CHAPTER **5 Arithmetic Progressions**

 EXERCISE 5A

For Basic and Standard Levels 1. We have 3, 7, 11, 15, … \therefore 7 – 3 = 11 – 7 = 4 \therefore The given progression 3, 7, 11, 15, ... **is an AP.** Here, First term $= a = 3$ Common difference $= d = 4$ **2.** (*i*) We have 1.7, 2, 2.3, 2.6, … is an AP. Common difference = $a_2 - a_1$ $= 2 - 1.7$ $= 0.3$ Now, the term next to 2.6 = 2.6 + 0.3 = **2.9** and the term next to $2.9 = 2.9 + 0.3 = 3.2$ (*ii*) We have 0, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, ... is an AP \therefore Common difference (*d*) = $\frac{1}{5}$ – 0 = $\frac{1}{5}$ **5** Now, the term next to $\frac{3}{5} = \frac{3}{5}$ 1 $+\frac{1}{5} = \frac{4}{5}$ the term next to $\frac{4}{5} = \frac{4}{5}$ 1 $+\frac{1}{5} = \frac{5}{5}$ or 1 **3.** (*i*) We have 150, 141, 132, 123, … Here, First term $= a = 150$ Common difference = $d = 141 - 150 = -9$ $a_n = a + (n-1)d$ $a_6 = 150 + (6 - 1) (-9)$ $= 150 + 5 \times (-9) = 150 - 45$ = **105** (*ii*) We have 5.7, 5.2, 4.7, 4.2, … Here, $a = 5.7$ and $d = 5.2 - 5.7 = -0.5$ Now, $a_n = a + (n-1)d$ \Rightarrow *a*₁₁ = 5.7 + (11 – 1) × (–0.5) $= 5.7 + 10 \times (-0.5)$ $= 5.7 - 5.0 = 0.7$ (*iii*) We have $\frac{3}{11}$ 5 11 7 11 $,\frac{5}{11},\frac{7}{11},\frac{9}{11},\ldots$ Here, $a =$ First term = $\frac{3}{11}$ 11 $d = \text{Common diff.} = \frac{5}{11}$ $-\frac{3}{11} = \frac{2}{11}$ Now, $a_n = a + (n-1)d$ ⇒ $a_{29} = \frac{3}{11} + (29 - 1) \times \frac{2}{11} = \frac{3}{11} + 28 \times \frac{2}{11}$

 \Rightarrow $a_{29} = \frac{3}{11}$ 56 $+\frac{56}{11} = \frac{59}{11}$ (*iv*) We have –50, –35, –20, –5, 10, … Here, First term = $a = -50$ Common diff. = $d = -35 - (-50)$ $=-35 + 50 = 15$ Now, $a_n = a + (n - 1) d$ \Rightarrow $a_{18} = a + (18 - 1)d$ $a_{18} = -50 + 17 \times 15$ $a_{18} = -50 + 255$ = **205 4.** (*i*) We have 2, 7, 12, 17, … \Rightarrow First term (*a*) = 2 = *a*₁ Common difference $(d) = a_2 - a_1$ $= 7 - 2 = 5$ Since $a_n = a + (n-1)d$ $a_{15} = 2 + (15 - 1) \times 5$ $= 2 + 70 = 72$ (*ii*) We have \sqrt{x} , $3\sqrt{x}$, $5\sqrt{x}$, ... \Rightarrow First term = $a = \sqrt{x} = a_1$ Common difference = $d = a_2 - a_1$ $= 3\sqrt{x} - \sqrt{x} = \sqrt{x} (3-1)$ $= 2\sqrt{x}$ Since $a_n = a + (n-1) d$ \therefore $a_{27} = \sqrt{x} + (37 - 1) \times (2\sqrt{x})$ $=\sqrt{x} + 72\sqrt{x}$ $=\sqrt{x} (1+72) = \sqrt{x} (73)$ $= 73\sqrt{x}$ (*iii*) We have –5, –7, –9, … \Rightarrow First term = $a = -5 = a_1$ Common diff. $(d) = a_2 - a_1$ $= [(-7) - (-5)] = (-7) + 5$ $=-2$ Since $a_n = a + (n - 1) d$ ⇒ $a_7 = (-5) + (7 - 1) (-2)$ $= (-5) + 6(-2)$ $=-5 - 12 = -17$ (*iv*) We have 15, 9, 3, –3, … First term = $a = 15 = a_1$ Common diff. (*d*) = $a_2 - a_1$ $= 9 - 15 = -6$

Since
$$
a_n = a + (n-1) d
$$

\n $\Rightarrow a_r = 15 + (r - 1) (-6)$
\n $= 15 + (-6r + 6)$
\n $= 15 + 6 + (-6r) = 21 - 6r$
\n(c) We have $(18b + x)$, $(19b)$, $(20b - x)$,...
\n \Rightarrow First term = $a = (18b + x) = a_1$
\nCommon diff. $= d = a_2 - a_1$
\n $= (19b) - (18b + x)$
\n $= (19 - 18)b - x = b - x$
\nSince $a_n = a + (n - 1) d$
\n $\Rightarrow a_0 = (18b + x) + (9 - 1) \times (b - x)$
\n $= 18b + x + 8b - 8x$
\n $= 26b - x$
\n(cvi) We have $2\frac{3}{4}, 3\frac{3}{4}, 4\frac{1}{4}, ...$
\n \Rightarrow First term = $a = 2\frac{3}{4} = a_1$
\nCommon diff. (d) = $a_2 - a_1 = 3\frac{1}{4} - 2\frac{3}{4}$
\n $= (3 - 2) + (\frac{1}{4} - \frac{3}{4})$
\n $= 1 + (-\frac{2}{4}) = 1 + (-\frac{1}{2}) = \frac{1}{2}$
\nOr $d = a_2 - a_1 = 3\frac{1}{4} - 2\frac{3}{4}$
\n $= 1 + (-\frac{2}{4}) = 1 + (-\frac{1}{2}) = \frac{1}{2}$
\nSince $a_n = a + (n - 1) d$
\n $\therefore a_{29} = 2\frac{3}{4} + (29 - 1) \times (\frac{1}{2})$
\n $= 2\frac{3}{4} + 28 \times \frac{1}{2}$
\n $= 2\frac{3}{4} + 14 = 16\frac{3}{4}$
\n(cvii) $\sqrt{2}, \sqrt{8}, \sqrt{18}, ...$
\n $\sqrt{2}, 2\sqrt{2}, 3\sqrt{2}, ...$
\n

 $d = a_2 - a_1$ $=\frac{-5}{2} - (-5)$ $=\frac{-5}{2} + 5$ $=\frac{5}{2}$ $a_{25} = a + (n - 1) d$ $=-5+(25-1)\frac{5}{2}$ $=-5 + 24 \times \frac{5}{2}$ $=-5 + 60$ = **55 5.** (*i*) We have the *n*th term of an $AP = 5n - 2$ (*a*) : $a_n = 5n - 2$ \therefore $a_1 = 5(1) - 2 = 5 - 2 = 3$ ⇒ First term = **3** (*b*) Common difference $(d) = a_2 - a_1$ $= [5(2) - 2] - [5(1) - 2]$ $= 8 - 3 = 5$ (*c*) : $a_n = 5n - 2$ \therefore $a_{18} = 5(18) - 2$ $= 90 - 2 = 88$ (*ii*) We have $a_n = 7 - 4n$
 $\therefore \quad a_1 = 7 - 4(1)$ $a_1 = 7 - 4(1) = 7 - 4 = 3$ $a_2 = 7 - 4(2) = 7 - 8 = -1$ \Rightarrow Common diff. (*d*) = $a_2 - a_1$ $= (-1) - (3)$ $=-1 - 3 = -4$ (*iii*) $a_n = 2n^2 + 1$ $a_1 = 2(1)^2 + 1 = 2 + 1 = 3$ $a_2 = 2(2)^2 + 1 = 8 + 1 = 9$ $a_3 = 2(3)^2 + 1 = 18 + 1 = 19$
Since $a_2 - a_1 = 9 - 3 = 6$ $a_2 - a_1 = 9 - 3 = 6$ $a_3 - a_2 = 19 - 9 = 10$ i.e. $(a_2 - a_1) \neq (a_3 - a_2)$ \therefore 2*n*² + 1 is not a term of AP. ⇒ 3, 9, 19, … is **not an AP. 6.** The given AP is $\frac{2m+1}{m}$, $\frac{2m-1}{m}$, $\frac{2m-3}{m}$ *m m m m* $\frac{+1}{n}, \frac{2m-1}{m}, \frac{2m-3}{m}, ...$ $a_1 = \frac{2m+1}{m}$ $\frac{+1}{n}$ and $a_2 = \frac{2m-1}{m}$ − : $d = a_2 - a_1$ $=\frac{2m-1}{m} - \frac{2m+1}{m}$ *m* $\frac{n-1}{n} - \frac{2m+1}{m} = \frac{2m-1-2m-1}{m}$ $-1 - 2m =\frac{-1-1}{m}=\frac{-2}{m}$ Since $a_n = a + (n - 1) d$ $a_n = \left[\frac{2m+1}{m}\right] + (n-1)\left(\frac{-2}{m}\right)$ $\left[\frac{2m+1}{m}\right]$ + $(n-1)\left(\frac{-2}{m}\right)$

$$
= \frac{2m+1}{m} + \left(\frac{-2n}{m}\right) + (-1) \times \left(\frac{-2}{m}\right)
$$

$$
= \frac{2m+1}{m} + \frac{-2n}{m} + \frac{2}{m}
$$

$$
= \frac{2m+1-2n+2}{m}
$$

$$
= \frac{2m-2n+3}{m}
$$

Thus, the *n*th term is $\frac{2m-2n+3}{m}$
Again, $a_n = \frac{2m-2n+3}{m}$

$$
\Rightarrow \qquad a_6 = \frac{2m - (2 \times 6) + 3}{m} = \frac{2m - 9}{m}
$$

Thus, the required 6th term is $\frac{2m-9}{m}$ $\frac{n-9}{m}$.

Again,

7. Let '*a*' be the first term of the AP and '*d*' be its common difference.

 \therefore $a_n = a + (n - 1) d$ $a_{17} = a + (17 - 1) \times \frac{3}{4}$ $\frac{3}{4}$ [: $d = \frac{3}{4}$] \Rightarrow $-20 = a + 16 \times \frac{3}{4}$ $[a_{17} = -20]$ \implies $-20 = a + 12$ \Rightarrow $a = -20 - 12 = -32$ Now, $a_{33} = a + (33 - 1) d$ ⇒ $a_{33} = -32 + 32 \times \frac{3}{4} = -32 + 24 = -8$ Thus, the required 33rd term is **–8**.

