a^2 - d^2 = 45$$

$$a^2 - d^2 = 45 \Rightarrow d^2 = 4$$

$$\Rightarrow d = 2 \qquad (\text{Reject } d = -2)$$
Now,  $a_3 = a + d = 2 + 7 = 9$ 

#### 51. (b) n(n + 2)

 $a_n = 2n + 1$  $a_1 = 2(1) + 1 = 3 =$  First term  $a_2 = 2(2) + 1 = 5 =$  Second term  $d = a_2 - a_1 = 5 - 3 = 2$ 

Now 
$$S_n = \frac{n}{2} [2(3) + (n-1) \times 2]$$
  
 $= n[3 + n - 1] = n(n + 2)$   
(d) 2475  
Two digit odd numbers are  
11, 13, 15, ..., 99, and they are in AP with  
 $a = 11, d = 2$  and  $l = 99$   
 $a_n = a + (n - 1)d = 99$   
 $\Rightarrow n = 45$   
Now,  $S_{45} = \frac{45}{2} [11 + 99] = 45 \times \frac{110}{2} = 45 \times 55 = 2475$   
(b) 1665  
All positive 2-digit numbers divisible by 3 are  
 $12, 15, 18, 21, ..., 99$   
such that  $a = 12, d = 3$  and  $l = 99$   
 $a_n = a + (n - 1)d = 12 + (n - 1)3 = 99$   
 $\Rightarrow n = 30$   
Now,  $S_{30} = \frac{30}{2} [12 + 99] = 15 \times 11 = 1665$   
(b) 3774  
 $a + d = 2$   
 $a + 3d = 8$   
 $\Rightarrow d = 3$  and  $a = -1$   
Using  $S_n = \frac{n}{2} [2a + (n - 1)d], S_{51} = 3774$   
(c)  $\frac{5n - 1}{2}$   
 $a_1 = (3 - \frac{1}{n}) = a$   
 $a_2 = (3 - \frac{2}{n})$   
 $\Rightarrow d = a_2 - a_1 = (3 - \frac{2}{n}) - (3 - \frac{1}{n}) = -\frac{1}{n}$   
Now, using  $S_n = \frac{n}{2} [2a + (n - 1)d],$   
 $S_n = \frac{n}{2} [2(3 - \frac{1}{n}) + (n - 1) \times (-\frac{1}{n})]$   
 $= \frac{n}{2} [6 - \frac{2}{n} - 1 + \frac{1}{n}] = \frac{n}{2} [5 - \frac{1}{n}]$   
 $= \frac{5n}{2} - \frac{1}{2} = \frac{5n - 1}{2}$   
(a) -8930  
 $\therefore a_n = a + (n - 1)d = (-5) + (n - 1)(-3) = -230$ 

56.

© Ratna Sagar

52.

53.

54.

55.

$$a = -5, d = -8 - (-5) = -3, l = (-230)$$
  
$$a_n = a + (n - 1)d = (-5) + (n - 1) (-3) = -230$$
  
$$\Rightarrow n - 1 = \frac{-230 + 5}{-3} = 75$$

$$\Rightarrow n = 75 + 1 = 76$$
Now, Using  $S_n = \frac{n}{2}(a+l)$ 

$$S_{76} = \frac{7}{2}[(-5) + (-230)]$$

$$= 38[-235] = -8930$$
57. (c) 2
$$\therefore S_n = 3n^2 - n$$

$$\therefore S_i = 3(1)^2 - (1) = 3 - 1 = 2$$
But  $S_1 = a = First term$ 

$$\therefore First term = 2$$
58. (d)  $n^2$ 

$$S_7 = 49$$

$$\Rightarrow \frac{7}{2}[2a + 6d] = 49$$

$$\Rightarrow a + 3d = 7 \qquad \dots(1)$$

$$S_{17} = 289$$

$$\Rightarrow \frac{17}{2}[2a + 16d] = 289$$

$$\Rightarrow a + 8d = 17 \qquad \dots(2)$$
Solving (1) and (2),  
 $a = 1 \text{ and } d = 2$ 

$$\therefore S_n = \frac{n}{2}[2(1) + (n - 1)2]$$

$$= n(1 + n - 1) = n \times n = n^2$$
59. (b) 35
Here,  $a = 5, d = 7 - 5 = 2$  and  $S_n = 320$ 

$$S_n = 320 \Rightarrow \frac{n}{2}[2(5) + (n - 1)2] = 320$$

$$\Rightarrow n^2 + 4n - 320 = 0$$
Solving it  $n = 16 \text{ or } -20 \qquad [n = -20 \text{ rejected}]$ 
Now  $a_{16} = a + (16 - 1)d$ 

$$= 5 + 15 \times 2 = 35$$

$$\Rightarrow x = 35$$
60. (d)  $(a + k) + (n - 1)d$ 
Now first term  $= a' = (a + k)$ , Common diff.  $= d$ 

$$\therefore a'_n = a' + (n - 1)d$$
Now first term  $= a' = (a + k)$ , Common diff.  $= d$ 

$$\therefore a'_n = a' + (n - 1)d$$
Now first term  $= a' = (a + k)$ , Common diff.  $= d$ 

$$\therefore a'_n = a' + (n - 1)d$$

$$S_{24} = 996$$

$$\Rightarrow \frac{24}{2}[2a + 23d] = 996 \qquad \dots(2)$$
Solving (1) and (2), we get  $a = 7$  and  $d = 3$ 
Now, the required AP is
 $a, (a + d), (a + 2d), \dots$ 
 $7, (7 + 3), (7 + 2 \times 3), \dots$ 
 $7, 10, 13, \dots$ 