8. (*i*) Let the *n*th term of the given AP is 0. We have 21, 18, 15, …

Thus, the **8th term** will be zero (0).

(*ii*) Let the required number of terms be '*n*'.

We have the AP as 7, 16, 25, … 349

$$
\Rightarrow \qquad a = \text{First term} = 7 = a_1
$$
\n
$$
a_2 = \text{Second term} = 16
$$
\n
$$
a_2 - a_1 = \text{common difference} = d
$$
\n
$$
\therefore \qquad d = 16 - 7 = 9
$$
\nNow,

\n
$$
a_n = a_1 + (n - 1) d
$$

⇒ 349 = 7 + $(n - 1) \times 9$ [∴ $a_n = 349$] \Rightarrow $(n-1) \times 9 = 349 - 7 = 342$

$$
\Rightarrow \qquad n - 1 = \frac{342}{9} = 38
$$

$$
\Rightarrow \qquad n = 38 + 1 = 39
$$

Thus, the required number of terms = **39**

 (*iii*) In the given AP, the first term, *a* = 213, common difference, $d = 205 - 213 = -8$.

Let a_n be the *n*th term of the AP where n is a positive integer.

$$
a_n = a + (n - 1)d
$$

= 213 + (n - 1)(-8)

If
$$
a_n = 0
$$
, then

⇒

$$
213 = 8(n-1)
$$

\n
$$
\Rightarrow \qquad \frac{213}{8} + 1 = n
$$

 \Rightarrow $n = \frac{221}{8}$

∴ *n* is not a positive integer.

Hence, $a_n \neq 0$ for any value of *n*, i.e., 0 is **not** a term of the given AP

 (*iv*) In the given AP, the first term, *a* = 11 and common difference, $d = 8 - 11 = -3$.

Let a_n be the *n*th term of the AP where *n* is a positive integer.

$$
\therefore \quad a_n = a + (n - 1)d
$$

= 11 + (n - 1)(-3)
If $a_n = -150$, then

$$
11 - 3(n - 1) = -150
$$

 $\Rightarrow \quad 3(n - 1) = 11 + 150 = 161$

$$
\Rightarrow \qquad \qquad n=1+\frac{161}{3}=\frac{164}{3}
$$

which is **not** an integer.

Hence, $a_n \neq -150$ for any value of *n*.

Hence, –150 is not a term of the given AP.

9. (*i*) The given AP is 2, –4, –10, –16, …

$$
\therefore
$$
 First term $(a_1) = 2 = a_1$
Second term $(a_2) = -4$
 \Rightarrow $d = \text{Common diff.} = (a_2 - a_1)$
 $= -4 - 2 = -6$

$$
\therefore \text{ kth term} = a + (k - 1) d
$$

$$
\therefore \quad x = 2 + (k - 1) \times (-6)
$$
\n
$$
\Rightarrow \quad -448 = 2 + (k - 1) (-6) \quad [\because x = -448]
$$

$$
\Rightarrow -448 = 2 - 6k + 6
$$

$$
\Rightarrow \qquad 6k = 448 + 2 + 6 = 456
$$

$$
\Rightarrow \qquad k = \frac{456}{6} = 76
$$

Thus, the required value of *k* is **76**.

(*ii*) The given
$$
AP
$$
 is

$$
-43, -35\frac{1}{2}, -28, -20\frac{1}{2}, \dots
$$

∴ First term
$$
(a_1) = -43
$$

\nSecond term $(a_2) = -35\frac{1}{2}$
\n⇒ Common difference $(d) = (a_2 - a_1)$
\n $= -35\frac{1}{2} - [-43]$
\n $= -35\frac{1}{2} + 43 = 7\frac{1}{2}$
\nNow, k th term $= a + (k - 1) d$
\n $x = (-43) + (k - 1) \times 7\frac{1}{2}$
\n $\Rightarrow \frac{1399}{2} = (-43) + (k - 1) \times 7\frac{1}{2} \quad [\because x = \frac{1399}{2}]$
\n $\Rightarrow (k - 1) \times 7\frac{1}{2} = \frac{1399}{2} + 43$
\n $= \frac{1399 + 86}{2} = \frac{1485}{2}$
\n $\Rightarrow k - 1 = \frac{1485}{2} \div 7\frac{1}{2} = \frac{1485}{2} \times \frac{2}{15} = 99$
\n $\Rightarrow k = 99 + 1 = 100$
\nThus, the required value of *k* is 100.
\n10. The given AP is *a*, *a* + *d*, *a* + 2*d*, ...
\n $\therefore a_n = a + (n - 1) d$
\n $a_k = a + (k - 1) d$
\n $a_k - a_k = a + (n - 1) d - [a + (k - 1) d]$
\n $= a + nd - d - [a + kd - d]$
\n $= a + nd - d - a - kd + d$
\n $= nd - kd = (n - k) d$...(1)

(*i*) We have 5th term = 17 and 15 th term = 67 Let $n = 5$ $\therefore a_n = 17$ and $k = 15$ $\therefore a_k = 67$ From (1)

$$
a_n - a_k = (n - k) d
$$

\n
$$
\Rightarrow \qquad d = \frac{a_n - a_k}{(n - k)}
$$

\n
$$
\Rightarrow \qquad d = \frac{17 - 67}{5 - 15} \qquad \therefore a_n = 17, a_k = 67 \ n = 5
$$

\n
$$
\Rightarrow \qquad d = \frac{-50}{-10} = 5
$$

Thus the required common difference is **5**.

(*ii*) Since, $a_{10} - a_5 = 1200$, $\therefore n = 10$ and $k = 5$ From (1), we have $a - a = (n - k) d$

$$
\Rightarrow \qquad 1200 = (10 - 5) d = 5 d
$$

$$
\Rightarrow \qquad d = \frac{1200}{5} = 240
$$

Thus, the required value of *d* is **240**.

(*iii*) Since 20th term is 22 more than 18th term

$$
\therefore \quad a_{20} = 22 + a_{18}
$$
\n
$$
\Rightarrow \quad a_{20} - a_{18} = 22
$$
\n
$$
\therefore \text{ Here } n = 20, k = 18
$$
\n
$$
\therefore \quad n - k = 20 - 18 = 2
$$
\nNow,
$$
d = \frac{a_n - a_k}{n - k}
$$
\n
$$
\Rightarrow \quad d = \frac{22}{2} = 11
$$

Thus, the required common difference is **11**.

11. (i) 6, 13, 20, ..., 216
\n
$$
a = 6
$$

\n $d = 7$
\n $a_n = 216$
\n $a_n = a + (n - 1) d$
\n $216 = 6 + (n - 1) 7$
\n $210 = (n - 1) 7$
\n $n = 31$
\nSince the number of terms are odd. Therefore, the

middle term will be $\frac{n+1}{2}$ Middle term = $\frac{31+1}{2}$ $\frac{+1}{2} = \frac{32}{2} = 16$ $a_{16} = a + (n-1)d$ $= 6 + (15) (7)$ $= 6 + 105$ = **111** (*ii*) 213, 205, 197, …, 37 *a* = 213 $d = -8$ $a_n = 37$ $a_n = a + (n-1)d$ $37 = 213 + (n - 1) (-8)$ $8(n - 1) = 176$ $n - 1 = 22$ $n = 23$ Middle term = $\frac{n+1}{2}$ $=\frac{23+1}{2}$ = 12 $a_{12} = a + (12 - 1)d$ $= 213 + 11(-8)$ $= 213 - 88$ = **125**

 (*iii*) In this given AP, the first term, *a* = 10 and the common difference, $d = 7 - 10 = -3$. We now find the total number of terms of the given AP. Let the total number of terms be *n*. Denoting the *n*th term by $a_{n'}$, we get

$$
a_n = a + (n - 1)d
$$

= 10 + (n - 1)(-3)

© Ratna Sagar

 $\overline{1}$ $\overline{}$ If the last term, –62 be the *n*th term, then

$$
a_n = -62 = 10 - 3(n - 1)
$$

\n⇒ $3(n - 1) = 10 + 62 = 72$
\n⇒ $n - 1 = \frac{72}{3} = 24$
\n∴ $n = 24 + 1 = 25$

 ∴ The total number of terms of the given AP is 25 which is odd.

Hence, there is only one middle term which is $\frac{a_{25+1}}{2}$ +

> $= a_{13}.$ Now, $a_{13} = a + (13 - 1)d$

 $= 10 - 12 \times 3 = -26$

Hence, the required middle term is **–26**.

12. Let *a* be the first term, *d* be the common difference and a_n be the *n*th term of the given AP.

Then, $a = -\frac{4}{3}$, $d = -1 + \frac{4}{3} = \frac{1}{3}$ and $a_n = a + (n-1)d$ $=-\frac{4}{3} + \frac{n-3}{3}$ 1 3 *n* $=\frac{-4 + n - 1}{3}$ *n*

$$
= \frac{n-5}{3}
$$

If *m*th term is the last term, $4\frac{1}{3} = \frac{13}{3}$

Then $a_m = \frac{13}{3} = \frac{m-5}{3}$ \Rightarrow $m-5=13$

 \Rightarrow *m* = 18 which is even

 Hence, there are two middle terms of the given AP *viz*. a_{18} and a_{18} ₁₈ + 1[,] i.e. a_9 and a_{10} .

2

Now, $a_9 = -\frac{4}{3} + \frac{1}{3}(9-1) = \frac{8-4}{3} = \frac{4}{3}$ and $a_{10} = -\frac{4}{3} + \frac{1(10-1)}{3}$ $\frac{1(10-1)}{3} = \frac{9-4}{3} = \frac{5}{3}$

∴ Required sum of two middle terms = $\frac{4}{3}$ $+\frac{5}{3}=\frac{9}{3}=3.$

13. (*i*) The given AP is 3, 10, 17, 24, …

 \therefore *a* = 3 and *d* = 10 – 3 = 7 Since $a_n = a + (n - 1) d$ \therefore $a_{13} = 3 + (13 - 1) \times 7$ $= 3 + 12 \times 7 = 3 + 84 = 87$ Since $a_n = a_{13} + 84 = 87 + 84 = 171$ \therefore $a + (n - 1) d = 171$ \Rightarrow 3 + (*n* – 1) × 7 = 171 \Rightarrow $(n-1) \times 7 = 171 - 3 = 168$ ⇒ $(n-1) = \frac{168}{7} = 24$

 \implies $n = 24 + 1 = 25$

Thus, **25th** term is 84 more than 13th term.

(*ii*) In the given AP, the first term, $a = 5$ and the common difference, $d = 9 - 5 = 4$. Let a_n be the *n*th term. Then $a_n = a + (n-1)d = 5 + (n-1)4$ $= 4n + 1.$ If $a_m = 81$, then

 $4m + 1 = 81$ \Rightarrow $m = \frac{80}{4} = 20$

∴ Required term is **20th term**.

 (*iii*) In the given AP, the first term, *a* = 9 and the common difference, $d = 12 - 9 = 3$. Let a_n be the *n*th term.

Then
$$
a_n = a + (n - 1)d
$$

$$
= 9 + (n - 1)3
$$

$$
= 3n + 6
$$
Now,
$$
a_{36} = 3 \times 36 + 6
$$

$$
= 108 + 6 = 114
$$
...(1)

 If *m*th term is the required term, then according to the problem, we have

$$
a_m = a_{36} + 39 = 114 + 39
$$
 [From (1)]
= 153

∴ $3m + 6 = 153$

$$
\Rightarrow \qquad m = \frac{153 - 6}{3} = \frac{147}{3} = 49
$$

∴ Required term is **49th term**.

 (*iv*) In the given AP, the first term, *a* = 8 and the common difference, $d = 14 - 8 = 6$.

Let a_n be the *n*th term. Then

$$
a_n = a + (n - 1)d
$$

= 8 + 6(n - 1)
= 6n + 2

$$
\therefore a_{41} = 6 \times 41 + 2
$$

= 246 + 2
= 248 ...(1)

Let *m*th term be the required term. Then according to the problem, we have

$$
a_m = a_{41} + 72
$$

= 248 + 72 [From (1)]
= 320

$$
\Rightarrow \quad 6m + 2 = 320
$$

$$
\Rightarrow \quad 6m = 318
$$

$$
\Rightarrow \quad m = 318
$$

 \Rightarrow $m = \frac{318}{6} = 53$

 ∴ Required term is **53rd term**. (*v*) The given AP is 3, 15, 27, 39

7) The given AP is 3, 15, 27, 39, ...
\n
$$
a = 3
$$
 and $d = 15 - 3 = 12$

Since
$$
a_n = a + (n-1)d
$$

$$
a_{21} = 3 + (21 - 1) \times 12
$$

= 3 + 20 × 12 = 243
Since, *a_n* is 120 more than *a₂₁*
∴ *a_n* = *a₂₁* + 120
⇒ *a* + (*n* - 1) *d* = 243 + 120 = 363
⇒ 3 + (*n* - 1) × 12 = 363
⇒ *n* - 1 = $\frac{360}{12}$ = 30
⇒ *n* - 1 = 30
⇒ *n* = 30 + 1 = 31
Hence 31st term is 120 more than 21st for

Hence, **31st term** is 120 more than 21st term.

 $= 310 - 5$

 $= 305$ …(1)

 (*vi*) In the given AP, the first term, *a* = 5 and the common difference, $d = 15 - 5 = 10$. Let a_n be the *n*th term. Then $a_n = a + (n-1)d$ $= 5 + 10(n - 1)$ $= 10n - 5$ Now, $a_{31} = 10 \times 31 - 5$

Let *m*th term be the required term. Then according to the problem, we have

$$
a_m = a_{31} + 130
$$

= 130 + 305 [From (1)]
= 435

$$
\therefore \quad 10m - 5 = 435
$$

$$
\Rightarrow \quad 10m = 440
$$

$$
\Rightarrow \quad m = 44
$$

- ∴ Required term = **44th term**.
- **14.** Let *a* be the 1st term, *d* be the common difference and a_n be the *n*th term of the AP. Given that *a* = 12. ∴ *an* = *a* + (*n* – 1)*d* = 12 + (*n* – 1)*d*

$$
∴ an = a + (n-1)d = 12 + (n-1)d
$$

\n∴ a₇ = 12 + (7 - 1)d = 12 + 6d
\nand a₁₁ = 12 + 10d
\nGiven that a₁₁ - a₇ = 24
\n⇒ 12 + 10d - 12 - 6d = 24 ⇒ 4d = 24 ⇒ d = $\frac{24}{4}$ = 6

∴ $a_{20} = 12 + (20 - 1) \times 6 = 12 + 114 = 126$ which is the required value of the 20th term.

15. Let *a* be the first term, *d* be the common difference and a_n be the *n*th term of the AP.

Here given that $n = 50$, $a_3 = 12$ and $a_{50} = 106$. ∴ $a_n = a + (n-1)d$ ∴ $a_{50} = a + (50 - 1)d$ = *a* + 49*d* \Rightarrow 106 = *a* + 49*d* …(1) \Rightarrow $a_3 = a + (3-1)d$ ⇒ $12 = a + 2d$ …(2)

Subtracting (2) from (1), we get
\n
$$
106 - 12 = (49 - 2)d
$$
\n
$$
\Rightarrow \qquad 94 = 47d
$$
\n
$$
\Rightarrow \qquad d = \frac{94}{47} = 2
$$
\n
$$
\therefore \text{ From (1),}
$$
\n
$$
a = 106 - 49 \times 2
$$
\n
$$
= 106 - 98 = 8
$$
\nHence,
$$
a_{29} = a + (29 - 1)d
$$
\n
$$
= 8 + 28 \times 2
$$
\n
$$
= 8 + 56
$$
\n
$$
= 64
$$

Which is the required value of **29th term**.

16. (*i*) Let the first term and common difference of an AP be '*a*' and '*d*' respectively.
Here $d = 11$

Here,
$$
d = 11
$$

\n \therefore $a_{20} = a + (20 - 1)d = a + 19(11) = a + 209$
\nAlso, $a_{18} = a + (18 - 1)d = a + 17(11) = a + 187$
\n \therefore $a_{20} - a_{18} = a + 209 - a - 187$
\n $= 22$
\n(ii) $a_{21} - a_7 = 84$
\n $a_{21} = a + (21 - 1)d = a + 20d$
\n $a_7 = a + (7 - 1)d = a + 6d$
\n $a_{21} - a_7 = 84$
\n $a + 20d - a - 6d = 84$
\n $14d = 84$
\n $d = 6$

17. Let the first term and common difference of the AP be '*a*' and '*d*' respectively.

$$
\therefore \quad a_9 = a + 8d \Rightarrow a + 8d = -2.6 \quad ...(1)
$$
\n
$$
a_{23} = a + 22d \Rightarrow a + 22d = -5.4 \quad ...(2)
$$

Subtracting (1) from (2), we have

$$
a + 22d = -5.4
$$

\n
$$
a + 8d = -2.6
$$

\n(–) (–) (+)
\n⇒ (22 - 8) d = -5.4 + 2.6
\n⇒ 14d = -2.8
\n⇒ d = - $\frac{2.8}{14}$ = -0.2
\nSubstituting d = -0.2 in (1),
\n $a + 8$ (-0.2) = -2.6
\n $a = -2.6 + (1.6) = -1$
\nNow,
\n $a_2 = a + d = -1 + (-0.2) = -1.2$
\nThus 2nd term is -1.2.
\nAgain,
\n $a_k = a + (k - 1) d$
\n $= -1 + (k - 1) \times (-0.2)$
\n $= -1 + (-0.2k) + 0.2 = -0.8 - 0.2k$
\nThus, kth term is (-0.8 - 0.2k).

© Ratna Sagar

18. Let the first term of the AP and common difference are '*a*' and '*d*' respectively.

$$
\therefore \quad a_n = a + (n - 1) \, d
$$
\n
$$
\Rightarrow \quad a_6 = a + (6 - 1) \, d = a + 5d
$$
\n
$$
a_{10} = a + (10 - 1) \, d = a + 9d
$$
\n
$$
\therefore \quad a + 5d = -10 \quad ...(1)
$$
\n
$$
a + 9d = -26 \quad ...(2)
$$

Subtracting (1) from (2), we get

$$
a + 9d = -26
$$

\n
$$
a + 5d = -10
$$

\n
$$
(-) (-) (+)
$$

\n
$$
4d = -16 \Rightarrow d = \frac{-16}{4} = -4
$$

Substituting
$$
d = -4
$$
 in (1), we get
\n $a + 5(-4) = -10$
\n $\Rightarrow a - 20 = -10 \Rightarrow a = -10 + 20 = 10$
\nNow, $a_{15} = a + 14d$
\n $\Rightarrow a_{15} = 10 + 14(-4) = 10 - 56$
\n $\Rightarrow a_{15} = -46$

- Thus the required 15th term is **–46**. **19.** Let the first term and common difference of the given AP
	- are '*a*' and '*d*' respectively. $a_n = a + (n - 1) d$
	- \Rightarrow $a_7 = a + 6d \Rightarrow a + 6d = -4$ …(1) $a_{13} = a + 12d \Rightarrow a + 12d = -16$ …(2)

Subtracting (1) from (2), we get

$$
a + 12d = -16
$$

\n
$$
a + 6d = -4
$$

\n
$$
(-) (-) (+)
$$

\n
$$
6d = -12 \Rightarrow d = \frac{-12}{6} = -2
$$

\nSubstituting $d = -2$ in (1), we get
\n
$$
a + 6(-2) = -4
$$

\n
$$
\Rightarrow a - 12 = -4 \Rightarrow a = -4 + 12 = 8
$$

\nNow, the AP is $a, a + d, a + 3d, ...$
\n
$$
\Rightarrow 8, 8 + (-2), 8 + 2(-2), 8 + 3(-2) ...
$$

\n
$$
\Rightarrow 8, 6, 8 - 4, 8 - 6, ...
$$

\n
$$
\Rightarrow 8, 6, 4, 2, ...
$$

\nThus, the required AP is
\n
$$
8, 6, 4, 2, 0, -2, ...
$$

20. Let '*a*' and '*d*' be the first term and common difference respectively.

 $a_n = a + (n - 1) d$ \Rightarrow $a_8 = a + 7d$ ⇒ 37 = *a* + 7*d* or $a + 7d = 37$ [: $a_8 = 37$] … (1) Also, $a_{12} = a + 11d$ ⇒ $a + 11d = 57$ [∴ $a_{12} = 57$] … (2) Subtracting (1) from (2), we get $(a + 11d) - (a + 7d) = 57 - 37$