62. (c) 2, 4, 6, 8  $a_n = 3 + \frac{2}{3}n$  $a_1 = 3 + \frac{2}{3}(1) = \frac{11}{3}$  $a_2 = 3 + \frac{2}{3}(2) = \frac{13}{3}$  $\Rightarrow \quad d = \frac{13}{3} - \frac{11}{3} = \frac{2}{3}$  $S_{24} = \frac{24}{2} \left[ 2 \left( \frac{11}{3} \right) + (24 - 1) \times \frac{2}{3} \right] = 24 \left[ \frac{11}{3} + \frac{23}{3} \right]$  $= 24 \times \frac{34}{3} = 272$ 63. (c) 2, 4, 6, 8 Let the four numbers in AP be (a - 3d), (a - d), (a + d) and (a + 3d) $\therefore \quad a - 3d + a - d + a + d + a + 3d = 20$ a = 5 $\Rightarrow$ ...(1) Also  $(a - 3d)^2 + (a - d)^2 + (a + d)^2 + (a + 3d)^2 = 120$  $4a^2 + 20d^2 = 120$ or  $a^2 + 5d^2 = 30$  $\Rightarrow$ ...(2) From (1) and (2)  $5d^2 = 30 - 25$  $5d^2 = 5$  $\Rightarrow$  $d^2=1$  $\Rightarrow$  $d = \pm 1$  $\Rightarrow$  $\therefore$  AP: (5 – 3), (5 – 1), (5 + 1), (5 + 3) or 2, 4, 6, 8, ... 64. (*a*) 21, 22  $S_n = \frac{n}{2} [2(63) + (n-1)(-3)] = 693$ 

⇒ 
$$n[126 - 3n + 3] = 1386$$
  
or  $3n^2 - 129n + 1386 = 0$   
∴  $n^2 - 43n - 462 = 0$   
⇒  $n = 22, 21$   
65. (c) 6, 7, 8  
Let the three numbers in AP are  
 $a - d, a$  and  $a + d$   
∴  $a - d + a + a + d = 21$   
⇒  $a = 7$   
Also,  $(a - d)(a + d)a = 336$   
or  $7(7^2 - d^2) = 336$   
⇒  $d = 1$   
∴ AP is  $(7 - 1), 7, (7 + 1)$  or 6, 7, 8

#### — SHORT ANSWER QUESTIONS -

#### For Basic and Standard Levels

 Taxi fare for 1st km = ₹ 20 for 2nd km = ₹ 20 + ₹ 14 = ₹ 34

for 3rd km = 
$$\langle 20 + \langle 28 = \langle 48 \rangle$$
  
 $:: 34 - 20 = 48 - 34 = 14$   
 $:: 20, 34, 48, ... form an AP.
2. (i) For  $n = 1, 1 + n + n^2 = 1 + 1 + 1 = 3$   
 $n = 2, 1 + n + n^2 = 1 + 2 + 4 = 7$   
 $n = 3, 1 + n + n^2 = 1 + 2 + 4 = 7$   
 $n = 3, 1 + n + n^2 = 1 + 3 + 9 = 13$   
 $: 7 - 3 \neq 13 - 7$   
 $: 1 + n + n^2$  is not *n*th term of an AP  
(ii) For  $n = 1, 5n - 1 = 5(1) - 1 = 4$   
For  $n = 2, 5n - 1 = 5(2) - 1 = 9$   
For  $n = 3, 5n - 1 = 5(3) - 1 = 14$   
 $: 9 - 4 = 14 - 9 = 5$  (constant)  
 $: 5n - 1$  is *n*th term of an AP  
3. Let common diff. =  $d$   
 $: a_{25} = a + 24d = -67$  ...(1)  
and  $a_{10} = a + 9d = -22$  ...(2)  
Subtracting (2) from (1),  
 $15d = -45$   
 $\Rightarrow d = -3$  and  $a = 5$   
 $: Last term = -82 = a_n$   
 $: a + (n - 1)d = -82$   
 $\Rightarrow n = 30$   
4.  $a_4 = 0$   
 $a + 3d = 0$  ... (1)  
 $a = -3d$   
Now we have to prove that  $a_{25} = 3a_{11}$   
 $a_{25} = a + (n - 1)d$   
 $= a + (25 - 1)d$   
 $= a + 24d$  ... (2)  
Putting the value of *a* from eq. (1) in eq. (2)  
 $a_{25} = -3d + 24d$   
 $= 21d$   
 $a_{11} = a + (n - 1)d$   
 $= a + 10d$  ... (3)  
Putting the values of *a* from eq. (1) in eq. (3)  
 $a_{11} = -3d + 10d$   
 $= 7d$$ 

We have

 $\Rightarrow$ 

$$\begin{aligned} a_{25} &= 21d \\ &= 3 \times 7d \\ a_{25} &= 3a_{11} \\ & [\because a_{11} = 7d] \end{aligned}$$

Sum of *n* terms =  $\frac{3n^2}{2} + \frac{13n}{2}$ 5. For n = 1, First term  $(a) = \frac{3}{2} + \frac{13}{2} = \frac{16}{2} = 8$  $S_2 = \frac{12}{2} + \frac{26}{2} = \frac{38}{2} = 19$ For n = 2,  $\Rightarrow$  [1st term + 2nd term] = 19 2nd term =  $19 - 8 = 11 = a_2$  $\Rightarrow$  $d = a_2 - a_1 = 11 - 8 = 3$ Now,  $a_{25} = a + 24d = 8 + 24 \times 3 = 80$ *.*..  $a_1 \times a_3 = a_2 + 46$ 6.  $\Rightarrow a \times (a + 2d) = a + d + 46$  $a^2 + 2ad = a + d + 46$  $\Rightarrow$ ... (1)  $S_3 = 33 \implies S_3 = \frac{3}{2}[2a + 2d] = 33$  $\Rightarrow 2a + 2d = 33 \times \frac{2}{3} = 22$  $\Rightarrow a + d = 11$ ... (2) From (1) and (2), we get  $a^2 + 2ad = 11 + 46$  $a^2 + 2ad = 57$  $\Rightarrow$ ... (3) d = (11 - a)[From (1)] But :. From (3),  $a^2 + 2a(11 - a) = 57$  $a^2 - 22a + 57 = 0$  $\Rightarrow$ Solving, this quadratic equation, a = 3 or a = 19a = 3, d = 8For [From (1)] Then AP is 3, 11, 19, ... For a = 19, d = -8,[From (1)] Then AP is 19, 11, 3, ... 7. Middlemost term of 11 terms =  $a_6$ *.*.. a + 5d = 30...(1) No

ow, 
$$S_{11} = \frac{11}{2} \times [2a + (11 - 1)d]$$
  
 $= \frac{11}{2} \times 2[a + 5d]$  ...(2)