 \Rightarrow 11*d* – 7*d* = 20 ⇒ $4d = 20$ or $d = \frac{20}{4} = 5$ Substituting $d = 5$ in (1), we get $a + 7(5) = 37$ \Rightarrow $a = 37 - 35 = 2$ Now, the AP is *a*, *a* + *d*, *a* + 2*d*, *a* + 3*d*, … or 2, $2 + 5$, $2 + 2(5)$, $2 + 3(5)$, … or 2, 7, $2 + 10$, $2 + 15$, ... or **2, 7, 12, 17,** … **21.** (*i*) $a_5 = 20$... (1) $a_7 + a_{11} = 64$... (2) From eq. (1), we get $a + 4d = 20$ $a = 20 - 4d$... (3) Now from eq. (2), we get $a + 6d + a + 10 d = 64$ $2a + 16d = 64$ $a + 8d = 32$... (4) Putting the value of *a* from eq.(3) in eq.(4) $20 - 4d + 8d = 32$ $20 + 4d = 32$ $4d = 12$ $d = 3$ (*ii*) Let *a* be the first term, *d,* the common difference and a_n be the *n*th term of the AP. Then $a_n = a + (n-1)d$ …(1) Now, $a_4 = 11$ [Given] $a + 3d = 11$ …(2) and $a_5 + a_7 = 34$ [Given] ⇒ $(a + 4d) + (a + 6d) = 34$ [From (1)] ⇒ $2a + 10d = 34$ ⇒ $a + 5d = 17$ …(3) Subtracting (2) from (3), we get $2d = 6$ ∴ *d* **= 3** which is the required common difference. (*iii*) $a_0 = -32$... (1) $a_{11} + a_{13} = -94$... (2) From eq. (1), we get $a + (9-1)d = -32$ $a + 8d = -32$... (3) Now, simplifying eq. (2), we get *a* + 10*d* + *a* + 12*d* = –94 $2a + 22d = -94$ $a + 11d = -47$... (4) Putting the value of *a* from eq. (3) in eq. (4), we get $-32 - 8d + 11d = -47$

$$
-32 + 3d = -47
$$

$$
3d = -15
$$

$$
d = -5
$$

7Arithmetic Progressions Arithmetic Progressions $\overline{}$ $\overline{7}$

© Ratna Sagar

∴ The required AP is 3, 3 + 2, 3 + 4, 3 + 6, …

(*vi*) Let *a* be the first term, *d*, the common difference and

 $a_5 + a_7 = 52$

 $a_n = a + (n-1)d$ …(1)

i.e., **3, 5, 7, 9, …**

Now, given that

 $a_{n'}$ the *n*th term of the AP.
Then $a_n = a + (n - 1)$

 \Rightarrow 4*d* = 20 \Rightarrow $d = 5$ …(3)

$$
\therefore \text{ From (2)}, \qquad a = 52 - 9 \times 5
$$

$$
= 52 - 45 = 7 \qquad \dots (4)
$$

∴ From (3) and (4), the required AP is

 $7, 7 + 5, 7 + 10, 7 + 15, \ldots$

i.e., 7, 12, 17, 22 …

(*ii*) Let *a* be the first term, *d*, the common difference and a_{n} , the *n*th term of the AP. Then

 $a_n = a + (n-1)d$ …(1) Given that $a_8 = 31$ \Rightarrow $a + 7d = 31$ [From (1)] \Rightarrow $a = 31 - 7d$ …(2) Also, given that $a_{15} = 16 + a_{11}$ ⇒ $a + 14d = 16 + (a + 10d)$ [From (1)] \Rightarrow 4*d* = 16 \Rightarrow $d = 4$ …(3) ∴ From (2), $a = 31 - 4 \times 7 = 3$ …(4) ∴ From (2) and (4), the required AP is $3, 3 + 4, 3 + 8, 3 + 12, 3 + 16, \ldots$ i.e., **3, 7, 11, 15, 19, …** (*iii*) Let *a* be the 1st term, *d*, the common difference and a_{n} , the *n*th term of the AP. Then $a_n = a + (n-1)d$ …(1) Given that $a_5 = 31$ \Rightarrow $a + 4d = 31$ [From (1)] \Rightarrow $a = 31 - 4d$ …(2) Also, given that $a_{25} = 140 + a_5$ ⇒ $a + 24d = 140 + (a + 4d)$ [From (1)] \Rightarrow 20*d* = 140 \Rightarrow $d = 7$ …(3) ∴ From (2), we have $a = 31 - 4 \times 7$ $= 3$ …(4) ∴ From (3) and (4), the required AP is

 $3, 3 + 7, 3 + 14, 3 + 21 \ldots$

- i.e. **3, 10, 17, 24, …**
- **23.** (*i*) Let *a* be the first term, *d*, the common difference and a_{n} , the *n*th term of the AP. Then

$$
a_n = a + (n-1)d \qquad \qquad \dots (1)
$$

Now, given that
$$
a_{19} = 3a_6
$$

\n \Rightarrow $a + 18d = 3(a + 5d)$ [From (1)]
\n \Rightarrow $2a - 3d = 0$

$$
\Rightarrow \qquad a = \frac{3d}{2} \qquad \qquad \dots (2)
$$

Also, given that
$$
a_9 = 19
$$

\n $\Rightarrow \qquad a + 8d = 19$ [From (1)]

$$
\Rightarrow \qquad \frac{3d}{2} + 8d = 19
$$
 [From (2)]

⇒

$$
\Rightarrow \qquad \frac{19d}{2} = 19
$$

$$
\Rightarrow \qquad d = 2 \qquad \qquad ...(3)
$$

19

$$
\therefore \text{ From (2),} \qquad a = \frac{3}{2} \times 2 = 3 \qquad \dots (4)
$$

∴ From (3) and (4), the required AP is

$$
3, 3+2, 3+4, 3+6, \ldots,
$$

i.e., **3, 5, 7, 9, …**

(*ii*) Let *a* be the first term, *d*, the common difference and a_{n} , the *n*th term of the AP. Then

$$
a_n = a + (n - 1)d
$$
...(1)
Given that
$$
a_9 = 6a_2
$$

$$
\Rightarrow \qquad a + 8d = 6(a + d)
$$
 [From (1)]
$$
\Rightarrow \qquad 5a = 2d
$$

$$
\Rightarrow \qquad a = \frac{2}{5}d \qquad \qquad \dots (2)
$$

Also, given that
$$
a_5 = 22
$$

\n \Rightarrow $a + 4d = 22$ [From (1)]

$$
\Rightarrow \qquad \qquad \frac{2d}{5} + 4d = 22
$$

22 $= 22$

$$
f_{\rm{max}}
$$

⇒

$$
\Rightarrow \qquad d = 5 \qquad \dots (3)
$$

$$
\therefore \text{ From (2),} \qquad a = \frac{2}{5} \times 5 = 2 \qquad \dots (4)
$$

∴ From (3) and (4), the required AP is

5

$$
2, 2 + 5, 2 + 10, 2 + 15, \ldots
$$

i.e., **2, 7, 12, 17, …**

 (*iii*) Let *a* be the first term, *d*, the common difference and $a_{n'}$ the *n*th term of the AP.

Then
$$
a_n = a + (n-1)d
$$
 ...(1)
\nGiven that $4a_4 = 18a_{18}$
\n \Rightarrow $4(a + 3d) = 18(a + 17d)$ [From (1)]
\n \Rightarrow $4a + 12d = 18a + 306d$
\n \Rightarrow $14a + 294d = 0$
\n \Rightarrow $a + 21d = 0$
\n \Rightarrow $a = -21d$...(2)
\n \therefore $a_{22} = a + 21d$ [From (1)]
\n $= -21d + 21d$ [From (2)]
\n= 0
\nwhich is the required value of a_{22} .
\n(iv) $a_9 = 7a_2$...(1)
\n $a_{12} = 5a_3 + 2$...(2)
\nFrom eq. (1), we get

$$
a + 8d = 7(a + d)
$$

\n
$$
a + 8d = 7a + 7d
$$

\n
$$
d = 6a
$$
 ... (3)

 Now from eq. (2), we get *a* + 11*d* = 5(*a* + 2*d*) + 2 *a* + 11*d* = 5*a* + 10*d* + 2 $d = 4a + 2$... (4)

 Putting the value of *d* from eq.(3) in eq.(4) $d = 4a + 2$ $6a = 4a + 2$

$$
2a = 2
$$
\n
$$
a = 1
$$
\nWe know\n
$$
d = 6a
$$
\n
$$
d = 6
$$
\n24. (i) Since $\frac{3}{5}$, x, $\frac{5}{3}$ x are in AP.\n
$$
x - \frac{3}{5} = \frac{5}{3}x - x
$$
\n
$$
x - \frac{5}{3}x + x = \frac{3}{5}
$$
\n
$$
2x - \frac{5}{3}x = \frac{3}{5}
$$
\n⇒
$$
\frac{x}{3} = \frac{3}{5}
$$
\n⇒
$$
x = \frac{3}{5} \times 3 = \frac{9}{5}
$$
\n(ii) 2k + 1, 3k + 3, 5k - 1

 For these three terms to be in an AP, the common difference of first two and last two terms must be equal.

$$
3k + 3 - (2k + 1) = 5k - 1 - (3k + 3)
$$

$$
3k + 3 - 2k - 1 = 5k - 1 - 3k - 3
$$

$$
k + 2 = 2k - 4
$$

$$
k = 6
$$

(*iii*) Since,
$$
2p - 1
$$
, $3p + 1$ and 11 are in AP.

$$
\therefore \quad 3p + 1 - 2p + 1 = 11 - 3p - 1
$$
\n
$$
\Rightarrow \quad p + 2 = 10 - 3p
$$
\n
$$
\Rightarrow \quad 4p = 8
$$
\n
$$
\Rightarrow \quad p = 2
$$

 which is the required value of *p* and the required number are 2 × 2 – 1, 3 × 2 + 1 and 11, i.e. **3, 7** and **11**.

 (*iv*) Since the given expressions are three consecutive terms of an AP, hence

(*v*) Since 18, *a, b*, –3 are in AP.

$$
a - 18 = b - a = -3 - b
$$

$$
\therefore \qquad a - 18 = b - a \qquad \qquad \dots (1)
$$

and
$$
b - a = -3 - b
$$
 ...(2)

$$
\therefore
$$
 From (1), $2a = 18 + b$

$$
\Rightarrow \qquad b = 2a - 18 \qquad ...(3)
$$

: From (2),
$$
2b = a - 3
$$

$$
\Rightarrow 2(2a-18) = a-3
$$
 [From (3)]

$$
\Rightarrow \qquad 3a - 36 + 3 = 0
$$

$$
\Rightarrow \qquad a = \frac{+33}{3} = 11 \qquad \qquad ...(4)
$$

∴ From (3), $b = 2 \times 11 - 18 = 4$

- ∴ The required values of *a* and *b* are **11** and **4** respectively.
- **25.** (*i*) Two-digit numbers which are divisible by 6 are 12, 18, 24, 30, …96

 which are in AP with first term, *a* = 12 and the common difference, $d = 18 - 12 = 6$.

Let *n* be the required number so that $a_n = 96$...(1)

Then
$$
a_n = a + (n-1)d
$$

$$
\Rightarrow \qquad 96 = 12 + (n-1)6 \qquad \text{[From (1)]}
$$

$$
f_{\rm{max}}
$$

$$
\Rightarrow \qquad \frac{84}{6} = n - 1
$$

$$
\Rightarrow \qquad n = 1 + 14 = 15
$$

∴ The required number is **15**.

(*ii*) We need to form an AP

⇒

 14, 21, 28, …, 98 $a = 14$, $d = 7$, $a_n = l = 98$ $a_n = a + (n-1)d$ ⇒ $98 = 14 + (n-1)7$ \Rightarrow 84 = $(n-1)7$ \Rightarrow $n-1=12$ ⇒ *n* **= 13**

 (*iii*) The three-digit numbers which are divisible by 9 are 108, 117, 126, …, 999 which are in AP with first term $a = 108$ and the common difference, $d = 117 - 108 = 9$. Let the number of terms of this AP is *n*.

Here the first term $= a = 108$

Common difference = $d = 117 - 108 = 9$

$$
a_n = n\text{th term}
$$

$$
= a + (n-1)d \qquad \qquad \ldots (1)
$$

Given that $a_n = 999$...(2)

The last term

∴ $108 + (n-1)9 = 999$ [From (1) and (2)]

$$
\Rightarrow \qquad \qquad n-1 = \frac{999 - 108}{9} = \frac{891}{9} = 99
$$

∴ $n = 100$

which is the required number.

(*iv*) Integers lying between 200 and 500, which are divisible by 8 are 208, 216, 224, …496 which are in AP with first term, *a* = 208, common difference, *d* = 216 – 208 = 8. If *n* be the total number of terms of this AP, then

Also,
\n
$$
a_n = 496
$$

\n \therefore $a + (n - 1)d = 496$
\n \Rightarrow 208 + $(n - 1)8 = 496$
\n \Rightarrow $(n - 1)8 = 496 - 208 = 288$
\n \Rightarrow $n - 1 = \frac{288}{8} = 36$
\n \Rightarrow $n = 37$
\nwhich is the required number of term.

Ratna Saq

26. (*i*) Let a_1 be the first term and d_1 be the common difference of the first AP and let a_2 be the first term and d_2 be the common difference of the second AP so that

$$
a_1 = 1, d_1 = 7 - 1 = 6
$$
 ...(1)
 $a_2 = 69, d_2 = 68 - 69 = -1$...(2)

 $= 6n - 5$ [From (1)] ...(3)

We denote the *n*th term of the first AP by a_n and that of the second AP by a'_n .

 $= 1 + (n - 1)6$

 $a'_n = a_2 + (n-1)d_2$

and a_n ¹

 $= 69 + (n - 1) (-1)$ $=-n + 70$ [From (2)] ...(4)

∴ $a_n = a_1 + (n-1)d_1$

 $a_n = a'_n$ ∴ From (3) and (4), we have

 $6n - 5 = -n + 70$ $7n = 75$

$$
\Rightarrow \qquad \qquad n = \frac{75}{7}
$$

which is not a natural number.

 Hence, **there is no value of** *n* for which the two given AP's, *n*th term are the same.

(*ii*) For the AP 6, 3, 0, …

 $a =$ First term = 6 $d =$ Common diff. = $3 - 6 = -3$ \therefore $a_n = a + (n-1)d = 6 + (n-1)(-3)$ \therefore $a_n = 6 - 3n + 3 = 9 - 3n$ … (1) For the AP 2, $0, -2, ...$ $a =$ First term $= 2$ *d* = Common diff. = $0 - 2 = -2$ \therefore $a_n = a + (n-1)d$ ⇒ $a_n = 2 + (n - 1) (-2)$ \Rightarrow $a_n = 2 + (-2n + 2)$ \Rightarrow $a_n = 2 - 2n + 2 = 4 - 2n$ … (2) From (1) and (2), we get $4 - 2n = 9 - 3n$ \Rightarrow $-2n + 3n = 9 - 4$ \Rightarrow $n=5$ (*iii*) For AP 13, 19, 25, … *a* = 13 and *d* = 19 – 13 = 6 \therefore $a_n = a + (n-1) d$ \Rightarrow $a_n = 13 + (n-1) \times 6$ \Rightarrow $a_n = 13 + 6n - 6 = 7 + 6n$ For AP 69, 68, 67, … $a = 69$ and $d = 68 - 69 = -1$ $a_n = a + (n-1)d$ \Rightarrow $a_n = 69 + (n-1)(-1)$ \Rightarrow $a_n = 69 + 1 - n = 70 - n$ $\therefore a_n$ for both the AP are same.

 \therefore 7 + 6*n* = 70 – *n* \implies 6*n* + *n* = 70 – 7 = 63 \Rightarrow 7*n* = 63 \Rightarrow $n = 9$

Now, for the AP in (*a*),

 $a_n = 7 + 6(9) = 7 + 54 = 61$

Thus, the *n*th term = 61 .

(*iv*) Let a_1 be the first term and d_1 be the common difference of the first AP and a_2 be the first term and d_2 be the common difference of the second AP so that

$$
a_1 = 9, d_1 = 7 - 9 = -2 \qquad \dots (1)
$$

and $a_2 = 24$, $d_2 = 21 - 24 = -3$...(2)

 We denote the *n*th term of the first and the second AP's by a_n and a'_n respectively. Then

$$
a_n = a_1 + (n - 1)d_1
$$

= 9 - 2(n - 1)
= -2n + 11 [From (1)] ... (3)
and

$$
a'_n = a_2 + (n - 1)d_2
$$

$$
= 24 - 3(n - 1)
$$

$$
= -3n + 27
$$
 [From (2)] ... (4)

$$
a_n = a'_n
$$

\n
$$
-2n + 11 = 3n + 27
$$
 [From (3) and (4)]

$$
\Rightarrow \qquad \qquad n = 27 - 11 = \mathbf{16}
$$

which is the required value of *n*.

Now, from (3)

$$
a_{16} = -2 \times 16 + 11
$$

= -32 + 11
= -21

which is the required value of a_{16} .

27. (*i*) The given AP is 114, 109, 104, ...
Here, First term =
$$
a = 114
$$

Common diff. = $d = 109 - 114 = -5$

 Let the *n*th term of the given AP is the first negative term.

⇒
$$
a_n < 0
$$
 or $[a + (n-1)d] < 0$
\n⇒ $[114 + (n-1) \times (-5)] < 0$
\n⇒ $[114 + (n \times -5) + 5] < 0$
\n⇒ $[119 - 5n] < 0$
\n⇒ $119 < 5n$ or $5n > 119$
\n⇒ $n > \frac{119}{5}$ or $n > 23\frac{4}{5}$

Since, the natural number just greater than $23\frac{4}{5}$ is

24.

 Thus, **24th** term of the given progression is the first negative term.

 (iii) In this AP, the first term, $a = 53$ and the common difference, $d = 48 - 53 = -5$.

Let the *n*th term a_n of this AP be the first negative term

Then

\n
$$
a_n = a + (n-1)d
$$
\n
$$
= 53 - 5(n-1)
$$
\n
$$
= -5n + 58
$$
\nNow,

\n
$$
a_n < 0
$$
\n
$$
\Rightarrow \qquad 5n > 58
$$
\n
$$
\Rightarrow \qquad n > \frac{58}{5} = 11\frac{3}{5}
$$

Since 12 is the natural number just above 11,

∴ We take *n* = 12.

 Hence, the required first negative term of the given AP is **12th term**.

28. Let the three numbers are:

 $(a - d)$, a , $(a + d)$ Since, sum of these numbers = 21 \therefore $a - d + a + a + d = 21$ \Rightarrow 3*a* = 21 \Rightarrow $a = 7$ Since, the product of these numbers = 231 $(a - d) (a) (a + d) = 231$ \Rightarrow $(a^2 - d^2) \times a = 231$ \Rightarrow (7² – d²) × 7 = 231 ⇒ $49 - d^2 = \frac{231}{7} = 33$ ⇒ $-d^2 = 33 - 49 = -16$ $d^2 = 16 \Rightarrow d = \pm 4$ Now, the numbers are $a - d$, a , $a + d$ \Rightarrow 7 – 4, 7, 7 – 7 + 4 or 7 + 4, 7, 7 – 4 \Rightarrow 3, 7, 11 or 11, 7, 3 So, the required three number are **3, 7, 11** or **11, 7, 3 29.** Let the three numbers in AP be $a - d$, a and $a + d$. ∴ According to the problem, we have $(a-d) + a + (a+d) = 12$ \Rightarrow 3*a* = 12 ⇒ $a = \frac{12}{3} = 4$ …(1) Now, given that $(a-d)^3 + a^3 + (a+d)^3 = 288$ ⇒ $(4-d)^3 + (4+d)^3 + 4^3 = 288$ [From (1)] \Rightarrow $(4-d+4+d)^3 - 3(4-d)(4+d)(4-d+4+d)$ $= 288 - 64$ $= 224$ [Using the formula, $a^3 + b^3 = (a + b)^3 = 3ab(a + b)$] $64 \times 8 - 3(16 - d^2) \times 8 = 224$

$$
\frac{1}{2} \quad \text{or} \quad \text
$$

$$
\Rightarrow \qquad 64 - 48 + 3d^2 = 28
$$

$$
\Rightarrow \qquad 3d^2 = -16 + 28 = 12
$$

$$
\Rightarrow \qquad d^2 = 4
$$

$$
\Rightarrow \qquad d = \pm 2 \qquad \qquad ...(2)
$$

∴ From (1) and (2), the required number are either $4 - 2$, 4 and 4 + 2, i.e., **2, 4 and 6** or 4 + 2, 4 and 4 – 2, i.e., **6, 4 and 2**.

30. (*i*) AP : 5, 9, 13, …, 185

 Since we need to find the 9th term from the end therefore we will reverse the AP.

$$
a = 185, d = -4, n = 9
$$

\n
$$
a_9 = a + (9 - 1)d
$$

\n
$$
= 185 + 8(-4)
$$

\n
$$
= 185 - 32
$$

\n
$$
= 153
$$

(*ii*) AP : 1, 6, 11, 16, …, 211, 216

 Since we need to find the 17th term from the end therefore we will reverse the AP.

$$
a = 216, d = -5, n = 17
$$

\n
$$
a_{17} = a + (17 - 1)d
$$

\n
$$
= 218 + 16(-5)
$$

\n
$$
= 216 - 80
$$

\n= 136
\n(iii) The given AP is 17, 14, 11, ... (-40).
\nHere, First term = a = 17
\nCommon diff. = d = 14 - 17 = -3
\nAnd the last term l = -40
\nSince, the *n*th term from the end = l – (n – 1)d
\n∴ 6th term from the end = -40 – (6 – 1) (-3)
\n= -40 – (5) (-3)
\n= -40 + 15 = -25
\n(iv) The given AP is 8, 10, 12, ..., 126
\nHere, d = 10 - 8 = 2 and l = 126
\nSince, nth term from the end = l – (n – 1)d
\n∴ 10th term from the end = 126 – (10 – 1) × 2
\n= 126 – 9 × 2
\n= 126 – 18 = 108
\n(v) In the given AP, the first term, a = 7, the common

difference, $d = 10 - 7 = 3$ and the last term, $l = 184$. Let a_n be the *n*th term from the end.