From (1) and (2),  $S_{11} = 11[30] = 330$ 

© Ratna Sagar

8. Numbers between 10 and 600 which when divided by 3 leave a remainder 2, are

These numbers are in AP with a = 11, d = 3 and l = 599  $\therefore$   $a_n = l = 11 + (n - 1)3 = 599$   $\Rightarrow$   $n - 1 = \frac{599 - 11}{3} = \frac{588}{3} = 196$   $\Rightarrow$  n = 196 + 1 = 1979. AP:  $-\frac{4}{3}$ , -1,  $\frac{-2}{3}$ , ...,  $4\frac{1}{3}$  $a = -\frac{4}{3}$ 

Arithmetic Progressions | 47

$$d = a_2 - a_1$$

$$= -1 - \left(-\frac{4}{3}\right)$$

$$= -1 + \frac{4}{3}$$

$$= \frac{1}{3}$$

$$a_n = a + (n - 1)d$$

$$\Rightarrow \qquad \frac{13}{3} = -\frac{4}{3} + (n - 1)\frac{1}{3}$$

$$\Rightarrow \qquad \frac{17}{3} = \frac{(n - 1)}{3}$$

$$\Rightarrow \qquad n = 18$$

Since we have even number of terms, the middle terms will be  $\frac{n}{2}$  and  $\frac{n}{2}$ +1 i.e 9th and 10th.

$$a_{9} = a + 8d$$
  
=  $\frac{-4}{3} + 8 \times \frac{1}{3}$   
=  $\frac{-4}{3} + \frac{8}{3}$   
=  $\frac{4}{3}$   
 $a_{10} = a + 9d$   
=  $\frac{-4}{3} + 9 \times \frac{1}{3}$   
=  $\frac{5}{3}$ 

Sum of middlemost terms

$$= a_9 + a_{10}$$
  
=  $\frac{4}{3} + \frac{5}{3}$   
=  $\frac{9}{3}$   
= 3

10. Let the common difference = d and a = 1 (Given)  $S_4 = 4 + 6d, S_8 = 8 + 28d$ Now, Sum of next 4 terms beyond first 4 terms

$$= S_8 - S_4 = S'_4$$
  
or  $S'_4 = (8 + 28d) - (4 + 6d) = 4 + 22d$   
Now, it is given that  $S_4 = \frac{1}{3}S'_4$ 

$$\therefore \qquad 4 + 6d = \frac{1}{3} [4 + 22d]$$

$$\Rightarrow \qquad \frac{22}{3}d - 6d = 4 - \frac{4}{3}$$

$$\Rightarrow \qquad \frac{4}{3}d = \frac{8}{3}$$

$$\Rightarrow \qquad d = \frac{8}{3} \times \frac{3}{4} = 2$$

Thus, common difference = 2

11. Three digit numbers when divided by 16 leave remainder as 7 are

These numbers are in AP with

$$a = 103, d = 16 \text{ and } l = 999$$
Now
$$a_n = a + (n - 1)d$$

$$\Rightarrow 999 = 103 + (n - 1) \times 16$$
or
$$n - 1 = \frac{999 - 103}{16} = 56$$

$$\Rightarrow n = 56 + 1 = 57$$

$$\therefore \qquad S_{57} = \frac{57}{2} [103 + 999] = \frac{57}{2} \times 1102 = 31407$$
Thus the required sum = 31407

Thus, the required sum = 31407

12. 
$$a = \text{First term} = \frac{p-q}{p+q}, d = \frac{3p-2q}{p+q} - \frac{p-q}{p+q} = \frac{2p-q}{p+q}$$
$$\therefore S_{12} = \frac{12}{2} \left[ 2 \cdot \left(\frac{p-q}{p+q}\right) + 11 \left(\frac{2p-q}{p+q}\right) \right]$$
$$= 6 \left[ \frac{2p-2q+22p-11q}{p+q} \right]$$
$$= \frac{6[24p-13q]}{p+q}$$

13. Let 'a' be the 1st and 'd' be the common difference of an AP.

$$a_{m+n} = a + (m + n - 1)d$$

$$a_{m-n} = a + (m - n - 1)d$$
LHS =  $a_{m+n} + a_{m-n}$ 

$$= a + (m + n - 1)d + a + (m - n - 1)d$$

$$= 2a + 2(m - 1)d$$

$$= 2[a + (m - 1)d] = 2a_m = \text{RHS}$$

14. Let the numbers be (a - d), a, (a + d)

$$\therefore \qquad a - d + a + a + d = 21$$

$$\Rightarrow \qquad a = 7 \qquad \dots(1)$$

$$\therefore \qquad (a - d)^2 + a^2 + (a + d)^2 = 155$$

$$\therefore \qquad 3a^2 + 2d^2 = 155 \qquad \dots(2)$$

From (1) and (2) we have

$$3(7)^{2} + 2d^{2} = 155$$

$$\Rightarrow \qquad 147 + 2d^{2} = 155$$

$$\Rightarrow \qquad 2d^{2} = 8$$

$$\Rightarrow \qquad d^{2} = 4$$

$$\Rightarrow \qquad d = \pm 2$$
But the numbers are in increasing order
$$\therefore \qquad d = -2 \text{ is rejected}$$
Thus
$$d = 2$$

:.  $a - d, a, a + d, ... \Rightarrow (7 - 2), 7, (7 + 2) ... \text{ or } 5, 7, 9, ...$ 

#### 15. (*i*) False

*.*:.