Then $a_n = l - (n - 1)d$ $= 184 - 3(n - 1)$ $= 184 - 3n + 3$ = 187 – 3*n* ∴ $a_8 = 187 - 3 \times 8$ $= 187 - 24 = 163$

which is the required term.

(*vi*) In the given AP, the first term, $a = 3$, the common difference, $d = 8 - 3 = 5$ and the last term, $l = 253$. Let a_n be the *n*th term from the end. Then

$$
a_n = l - (n - 1)d
$$

= 253 - 5(n - 1)
= 253 + 5 - 5n

 = 258 – 5*n* ∴ $a_{20} = 258 - 5 \times 20 = 158$ which is the required term. **31.** (*i*) In the orchard, the number of trees in 1st row $= 17$ 2nd row $= 15$ $3rd$ row $= 13$ ……………………… …………………… last row $=$ 3 \therefore 15 – 17 = –2 = 13 – 15 \therefore 17, 15, 13, ..., 3 form an AP. Such that number of rows $= n$ $a = 17$, $d = -2$ and $a_n = 3$ ⇒ $a_n = 17 + (n-1) \times (-2) = 3$ \Rightarrow $(n-1) \times (-2) = 3 - 17 = -14$ \Rightarrow $n-1 = \frac{-1}{-}$ 14 $\frac{1}{2}$ = 7 \Rightarrow $n = 7 + 1 = 8$ Thus the number rows = **8** (*ii*) Principal (P) = $\overline{\xi}$ 2000 Rate of simple interest = (r) = 8% p.a. \therefore Interest after 1st year = $\frac{P \times r \times t}{100}$ $=\bar{\xi} \frac{2000 \times 8 \times 1}{100} = \bar{\xi} 160$ Interest after 2 years = $\sqrt[3]{\frac{2000 \times 8 \times 2}{100}}$ = ₹ 320 Interest after 3 years = $\sqrt[3]{\frac{2000 \times 8 \times 3}{100}}$ = ₹ 480 Since, $320 - 160 = 480 - 320 = 160$ \therefore 160, 320, 480, \dots are in AP. where First term $= a = 160$ Common diff. $= d = 160$ Now, if *n* = 20 then $a_{20} = a + (20 - 1)d$ $= 160 + 19 \times 160$ [: *a* = 160 and *d* = 160] $= 160 + 3040$ $= 3200$ \Rightarrow Interest at the end of 20 years = ₹ 3200 **For Standard Level 32.** Let the first term, $a = -\frac{4}{3}$, the common difference,

Then $a_n = a + (n-1)d$

$$
= -\frac{4}{3} + \frac{1}{3}(n-1)
$$

$$
= -\frac{4}{3} - \frac{1}{3} + \frac{n}{3}
$$

 $d = -1 + \frac{4}{3} = \frac{1}{3}$ and $a_{n'}$ the *n*th term of the AP,

 $=\frac{-5}{3} + \frac{n}{3}$ $\dots(1)$ If $a_n =$ last term = $4\frac{1}{3} = \frac{13}{3}$, then $rac{13}{3} = \frac{n}{3}$ $-\frac{5}{3}$ [⇒] *ⁿ* $\frac{n}{3} = \frac{13}{3}$ $+\frac{5}{3} = \frac{18}{3}$ \Rightarrow *n* = 18 which is even

Hence, there are two middle terms *viz*. a_{18} 2 and $a_{18/2+1}$

 $\frac{9}{3} = \frac{4}{3}$

 $=$ 3

i.e., a_9 and a_{10} Now, from (1)

 $a_9 = -\frac{5}{3} +$

and
$$
a_{10} = -\frac{5}{3} + \frac{10}{3} = \frac{5}{3}
$$

\n $\therefore \qquad a_9 + a_{10} = \frac{4}{3} + \frac{5}{3} = \frac{9}{3}$

Hence, the required sum of the two middle terms is **3**.

33. Let *a* be the first term, *d*, the common difference and a_{n} , the *n*th term of the AP. Then $a_n = a + (n-1)d$...(1) Now, given that $a_{24} = 2a_{10}$ $a + 23d = 2(a + 9d)$ [From (1)] = 2*a* + 18*d* \Rightarrow $a - 5d = 0$ \Rightarrow $a = 5d$ …(2) Now, $a_{72} = a + 71d$ [From (1)] $= 5d + 71d$ [From (2)] $= 76d$ …(3) and $a_{15} = a + 14d$ [From (1)] $= 5d + 14d = 19d$ [From (2)]...(4) ∴ From (3) and (4), we have

$$
\frac{a_{72}}{a_{15}} = \frac{76d}{19d} = 4
$$

$$
a_{72} = 4a_{15}
$$

Hence, proved.

34. Let *a* be the first term, *d*, the common difference and a_{n} , the *n*th term of the AP.

Then
$$
a_n = a + (n-1)d \qquad ...(1)
$$

Now, given that
$$
a_6 = 0
$$

 \Rightarrow $a + 5d = 0$ [From (1)] \Rightarrow $a = -5d$ …(2) ∴ $a_{22} = a + 32d$ $=-5d + 32d$ [From (2)] $= 27d$ …(3) $a_{15} = a + 14d$ $=-5d + 14d$ [From (2)] $= 9d$ …(4) ∴ From (3) and (4), we have

$$
\frac{a_{33}}{a_{15}} = \frac{27d}{9d} = 3
$$

$$
\therefore \qquad a_{33} = 3a_{15}
$$

Hence, proved.

35. Let *a* be the first term, *d*, the common difference and $a_{n'}$ the *n*th term of the AP where *n* is the number of term of the AP.

Then
$$
a_n = a + (n-1)d
$$
 ...(1)

$$
a_{26} = a + 25d
$$

\n
$$
\Rightarrow \qquad 0 = a + 25d
$$
 [Given]

$$
a = -25d \qquad \qquad ...(2)
$$

$$
a_{11} = a + 10d
$$

\n
$$
\Rightarrow \qquad 3 = a + 10d
$$
 [Given]

$$
= -25d + 10d
$$

$$
= -15d
$$
 [From (2)]

$$
\therefore \t d = -\frac{3}{15} = -\frac{1}{5} \t ... (3)
$$

$$
\therefore \text{ From (2),} \qquad a = \frac{1}{5} \times 25 = 5 \qquad \dots (4)
$$

$$
\therefore \text{ From (1)}, \qquad a_n = 5 - (n - 1) \times \frac{1}{5}
$$
\n
$$
= \frac{-(n - 1) + 25}{5}
$$
\n
$$
= \frac{26 - n}{5}
$$
\n
$$
\Rightarrow \qquad -\frac{1}{5} = \frac{26 - n}{5}
$$

[: The last term given is
$$
-\frac{1}{5}
$$
]

$$
\Rightarrow \qquad n - 26 = 1
$$

\n
$$
\Rightarrow \qquad n = 27 \qquad ...(5)
$$

 ∴ The required common difference and the number of term of the AP are $-\frac{1}{5}$ and **27** respectively.

$$
[From (3) and (5)]
$$

36. Let *a* be the first term, *d*, the common difference and a_{n} , the *n*th term of the AP. Then

$$
a_n = a + (n-1)d \qquad \qquad \dots (1)
$$

Now, given that

$$
a_{17} = 5 + 2a_8
$$

$$
\Rightarrow \qquad a + 16d = 5 + 2(a + 7d)
$$

$$
\Rightarrow \qquad a + 16d = 5 + 2a + 14d
$$

$$
\Rightarrow \qquad a - 2d + 5 = 0 \qquad \dots (2)
$$

 $12d = 48$

Also, it is given that

$$
a_{11} = 43
$$

\n
$$
\Rightarrow \qquad a + 10d = 43 \qquad \qquad ...(3)
$$

Subtracting
$$
(2)
$$
 from (3) , we get

$$
f_{\rm{max}}
$$

 \Rightarrow $d = 4$ …(4)

$$
\therefore \text{ From (2),} \qquad a = 2d - 5
$$

= 2 × 4 – 5 = 3 ...(5)

∴ From (1), (4) and (5), we have

$$
a_n = 3 + (n-1)4
$$

 $= 4n - 1$

which is the required term.

37. We know that all numbers ending with 5 or 0 are divisible by 5. But numbers ending with 5 are not divisible by 2, since these numbers are odd. Hence, the numbers which are divisible by both 5 and 2 must be divisible by 2×5 i.e., 10. Hence, these numbers must end with 0. Hence, the numbers lying between 101 and 999 which are divisible by both 2 and 5 are 110, 120, 130, 140, 150, …990.

 These numbers are clearly in AP with the first term, $a = 110$ and the common difference, $d = 120 - 110 = 10$. Let a_n be the *n*th term of this AP.

$$
a_n = a + (n - 1)d
$$

= 110 + (n - 1)10
= 100 + 10n \t...(1)
If a_n = the last term, then a_n = 990 [From (1)]

∴ 990 = $100 + 10n$ ⇒ $\frac{890}{10} = n$ \Rightarrow $n = 89$

 which is the requried number of natural numbers which are in AP.

38. Let $a - d$, a and $a + d$ be three numbers in AP.

Then according to the problem, we have

$$
(a-d) + a + (a+d) = 207
$$

\n
$$
\Rightarrow \qquad 3a = 207
$$

\n
$$
\Rightarrow \qquad a = \frac{207}{3} = 69 \qquad \qquad ...(1)
$$

\nAlso, given that $(a-d)a = 4623$

 \Rightarrow $a^2 - ad = 4623$ ⇒ $69^2 - 69d = 4623$ ⇒ 4761 – 4623 = 69*d* \Rightarrow 138 = 69*d* ⇒ $d = \frac{138}{69} = 2$ …(2)

 Hence, from (1) and (2), the required numbers are 69 –2, 69, 69 + 2, i.e. **67, 69 and 71**.