[:: 13 - 20 = 6 - 13 = -7 ≠ 7]

(*ii*) False 
$$\begin{bmatrix} (\text{Interest at the} \\ \text{end of 2nd year} \\ \text{i.e. ₹ 1210} \end{bmatrix} - \begin{pmatrix} \text{Interest at the} \\ \text{end of 1st year} \\ \text{i.e. ₹ 1100} \end{bmatrix} \\ \neq \begin{bmatrix} (\text{Interest at the} \\ \text{end of 3rd year} \\ \text{i.e. ₹ 1210} \end{bmatrix} - \begin{pmatrix} \text{Interest at the} \\ \text{end of 2nd year} \\ \text{i.e. ₹ 1210} \end{bmatrix} \end{bmatrix}$$
(*iii*) True [::  $a_n = a + (n - 1)d \neq n^2 + 1$ ]  
(*iv*) False [::  $a, 2a, 4a, 8a \dots$  is not an AP]  
16. (*i*) Yes  
 $\therefore a_{40} = a + 39d \text{ and } a_{30} = a + 29d$   
 $\therefore a_{40} - a_{30} = (a + 39d) - (a + 29d) = 10d \dots(1)$   
and  $d = -7 - (-5) = -2 \dots(2)$   
From (1) and (2),  $a_{40} - a_{30} = 10 \times (-2) = -20$   
(*ii*) No  
 $\therefore a_n = 29 + (n - 1) (-4) = 0$   
 $\Rightarrow n = \frac{33}{4}$ , which is not a natural number.  
17. Let the three parts of 177 are:  $a - d$ ,  $a, a + d$   
[:: These parts are given to be in AP]  
 $\therefore (a - d) + a + (a + d) = 177$   
 $\Rightarrow a = 59$   
Product of larger two parts = 3599 ...(1)  
 $\therefore (a) (a + d) = 3599$   
 $\Rightarrow 59(59 + d) = 3599$   
 $\Rightarrow 61 - 59 = 2$   
Now, the required parts are  
 $(59 - 2), (59), (59 + 2) \text{ or } 57, 59, 61.$   
18.  $a = \frac{x - y}{x + y} d = \left[\frac{3x - 2y}{x + y} - \frac{x - y}{x + y}\right] = \frac{2x - y}{x + y}, n = 11$   
 $\therefore$  Using  $S_n = \frac{n}{2}[2a + (n - 1)d]$ , we get  
 $S_{11} = \frac{11}{2}\left[2 \cdot \frac{x - y}{x + y} + 10\left(\frac{2x - y}{x + y}\right)\right]$   
 $= \frac{11}{2}\left[2 \cdot \frac{x - y}{x + y} + 10\left(\frac{2x - y}{x + y}\right)\right]$   
 $= \frac{11}{2}\left[2 \cdot \frac{x - y}{x + y} + 10\left(\frac{2x - y}{x + y}\right)\right]$   
 $= 11\left[\frac{(11x - 6y)}{x + y}\right]$ 

**19.** We have *n*th term of an AP.

 $\Rightarrow$ 

$$a_n = a + nb$$
[where 'a' and 'b' are real numbers]  
 $l = (a + nb)$ 

For n = 1,  $a_1 = a + b$ [First term] For n = 2,  $a_2 = a + 2b$ [Second term] For n = 3,  $a_3 = a + 3b$ [Third term] Now  $a_2 - a_1 = (a + 2b) - (a + b) = b$  $a_3 - a_2 = (a + 3b) - (a + 2b) = b$  $\Rightarrow$  (a + b), (a + 2b), (a + 3b), ... is an AP. with First term = (a + b) and Common difference = bNow, using  $S_n = \frac{n}{2}[a+l]$ ,  $S_{20} = \frac{20}{2} [(a+b) + (a+20b)]$ we get = 10[2a + 21b]= 20a + 210b**20.** Here, first term, a = 5...(1) Let the common difference = d $S_8 = \frac{8}{2} [2a + 7d] = 8a + 28d$ ÷.  $S_4 = \frac{4}{2}[2a + 3d] = 4a + 6d$  $S'_4$  = Sum of next 4 terms beyond first 4 terms  $= S_8 - S_4$  $S'_4 = [8a + 28d] - [4a + 6d] = 4a + 22d$ *.*.. It is given that  $S_4 = \frac{1}{2}S'_4$ 

$$\Rightarrow 4a + 6d = \frac{1}{2} [4a + 22d] = \frac{2}{2} [2a + 11d]$$
  

$$\Rightarrow 6d - 11d = 2a - 4a$$
  

$$\Rightarrow 5d = 2a \qquad \dots(2)$$
  
From (1) and (2),  

$$5d = 2 \times 5 = 10$$

$$\Rightarrow \qquad d = \frac{10}{5} = 2$$

© Ratna Sagar

Hence, common difference, 
$$d = 2$$
  
21. The required sum  

$$= \begin{bmatrix} \text{Sum of multiples} \\ \text{of 2 from 1 to 500} \end{bmatrix} + \begin{bmatrix} \text{Sum of multiples} \\ \text{of 5 from 1 to 500} \end{bmatrix} - \begin{bmatrix} \text{Sum of multiples} \\ \text{of 10 from 1 to 500} \end{bmatrix}$$

$$= \begin{bmatrix} 2+4+6+\ldots+500 \\ \Rightarrow n = 250 \end{bmatrix} + \begin{bmatrix} 5+10+15+\ldots+500 \\ \Rightarrow n = 100 \end{bmatrix} - \begin{bmatrix} 10+20+30\ldots+500 \\ \Rightarrow n = 50 \end{bmatrix}$$

$$= \begin{bmatrix} 250 \\ 2 \\ 2 \\ 12 \\ 5 \\ 502 \end{bmatrix} + \begin{bmatrix} 100 \\ 2 \\ 5 \\ 500 \end{bmatrix} - \begin{bmatrix} 50 \\ 2 \\ 10 \\ 5 \\ 500 \end{bmatrix} = \begin{bmatrix} 125 \times 502 \\ 12 \\ 5 \\ 502 \end{bmatrix} + \begin{bmatrix} 50 \times 505 \\ 12 \\ 5 \\ 510 \end{bmatrix}$$

$$= \begin{bmatrix} 125 \times 502 \\ 12 \\ 50 \\ 2 \\ 50 \\ 505 \end{bmatrix} - \begin{bmatrix} 25 \times 510 \\ 2 \\ 500 \end{bmatrix}$$

Arithmetic Progressions 49

22. Numbers between 1 to 500 which are multiples of 2 as well as 5 are 10, 20, 30, ... 500 These numbers are in AP with a = 10, d = 10 and l = 500Using,  $a_n = a + (n - 1)d$ , we have 500 = 10 + (n - 1)10 $n-1 = \frac{500-10}{10} = 49$  $\Rightarrow$  $\Rightarrow$ n = 50 $S_{50} = \frac{50}{2} (10 + 500) = 25 \times 510 = 12750$ Now. First term = a23. Second term = bd = (b - a) $\Rightarrow$  $a_n = a + (n-1)d$ l = a + (n - 1)(b - a) $\Rightarrow$  $\Rightarrow (n-1) = \frac{l-a}{h-a} \text{ or } n = \frac{l-a+b-a}{h-a} = \frac{b+l-2a}{h-a}$  $S_n = \frac{1}{2} \times \left[\frac{b+l-2a}{b-a}\right] [a+l]$ Using  $S_n = \frac{1}{2} \times n [a+l]$ Now  $= \frac{b+l-2a}{2(b-a)}(a+l)$  $= \frac{(b+l-2a)(a+l)}{2(b-a)}$  $= \frac{(a+l)(b+l-2a)}{2(b-a)}$ 24. It is given that *a*, *b*, *c*, *d*, *e* form an AP.

Let D be the common difference  $\therefore \quad b = a + D$  c = a + 2D d = a + 3D e = a + 4D  $\Rightarrow \quad a - 4b + 6c - 4d + e$  = a - 4(a + D) + 6(a + 2D) - 4(a + 3D) + (a + 4D)  $\Rightarrow \quad a - 4b + 6c - 4d + e$  = a - 4a - 4D + 6a + 12D - 4a - 12D + a + 4D = (a - 4a + 6a - 4a + a) - (-4D + 12D - 12D + 4D) = (8a - 8a) + (16D - 16D) = 0 + 0Hence, a - 4b + 6c - 4d + e = 0

**25.** Two digit natural numbers which when divided by 3 give remainder 1 are:

10, 13, 16, ... 97 ∴ a = 10, d = 3 and l = 97  $a_n = a + (n - 1)d$ ⇒ 97 = 10 + (n - 1)3⇒ n = 30

 $S_n = \frac{n}{2}(a+l)$ Using  $S_{30} \frac{30}{2} [10 + 97] = 1605$ **26.** Let first term = a and common diff. = dn = 27÷  $\therefore$  3 middle terms are  $a_{13}$ ,  $a_{14}$  and  $a_{15}$ i.e.  $a_{13} = a + 12d$  $a_{14} = a + 13d$  $a_{15} = a + 14d$ ÷  $a_{13} + a_{14} + a_{15} = 81$ (a + 12d) + (a + 13d) + (a + 14d) = 81*.*.. a + 13d = 27 $\Rightarrow$ ...(1)  $a_{25} + a_{26} + a_{27} = 153$ Also, (a + 24d) + (a + 25d) + (a + 26d) = 153*.*.. a + 25d = 51...(2)  $\Rightarrow$ Subtracting (1) from (2), we get 12d = 24d = 2 $\Rightarrow$ From (1), a + 13(2) = 27a = 1 $\rightarrow$ Now, the AP is (a), (a + d), (a + 2d), (a + 3d), ... or (1), (1 + 2), (1 + 4), (1 + 6), ... or 1, 3, 5, 7, ... 27. Let a = first term and d = common diff.  $S_n = \frac{n}{2} [2a + (n-1)d]$ Using  $S_4 = \frac{4}{2}[2a + 3d] = 2[2a + 3d]$ *.*:.  $S_8 = \frac{8}{2}[2a + 7d] = 4[2a + 7d]$  $S_{12} = \frac{12}{2} [2a + 11d] = 6[2a + 11d]$ ...(1) Now,  $3[S_{\circ} - S_{4}] = 3[4(2a + 7d) - 2(2a + 3d)]$  $\Rightarrow 3[S_8 - S_4] = 3 \times 2[2(2a + 7d) - (2a + 3d)]$  $[S_{a} - S_{4}] = 6[4a + 14d - 2a - 3d] = 6[2a + 11d]...(2)$  $\Rightarrow$ From (1) and (2), we have:  $S_{12} = 3(S_8 - S_4)$ 

### - VALUE-BASED QUESTIONS -

1. (*i*) Number of students in the 1st row = 9

For Basic and Standard Levels

Number of students in the 2nd row = 7 Number of students in the 3rd row = 5 and so on.

Numbers, 9, 7, 5, ... decrease uniformly by a constant number 2.

 $\therefore$  9, 7, 5, ... form an AP with

a = 9, and d = -2

Let all the 25 students are involved using 'n' rows.

$$\begin{array}{rl} \ddots & S_n = \frac{n}{2} \left[ 2(9) + (n-1) (-2) \right] = 25 \\ \Rightarrow & n \left[ 9 + (n-1) (-1) \right] = 25 \\ \Rightarrow & n (9 - n + 1) = 25 \\ \Rightarrow & n (10 - n) = 25 \\ \Rightarrow & 10n - n^2 = 25 \\ \Rightarrow & n^2 - 10n + 25 = 0 \\ \Rightarrow & (n-5)^2 = 0 \\ \Rightarrow & n = 5 \end{array}$$

Thus, all the 25 students are involved in 5 rows.

(*ii*) Empathy and decision-making.

#### For Standard Level

 $\Rightarrow$ 

- (*i*) Formation of circles continued for 60 seconds, i.e. after 5 seconds, 10 seconds, 15 seconds, ...
  - $\therefore$  5 sec, 10 sec, 15 sec, ..., 60 sec form an AP with a = 5, d = 5 and l = 60

Using 
$$a_n = a + (n - 1)d$$
, we get  
 $60 = 5 + (n - 1)5$ 

$$n - 1 = \frac{60 - 5}{5} = 11$$

- $\Rightarrow$  n = 11 + 1 = 12
- : Corresponding to each interval of 5 sec there is 1 circle.
- $\therefore$  Number of circles = 12
- (*ii*) Number of flags in the circle  $C_1 = 4$ Number of flags in the circle  $C_2 = 7$ Number of flags in the circle  $C_3 = 10$

 $\therefore$  7 - 4 = 3 = 10 - 7

- :. Numbers 4, 7, 10, ... form an AP with a = 4, d = 7 4 = 3
- There are 12 circles in all

 $\Rightarrow$  n = 12

Using 
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
, we get  
 $S_{12} = \frac{12}{2} [2(4) + (12 - 1) \times 3]$   
 $= 6[8 + 11 \times 3]$   
 $= 6 \times 41 = 246$ 

Now, Total number of flags

$$= \begin{bmatrix} \text{Number of flags} \\ \text{in 12 circles} \end{bmatrix} + \begin{bmatrix} \text{Number of circle} \\ \text{at the centre} \end{bmatrix}$$
$$= 246 + 1$$
$$= 247$$

(iii) Students learn to explore creative thinking and patriotism.