39. The three parts are in AP.

Let the parts be $a - d$, a , $a + d$. \therefore 5(smallest number) = (largest number) + 6 or $5(a-d) = (a+d) + 6$ \Rightarrow $5a - 5d = a + d + 6$ \Rightarrow 5*a* – *a* – 5*d* – *d* = 6 \Rightarrow 4*a* – 6*d* = 6 ⇒ $2a - 3d = 3$ …(1) Also, $(a-d) + a + (a+d) = 54$ \Rightarrow $a-d+a+a+d = 54$

© Ratna Sagar

⇒ $3a = 54$ or $a = 18$ …(2) From (1), we have $2(18) - 3d = 3$ or $36 - 3d = 3$ ⇒ $3d = 36 - 3 = 33$ or $d = 11$

Now, three parts are

- $a d$, a , $a + d$ \Rightarrow (18 – 11), 18, (18 + 11) ⇒ **7, 18, 29**
- **40.** Let $a d$, a and $a + d$ be three numbers in AP.
	- ∴ According to the problem, we have $(a-d) + a + (a+d) = 48$
- \Rightarrow 3*a* = 48 \Rightarrow $a = 16$ …(1)
	- ∴ The third term of the AP is 16 + *d* and the first two terms are 16 – *d* and 16.
	- ∴ According to the second condition of the problem,

$$
(16 - d)16 - 4(16 + d) = 12
$$

\n
$$
\Rightarrow 256 - 16d - 64 - 4d = 12
$$

\n
$$
\Rightarrow -20d = 12 + 64 - 256
$$

\n
$$
= 76 - 256
$$

\n
$$
= -180
$$

\n
$$
\therefore d = \frac{180}{20} = 9
$$
 ... (2)

 ∴ From (1) and (2), the required three terms of the AP are 16 – 9, 16 and 16 + 9 i.e., **7, 16 and 25**.

41. Let the four parts be *a* – 3*d*, *a* – *d*, *a*+ *d*, *a* + 3*d*

 $Sum = 56$ \Rightarrow $a - 3d + a - d + a + d + a + 3d = 56$ \Rightarrow 4*a* = 56 \Rightarrow *a* = 14

According to the given condition

$$
\frac{a_1 \times a_4}{a_2 \times a_3} = \frac{5}{6}
$$
\n
$$
\Rightarrow \qquad \frac{(a-3d)\times(a+3d)}{(a-d)\times(a+d)} = \frac{5}{6}
$$
\n
$$
\Rightarrow \qquad \frac{a^2 - 9d^2}{a^2 - d^2} = \frac{5}{6}
$$
\n
$$
\Rightarrow \qquad 6a^2 - 54d^2 = 5a^2 - 5d^2
$$
\n
$$
\Rightarrow \qquad a^2 = 49d^2
$$
\n
$$
\Rightarrow \qquad 49d^2 = (14)^2
$$
\n
$$
\Rightarrow \qquad 49d^2 = 196
$$
\n
$$
\Rightarrow \qquad d^2 = 4
$$
\n
$$
\Rightarrow \qquad d = \pm 2
$$
\nIf\n
$$
d = \pm 2
$$
\nAP : 8, 12, 16, 20\nIf\n
$$
d = -2
$$
\nAP : 20, 16, 12, 8

42. Let $a =$ first term and $d =$ common diff.

 \therefore General term $a_n = a + (n-1)d$

⇒
$$
a_m = a + (m - 1)d = a + md - d
$$

\n $a_n = a + (n - 1)d = a + nd - d$
\nSince $m \times a_m = n \times a_n$
\n∴ $m[a + md - d] = n[a + nd - d]$
\n⇒ $ma + m^2d - md = na + n^2d - nd$
\n⇒ $(ma - na) + (m^2d - n^2d) - (md - nd) = 0$
\n⇒ $(m - n)a + [(m - n)(m + n)]d - (m - n)d = 0$
\n⇒ $(m - n)a + [(m - n)(m + n)]d - (m - n)d = 0$
\n[∴ $x^2 - y^2 = (x - y)(x + y)]$
\n⇒ $[a + (m + n)d - d] = 0$...(1)
\nNow, $a_{m+n} = a + [(m + n) - 1)]d$
\n⇒ $a_{m+n} = a + (m + n)d - d$...(2)

From (1) and (2), we have

$$
a_{m+n} = a + (m+n)d - d = 0
$$

Hence, $(m + n)$ th term is 0.

43. Let $a =$ First term and $d =$ Common diff.

∴ General term =
$$
a_n = a + (n-1)d
$$

\n $a_{m+1} = a + (m + 1 - 1)d = a + md$
\n $a_{n+1} = a + (n + 1 - 1)d = a + nd$
\n∴ $a_{m+1} = 2a_{n+1}$ [Given]
\n∴ $a + md = 2[a + nd]$
\n⇒ $a + md = 2a + 2nd$
\n⇒ $2a - a + 2nd - md = 0$
\n⇒ $a = md - 2nd = d(m - 2n)$...(1)
\nNow, $a_{3m+1} = a + (3m + 1 - 1)d = a + 3md$
\n $= d(m - 2n) + 3md$ [∴ $a = d(m - 2nd)$]
\n $= md - 2nd + 3md = 4md - 2nd$
\n $= 2d(2m - n)$...(2)
\nAlso, $a_{(m+n+1)} = a + (m + n + 1 - 1)d$
\n⇒ $a_{3m+1} = 2d(m - n)$...(2)
\nAlso, $a_{(m+n+1)} = a + (m + n + 1 - 1)d$
\n⇒ $2[a_{m+n+1}] = a + (m + n)d$
\n $= 2[d(m - 2n) + (m + n)d]$
\n[Substituting $a = d(m - 2n)$]
\n $= 2[md - nd]$
\n $= 2[2md - nd]$
\n $= 2d[2m - n]$...(3)
\nFrom (2) and (3), we have:
\n $2[a_{m+n+1}] = a_{3m+1}$
\n44. If x, y, z are in AP then

$$
(y - x) = (z - y) \qquad ...(1)
$$

Also, if $[(y + z)^2 - x^2]$, $[(x + z)^2 - y^2]$, $[(x + y)^2 - z^2]$ are in
AP, then

$$
[(z + x)^2 - y^2] - [(y + z)^2 - x^2] = [(x + y)^2 - z^2] - [(x + z)^2 - y^2]
$$

or
$$
[z^2 + x^2 + 2zx - y^2 - y^2 - z^2 - 2yz + x^2]
$$

© Ratna Sagar

15Arithmetic Progressions

Arithmetic Pr

 $= [x^2 + y^2 + 2xy - z^2 - x^2 - z^2 - 2xz + y^2]$ or $[2x^2 - 2y^2 + 2zx - 2yz] = [2y^2 - 2z^2 + 2xy - 2xz]$ or $(y - x) = (z - y)$ …(2) From (1) and (2), we have if *x*, *y*, *z* are in AP then $[(y + z)^2 - x^2]$, $[(z + x)^2 - y^2]$, $[(x + y)^2 - z^2]$ are in AP. **45.** Let $a =$ First term and $d =$ Common difference and $a_n = a + (n-1)d$ \therefore $a_1 = a$ $a_2 = a + (2 - 1)d = a + d$ $a_3 = a + (3 - 1)d = a + 2d$ $a_4 = a + (4 - 1)d = a + 3d$ Now, $a_2 \times a_3 = (a + d) (a + 2d)$ \Rightarrow $a_2 \times a_3 = a^2 + 3ad + 2d^2$ …(1) $a_1 \times a_4 = a(a + 3d) = a^2 + 3ad$ …(2) $a_2 - a_1 = a + d - a = d$ ⇒ $(a_2 - a_1)^2 = d^2$ …(3) Now, $2(a_2 - a_1)^2 = 2d^2$ [From 3] From (1) and (2), $a^2 + 3ad + 2d^2 = (a^2 + 3ad) + 2d^2$ $a_2 \times a_3 = (a_1 \times a_4) + 2(a_2 - a_1)^2$ **46.** \therefore The sides of rt ∆ are in AP. \therefore Let the sides be *a* – *d*, *a*, *a* + *d* Using Pythagoras theorem, we get $(a + d)^2 = (a - d)^2 + a^2$ \Rightarrow $a^2 + d^2 + 2ad = a^2 + d^2 - 2ad + a^2$ $a^2 = 2ad + 2ad = 4ad$ [⇒] *^a a* $\frac{2}{a} = \frac{4ad}{a} \Rightarrow a = 4d$ Substituting $a = 4d$ in the sides, we get $4d - d$, $4d$, $4d + d$ or 3*d* 4*d* 5*d* Now, the required ratio of sides is 3*d* : 4*d* : 5*d* or **3 : 4 : 5 47.** (*i*) \therefore Angles are in AP. \therefore $(a-d)^\circ$, $(a)^\circ$, $(a+d)^\circ$ be the angles of a Δ \therefore $(a - d) + a + (a + d) = 180^{\circ}$ \Rightarrow $a-d+a+a+d=180^\circ$ \Rightarrow 3*a* = 180° \Rightarrow *a* = 60° ...(1) \therefore [Least angle] = $\frac{1}{3}$ [Greatest angle] \therefore $(a-d) = \frac{1}{3} (a+d)$ \Rightarrow 3(*a* – *d*) = *a* + *d* \Rightarrow 3*a* – 3*d* – *a* – *d* = 0 \Rightarrow 2*a* – 4*d* = 0

 \Rightarrow $a-2d=0$ …(2) From (1) and (2), we have $60 - 2d = 0$ or $2d = 60$ or $d = 30$ Thus, the angles are $(60 - 30)^\circ$, 60° , $(60 + 30)^\circ$ \Rightarrow **30°, 60°, 90°** (*ii*) Let the three angles of the triangle, which are in AP be $a - d$, a and $a + d$ so that we have $(a-d) + a + (a+d) = 180^{\circ}$ [Angle sum property of a triangle] ∴ $3a = 180^\circ$ \Rightarrow $a = 60^{\circ}$...(1) ∴ The least angle is $a - d = 60^\circ - d$ [From (1)] and the greatest angle is $a + d = 60^{\circ} + d$ [From (1)] ∴ According to the problem, we have 60° + *d* = 2(60° – *d*) $= 120^{\circ} - 2d$ \Rightarrow 3*d* = 60° ⇒ $d = \frac{60^{\circ}}{3} = 20^{\circ}$...(2) ∴ From (1) and (2) The required three angles are $60^{\circ} - 20^{\circ}$, 60° and $60^{\circ} + 20^{\circ}$, i.e. **40°, 60°** and **80°**. **48.** Let the three numbers be $a - d$, a , $a + d$ $[\cdot]$: The numbers are in AP] \therefore The sum of numbers = 6 \therefore $a - d + a + a + d = 6$ \Rightarrow 3*a* = 6 $a = 2$ …(1) \therefore The sum of their squares = 14 $(a - d)^2 + a^2 + (a + d)^2 = 14$ $\Rightarrow a^2 + d^2 - 2ad + a^2 + a^2 + d^2 + 2ad = 14$ ⇒ $3a^2 + 2d^2 = 14$ …(2) From (1) and (2), we get $3(2)^2 + 2d^2 = 14$ ⇒ $12 + 2d^2 = 14$ ⇒ $2d^2 = 14 - 12 = 2$ or $d^2 = 1$ \Rightarrow $d = \pm 1$ Now substituting $a = 2$ and $d = \pm 1$ in $a - d$, a , $a + d$, we get $2-1$, 2, $2+1$ or $2-(-1)$, 2 , $2+(-1)$ \Rightarrow 1, 2, 3 or 3, 2, 1 Thus the required numbers are **1, 2, 3** or **3, 2, 1**. **49.** Let the five numbers in AP are (*a* – 2*d*), (*a* – *d*), *a*, (*a* +*d*), (*a* + 2*d*)