3. (*i*) Since, the savings of the friends A and B increase by one coin of ₹ 5 daily, therefore they form an AP.

Let a =first term d =common difference,

n = number of days and

 $S_n$  = total number of five rupees coins saved.

Then,

a = 5, d = 5, n = 4

and  $S_4$  = total number of five rupee coins saved

$$\begin{split} \mathbf{S}_4 &= \frac{n}{2} [2a + (n-1)d] \\ &= \frac{4}{2} [2 \times 5 + (4-1)5] \\ &= 2(10+15) = 2(25) = 50 \end{split}$$

Hence, each friend saved  $\overline{\langle}(50 \times 5) = \overline{\langle} 250$ 

A divides his saving into 2 parts.

Let one part of his saving be *x*. Then, the other part is (250 - x)

Given, product of the two parts = 15625  

$$\therefore \qquad x(250 - x) = 15625$$

$$\Rightarrow \qquad 250x - x^2 = 15625$$

$$\Rightarrow \qquad x^2 - 250x + 15625 = 0$$

$$\Rightarrow \qquad x^2 - 125x - 125x + 15625 = 0$$

$$\Rightarrow \qquad x(x - 125) - 125(x - 125) = 0$$

$$\Rightarrow \qquad (x - 125)(x - 125) = 0$$

$$\Rightarrow \qquad x = 125$$
Hence A divides his saying into two equal parts

Hence, A divides his saving into two equal parts, each being ₹ 125.

B divides his saving into two parts.

Let one part of his saving be y. Then the other part is (250 - y).

Given, product of the two parts = 15600  $\therefore$  y(250 - y) = 15600  $\Rightarrow$   $250y - y^2 = 15600$   $\Rightarrow$   $y^2 - 250y + 15600 = 0$   $\Rightarrow$   $y^2 - 130y - 120y + 15600 = 0$   $\Rightarrow$  y(y - 130) - 120(x - 130) = 0  $\Rightarrow$  (y - 130)(y - 120) = 0 $\Rightarrow$  y = 130 or y = 120

Hence, B divides his saving into two unequal portions of ₹130 and ₹120.

(ii) A and B both exhibited the value of self awareness and decision-making by making the resolution to save money and executing it.

A also showed honesty and responsibility whereas B failed to be responsible and fair.

#### **UNIT TEST 1**

#### For Basic Level

1. (d) p + 9q

© Ratna Sagar

 $\therefore \quad \text{First term} = p \qquad \Rightarrow \quad a_n = p + (n-1)q$ Common diff. =  $q \qquad \therefore \quad a_{10} = p + 9q$  2. (c) 25th : a = 2, d = -1 - 2 = -3 and  $a_n = -70$ a + (n-1)d = -70 $\Rightarrow 2 + (n-1) (-3) = -70$  $n-1 = \frac{-70-2}{-3}$  $\Rightarrow$  $\Rightarrow$ n - 1 = 24n = 24 + 1 = 25or 3. (d) 2 a = 7 and  $a_7 = 19 \implies 7 + (7 - 1)d = 19$  $\Rightarrow 6d = 19 - 7 = 12$  $\Rightarrow d = \frac{12}{6} = 2$ 4. (a) 10 terms Let  $S_n = 120$  $\Rightarrow \frac{n}{2}[2(3) + (n-1)(2)] = 120$ [:: a = 3 and d = 5 - 3 = 2]  $\Rightarrow \quad \frac{n}{2}[6 + (n-1)2] = 120$ n[3 + n - 1] = 120 $\Rightarrow$  $n^2 + 2n - 120 = 0$  $\Rightarrow$ Solving it, n = 10, rejecting n = -125. (*b*) –925  $\therefore a_n = 2 - 3n$  $\therefore a_1 = 2 - 3 = -1$  $a_2 = 2 - 6 = -4$  $\Rightarrow d = a_2 - a_1 = -4 - (-1) = -3$  $S_{25} = \frac{25}{2} [2(-1) + (25 - 1) (-3)]$ *:*..  $= 25 \times (-37) = -925$  $a_2 = 38$  and  $a_6 = -22$ 6. ∵ a + d = 38*.*.. a + 5d = -224d = -60 or d = -15 $\Rightarrow$  $a_1 = a_2 - d = 38 - (-15) = 53$ Now  $a_3 = a + 2d = 53 + 2(-15) = +23$  $a_4 = a + 3d = 53 + 3(-15) = 8$  $a_5 = a + 4d = 53 + 4(-15) = -7$ Thus, we have: [53], 38, [23], [8], [-7], -22 7. :: x, 2x + p, 3x + 6 are in AP. *.*.. First term = a = xSecond term =  $a_2 = (2x + p)$ Common diff. =  $d = a_2 - a$  $\Rightarrow$ = [2x + p] - x= 2x + p - x = x + pNow  $a_3$  = Third term = 3x + 6a + (3 - 1)d = 3x + 6*.*..

x + 2(x + p) = 3x + 6 $\Rightarrow$ x + 2x + 2p = 3x + 6 $\Rightarrow$ 3x + 2p - 3x = 6 $\Rightarrow$ 2p = 6 or p = 3 $\Rightarrow$ 8. First term = a = 22 $a_n = -11 \implies 22 + (n-1)d = -11$  $\Rightarrow$  (n-1)d = -11 - 22 = -33...(1)  $S_n = 66 \implies \frac{n}{2} [2(22) + (n-1)d] = 66$  $\Rightarrow$  n[44 + (n-1)d] = 132...(2) From (1) and (2), we have n[44 + (-33)] = 132n[11] = 132 $\Rightarrow$  $n = \frac{132}{11} = 12$  $\Rightarrow$ n = 12Thus, 9. The given AP is

 $\therefore$  a = 62 and d = 59 - 62 = -3

To find the sum of 12 terms from the end, we replace the 1st term by the last term and reverse sign of common diff.

... From the end 
$$S'_{12} = \frac{12}{2} [2(8) + (12 - 1) (-d)]$$
  
= 6[16 + 11 × 3]  
= 6[16 + 33]  
= 6 × 49 = 294  
Thus, the sum of last 12 terms = **294**

10. :: 
$$S_n = \frac{3n^2}{2} + \frac{13n}{2}$$
  
∴  $S_1 = \frac{3(1)^2}{2} + \frac{13(1)}{2}$   
 $= \frac{3}{2} + \frac{13}{2} = \frac{16}{2} = 8$   
 $\Rightarrow \qquad a = 8$   
 $S_2 = \frac{3(2)^2}{2} + \frac{13(2)}{2}$   
 $= \frac{12}{2} + \frac{26}{2}$   
 $= \frac{38}{2} = 19$   
Since,  $S_2 = \text{sum of first two terms} = 19$   
 $\therefore \qquad a + (a + d) = 19$   
 $\Rightarrow \qquad 8 + (8 + d) = 19$   
 $\Rightarrow \qquad 16 + d = 19$   
 $\Rightarrow \qquad d = 2$ 

 $\Rightarrow \qquad a = 5$ Now,  $a_n = a + (n - 1)d$ = 8 + (n - 1)3

= 8 + 3n - 3 $a_n = 3n + 5$  $\Rightarrow$  $a_{25} = 3(25) + 5$ = 75 + 5  $a_{25} = 80$ ⇒ Thus, 25th term is 80. 11. We have 1 + 4 + 7 + 10 + ... + x = 590The given series is AP with a = 1 and d = 3. Here  $S_n = 590$ Now, using  $S_n = \frac{n}{2} [2a + (n-1)d]$ , we get  $1 + 4 + 7 + 10 + \dots + x = 590$ ÷  $\frac{n}{2}[(2 \times 1) + (n - 1) \times 3] = 590$  $\Rightarrow$  $\frac{n}{2}[2+3n-3] = 590$  $\Rightarrow$ n[3n - 1] = 1180 $\Rightarrow$  $3n^2 - n - 1180 = 0$ ⇒  $3n^2 - 60n + 59n - 1180 = 0$ ⇒ 3n(n-20) + 59(n-20) = 0⇒ (n-20)(3n+59)=0 $\Rightarrow$  $n = 20 \text{ or } n = -\frac{59}{3}$  $\Rightarrow$  $n = -\frac{59}{3}$  is rejected But n = 20*.*.. x = nth term = 20th term Now,  $a_{20} = 1 + (20 - 1)3$  [Using  $a_n = a + (n - 1)d$ ] ÷.  $= 1 + 19 \times 3$ = 1 + 57 = 58x = 58*.*.. **12.** Amount paid in the first month = ₹ 1000

Thereafter the monthly instalments increases by ₹ 100

⇒ a = ₹ 1000 and d = ₹ 100

 $\therefore$  Number of instalments = 30

$$\Rightarrow$$
  $n = 30$ 

∴Total loan amount is given by

 $S_n = \frac{n}{2} [2a + (n - 1)d]$   $\Rightarrow \qquad S_{30} = \frac{30}{2} [2(1000) + (30 - 1) \times 100]$   $= 15[2000 + 29 \times 100]$  = 15[2000 + 2900]  $= 15 \times 4900$  = 73500

Thus, the loan amount = ₹ 73500

#### **UNIT TEST 2**

#### For Standard Level

1. (b) 27th term  $S_n = 3n^2 + 5n$ *.*..  $S_1 = a = 8$  and  $S_2 = 22$  $a_2 = S_2 - S_1 = 22 - 8 = 14$  $\Rightarrow$  $d = a_2 - a_1 = 14 - 8 = 6$ Now  $a_n = a + (n - 1)d$ 164 = 8 + (n - 1)6 $\Rightarrow$ n = 27 $\Rightarrow$ 2. (d) -142a = 5 $a_{100} = 5 + (100 - 1)d = -292$  $\Rightarrow d = \frac{-292-5}{99} = -3$  $a_{50} = 5 + 49 \times -3 = -142$ 3. (b) 4n + 3 $S_n = 2n^2 + 5n$  $S_1 = 2 + 5 = 7 = a$  $S_2 = 8 + 10 = 18$  $a_2 = S_2 - S_1 = 18 - 7 = 11$  $d = a_2 - a_1 = 11 - 7 = 4$  $a_n = 7 + (n - 1)4$ *.*.. = 7 + 4n - 4 = 3 + 4n $a_n = 4n + 3$  $\Rightarrow$ 4. (b) 108  $a_1 = 8$  $a_2 = 10$  $\Rightarrow d = a_2 - a_1 = 2$ 

To find 10th term from the end we take the last term as the first term and 'd' as negative.

... From the end 
$$a_{10} = 126 + (10 - 1) (-2)$$
  
= 126 - 18 = 108

5. (c) 60°

Let the angles be  $(a - d)^{\circ}$ ,  $a^{\circ}$ ,  $(a + d)^{\circ}$  $\Rightarrow \qquad [a - d]^{\circ} + a^{\circ} + [a + d]^{\circ} = 180^{\circ}$   $a - d + a + a + d = 180^{\circ}$   $3a = 180^{\circ}$   $a = 60^{\circ}$ 

6. Natural numbers which are multiples of 7 and which lie between 500 and 900 are 504, 511, 518, 525 ..., 896.

These numbers form an AP with the first term, a = 504and the common difference, d = 511 - 504 = 7. If  $a_n$  be the nth term and  $S_n$  be the sum of the first *n* terms of this AP, then

$$a_n = a + (n - 1)d$$
  
= 504 + (n - 1)7  
= 7n + 497 ....(1)

and

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
  
=  $\frac{n}{2} [2 \times 504 + 7(n-1)]$   
=  $\frac{n}{2} [1008 + 7n - 7]$   
=  $\frac{n}{2} [7n + 1001]$  ...(2)

If the last term,  $a_n = 896$ , then from (1), we have

$$7n + 497 = 896$$

$$\Rightarrow 7n = 399$$

$$\Rightarrow n = \frac{399}{7} = 57 ...(3)$$

: There are 57 terms in the AP

:. From (2), 
$$S_{57} = \frac{57}{2} (7 \times 57 + 1001)$$
  
=  $\frac{57}{2} \times 1400 = 39900$ 

which is the required sum.

7. If *a* be the first term, *d*, the common difference of an AP,  $a_n$  be its *n*th term and  $S_n$ , the sum of the first *n* terms of the AP, then

$$a_n = a + (n-1)d \qquad \dots (1)$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 ...(2)

Now, given that

and

$$\frac{a_{11}}{a_{18}} = \frac{2}{3}$$

$$\Rightarrow \qquad \frac{a+10d}{a+17d} = \frac{2}{3} \qquad [From (1)]$$

$$\Rightarrow \qquad 2a+34d = 3a+30d$$

$$\Rightarrow$$
  $a = 4d$  ...(3)

$$\therefore \qquad \frac{a_5}{a_{21}} = \frac{a+4d}{a+20d} \qquad [From (1)]$$

$$= \frac{4d+4d}{4d+20d}$$
 [From (3)]  
$$= \frac{8d}{24d} = \frac{1}{3}$$

which is the required ratio.

Again, 
$$\frac{S_5}{S_{21}} = \frac{\frac{5}{2}(2a+4d)}{\frac{21}{2}(2a+20d)}$$
 [From (2)]

$$= \frac{5}{21} \times \frac{2 \times 4d + 4d}{2 \times 4d + 20d}$$
 [From (3)]  
$$= \frac{5}{21} \times \frac{12d}{28d} = \frac{5}{49}$$

which is the required second ratio.

 $\therefore$  Required ratios are 1:3 and 5:49.

$$(a - d), a, (a + d)$$
  

$$\therefore (a - d) + a + (a + d) = 33$$
  

$$\Rightarrow a = 11$$

Also (a - d) (a + d) = a + 29(11 - d) (11 + d) = 11 + 29 = 40 $\Rightarrow$  $121 - d^2 = 40$  $\Rightarrow$  $d^2 = 81$  $\Rightarrow$  $d = \pm 9$  $\Rightarrow$ For d = 9, (a - d), a, (a + d) ... are **2**, **11**, **20** ... For d = -9, (a - d), a, (a + d) ... are **20**, **11**, **2**, ...

9. Let *a* be the first term and *d* be the common difference of the AP. Let  $S_n$  be the sum of the first *n* terms of the AP.

Then 
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 ...(1)

Now, given that 
$$S_6 = 36$$
 ...(2)  
and  $S_{16} = 256$  ...(3)

 $\therefore$  From (1) and (2), we have

 $\Rightarrow$  $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$ 

 $\Rightarrow$  $\Rightarrow$ 

$$36 = \frac{6}{2}[2a + 5d]$$
  

$$36 = 3(2a + 5d)$$
  

$$2a + 5d - 12 = 0$$
 ...(4)

Also, from (1) and (3), we have

$$256 = \frac{16}{2} [2a + 15d]$$
  

$$\Rightarrow \qquad 256 = 8(2a + 15d)$$
  

$$\Rightarrow \qquad 2a + 15d - 32 = 0 \qquad \dots(5)$$

Subtracting (5) from (4), we get

$$-10d + 20 = 0$$
  
 $d = 2$  ...(6)

:. From (4), 
$$2a = 12 - 5 \times 2 = 2$$

$$\therefore \qquad a = 1 \qquad \dots (7)$$

∴ From (1), (6) and (7), we have

$$S_{10} = \frac{10}{2} [2 \times 1 + 9 \times 2]$$
  
= 5(2 + 18)  
= 100

Which is the required sum.

10. A three digit number is given by [100x + 10y + c]Digits 100x, 10y, c are in AP.

Let 
$$100x = 100(a - d), 10y = 10a, c = (a + d)$$

$$(a - d), a, (a + d)$$

$$a + d + a + a + d = 15$$
$$a = 5$$

*.*.. Digits of the given number are

$$100(5-d), 10(5), (5+d)$$

Digits in reverse order are

$$100(5 + d), 10(5), (5 - d)$$

Since the given number is greater than the number obtained by reversing the digits by 594

[Number formed by the digits taken in reverse order ] – [Given number]

= 594

$$\Rightarrow [100(5-d) + 10(5) + (5+d)] - [100(5+d) + 10(5) + (5-d)] = 594$$

Solving it for d, we get d = 3

... The given numbers = 
$$100(5 + 3) + 10(5) + (5 - 3)$$
  
=  $100(8) + 50 + 2$   
=  $800 + 50 + 2$   
=  $852$ 

11. Let the thief get caught after running for n minutes. Then the distance covered by the thief in n minutes = the distance covered by the police in (n - 1) minutes.

| A                    | B       |
|----------------------|---------|
| Thief $\rightarrow$  | Meeting |
| Police $\rightarrow$ | point   |

$$\therefore \qquad 100n = \frac{n-1}{2} [2 \times 100 + (n-1-1) \times 10] \\ = (n-1) [100 + (n-2)5]$$

$$= (n - 1) (5n + 90)$$
  

$$= 5n^{2} + 90n - 5n - 90$$
  
⇒  $5n^{2} + 90n - 100n - 5n - 90 = 0$   
⇒  $5n^{2} - 15n - 90 = 0$   
⇒  $n^{2} - 3n - 18 = 0$   
∴  $n = \frac{3 \pm \sqrt{3^{2} + 4 \times 18}}{2}$   

$$= \frac{3 \pm \sqrt{9 + 72}}{2}$$
  

$$= \frac{3 \pm 9}{2}$$
  
= 6 or -3

Since *n* is not negative,

- $\therefore$  We take n = 6.
- $\therefore$  The policeman catches the thief after (n 1) minutes
- = (6 1) minutes = 5 minutes of his starting time.

 $\therefore$  Required time = 5 minutes.