$$
\therefore
$$
 Their sum = 35

∴
$$
a-2d+a-d+a+a+d+a+2d = 35
$$

\n⇒ $5a = 35$ or $a = 7$
\n∴ Sum of their squares = 285
\n∴ $[a-2d]^2 + [a-d]^2 + a^2 + [a+d]^2 + [a+2d]^2 = 285$
\n⇒ $[a^2 + 4d^2 - 4ad] + [a^2 + d^2 - 2ad] + a^2$
\n $+ [a^2 + d^2 + 2ad] + [a^2 + 4d^2 + 4ad] = 285$
\n⇒ $a^2 + 4d^2 + a^2 + a^2 + a^2 + a^2 + a^2 + a^2 + 4d^2 = 285$
\n⇒ $5a^2 + 10d^2 = 285$ or $a^2 + 2d^2 = 57$
\nSubstituting $a = 7$, we have:
\n $7^2 + 2d^2 = 57$ or $49 + 2d^2 = 57$
\n⇒ $2d^2 = 57 - 49 = 8$ or $d^2 = \frac{8}{2} = 4 \Rightarrow d = \pm 2$
\n∴ The numbers are
\n $(7-4)$, $(7-2)$, 7 , $(7+2)$, $(7+4)$
\nor $(7+4)$, $(7+2)$, 7 , $(7-2)$, $(7-4)$
\nor **3**, **5**, **7**, **9**, **11** or **11**, **9**, **7**, **5**, **3**
\n**50.** Let the three numbers be $a-d$, a and $a + d$
\n $S_3 = 12$
\n $a-d+a+a+d=12$
\n $3a = 12$
\n $a = 4$
\nNow the sum of cubes of these three numbers is equal
\nto 288.
\n $(a-d)^3 + (4)^3 + (4+d)^3 = 288$
\n $(4-d)^3 + (4)^3 + (4+d)^3 = 288$
\n $(4-d)^3 +$

If $d = 2$ AP: **2, 4, 6** If $d = -2$ AP: **6, 4, 2**

EXERCISE 5B

For Basic and Standard Levels

1. (i) We have 2, 4, 6, ... to 'n' terms
\nHere,
$$
a = 2
$$
 and $d = 4 - 2 = 2$
\n \therefore $S_n = \frac{n}{2} [2a + (n - 1)d]$
\n \Rightarrow $S_n = \frac{n}{2} [2 \times 2 + (n - 1) \times 2]$
\n $= \frac{n}{2} [4 + 2(n - 1)]$
\n $= \frac{n}{2} [4 + 2n - 2] = \frac{n}{2} [2 + 2n]$
\n $= \frac{n}{2} [2(1 + n)] = n[1 + n] = n + n^2$
\nThus, $S_n = n + n^2$ or $S_n = n^2 + n$

(*ii*) We have 0.7, 0.71, 0.72, 0.73, … to 50 terms Here, $a = 0.7$, $d = 0.71 - 0.7 = 0.01$ and $n = 50$

using
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
, we get
\n
$$
S_{50} = \frac{50}{2} [2(0.7) + (50 - 1) \times 0.01]
$$
\n
$$
= 25[1.4 + 49 \times 0.01]
$$
\n
$$
= 25[1.4 + 0.49] = 25 \times 1.89
$$
\n
$$
= \frac{25 \times 189}{100} = \frac{4725}{100} = 47.25
$$

Thus $S_{50} = 47.25$

(*iii*) We have
$$
a
$$
, $(a + b)$, $(a + 2b)$, ... to *n* terms.
Here First term = a

Common diff.
$$
= a + b - a = b
$$

$$
S_n = \frac{n}{2} [2a + (n-1) \times b]
$$

$$
= \frac{n}{2} [2a + nb - b]
$$

$$
= \frac{n}{2} \times 2a + \frac{n}{2} \times nb - \frac{n}{2} \times b
$$

$$
= an + \frac{n^2}{2}b - \frac{nb}{2}
$$

$$
\Rightarrow S_n = an + \frac{bn^2}{2} - \frac{bn}{2}
$$

(*iv*) We have
$$
x + y
$$
, $x - y$, $x - 3y$... to 20 terms
\n∴ $a = x + y$; $d = (x - y) - (x + y)$
\n $= x - y - x - y = -2y$
\nand $n = 20$
\n $S_n = \frac{n}{2} [2a + (n - 1)d]$
\n⇒ $S_{20} = \frac{20}{2} [2(x + y) + (20 - 1) \times (-2y)]$
\n⇒ $S_{20} = 10[2x + 2y + 19(-2y)]$
\n⇒ $S_{20} = 20x + 20y - 380y$
\n⇒ $S_{20} = 20x - 360y$
\n(*v*) We have $(a - b)^2$, $(a^2 + b^2)$, $(a + b)^2$, ... to *n*

(v) We have
$$
(a - b)^2
$$
, $(a^2 + b^2)$, $(a + b)^2$, ... to *n* terms
\nHere, $a = (a - b)^2 = a^2 + b^2 - 2ab$
\n $d = (a^2 + b^2) - (a - b)^2$
\n $= (a^2 + b^2) - (a^2 + b^2 - 2ab)$
\n $= a^2 + b^2 - a^2 - b^2 + 2ab = 2ab$
\nUsing $S_n = \frac{n}{2} [2a + (n - 1)d]$, we have
\n $S_n = \frac{n}{2} [2 \times (a^2 + b^2 - 2ab) + (n - 1) \times 2ab]$
\n $= \frac{n}{2} [2a^2 + 2b^2 - 4ab + 2n(ab - 2ab)]$

 $= a^2n + b^2n - 3abn + abn^2$

 $=\frac{n}{2}[2a^2 + 2b^2 - 6ab + 2n(ab)]$

17Arithmetic Progressions

Arithm

2. Let the AP be *a*, *a* + *d*, *a* + 2*d*, … \therefore $a_n = a + (n-1)d$ Let S_n be the sum of *n* terms of the above AP. \therefore $S_n = a + (a + d) + (a + 2d) + ...$ $+ [a + (n-2)d] + [a + (n-1)d]$ … (1) Writing the expression (1) in reverse order, $S_n = [a + (n-1)d] + [a + (n-2)d] + ...$ $+(a + 2d) + (a + d) + a$... (2) Adding (1) and (2) vertically, we get $2S_n = [2a + (n-1)d] + [2a + (n-1)d] + ...$ + [2*a* + (*n* – 1)*d*] + [2*a* + (*n* – 1)*d*] ⇒ $2S_n = [2a + (n-1)d] \times n$ (: $[2a + (n-1)d]$ is added *n* times) $S_n = \frac{n}{2} [2a + (n-1)d]$ [which is the sum of *n* terms of the given AP] **3.** (*i*) The given AP is –3, –7, –11, … \therefore $a = -3$ and $d = -7 - (-3) = -4$ \therefore $n = 14$ \therefore $S_{14} = \frac{14}{2} [2 (-3) + (14 - 1) \times (-4)]$ $= 7[-6 + 13 \times (-4)]$ $= 7[-6 - 52] = 7 \times (-58) = -406$ Thus, the sum of first 14 terms is **–406**. (*ii*) The given AP is 2, 7, 12, … Here $a = 2$, $d = 7 - 2 = 5$ and $n = 18$ \therefore $S_{18} = \frac{18}{2} [2 \times 2 + (18 - 1) \times 5]$ $= 9[4 + 17 \times 5] = 9[89] = 801$ Thus, the sum of first 18 terms is **801**. (*iii*) Let $a =$ first term and $d =$ common diff. $a_3 = a + 2d = -103$ …(1)
 $a_7 = a + 6d = -63$ …(2) $a_7 = a + 6d = -63$ Subtracting (1) from (2), we get *a* + 6*d* – *a* – 2*d* = –63 + 103 \Rightarrow 4*d* = 40 \Rightarrow *d* = 10 From (1), we get $a + 2(10) = -103 \Rightarrow a = -103 - 20$ or $a = -123$ Now using $S_n = \frac{n}{2} [2a + (n-1)d]$, we get $S_{54} = \frac{54}{2} [2(-123) + (54 - 1) \times 10]$ $= 27[-246 + 530]$ $= 27 \times 284 = 7668$

Thus, sum of first 54 terms = **7668**

4. (*i*) We have to find
$$
1 + 3 + 5 + 7 + ... + 199
$$

Here, $a = 1$, $d = 3 - 1 = 2$ and $a_n = 199$

$$
\therefore \qquad a_n = a + (n-1)d = 199
$$

⇒ 1 + (n - 1)2 = 199 or 2n - 2 = 199 - 1 = 198
\n∴ 2n = 198 + 2 = 200 ⇒ n = 100
\nUsing
$$
S_n = \frac{n}{2}[a + l]
$$
, we get
\n
$$
S_{100} = \frac{100}{2}[1 + 199]
$$
[Here $l = 199$]
\n⇒ $S_{100} = 50[200] = 10000$
\n(ii) In 25 + 28 + 31 + ... + 100
\nWe have $a = 25$, $d = 28 - 25 = 3$, $l = 100$
\n∴ $a_n = a + (n - 1)d$
\n⇒ $100 = 25 + (n - 1) \times 3$
\n∴ $n - 1 = \frac{100 - 25}{3} = 25$ or $n = 25 + 1 = 26$
\nNow using $S_n = \frac{n}{2}[a + l]$, we get
\n
$$
S_{26} = \frac{26}{2}[25 + 100] = 13 \times 125 = 1625
$$

(*iii*) We have

$$
\left(1 - \frac{1}{n}\right) + \left(1 - \frac{2}{n}\right) + \left(1 - \frac{3}{n}\right) + \dots \text{ up to } n \text{ terms}
$$

\n
$$
\therefore \qquad a = \left(1 - \frac{1}{n}\right) d = 1 - \frac{2}{n} - 1 + \frac{1}{n} = \frac{-1}{n}
$$

\n
$$
\therefore \qquad S_n = \frac{n}{2} \left[2\left(1 - \frac{1}{n}\right) + (n - 1) \times \left(\frac{-1}{n}\right)\right]
$$

\n
$$
= \frac{n}{2} \left[2 - \frac{2}{n} + \frac{1}{n} - 1\right] = \left[n - 1 + \frac{1}{2} - \frac{n}{2}\right]
$$

\n
$$
= \left[\frac{2n - n}{2} - \frac{1}{2}\right] = \left[\frac{n}{2} - \frac{1}{2}\right] = \left[\frac{n - 1}{2}\right]
$$

 Alternative Solution:

$$
S_n = \left(1 - \frac{1}{n}\right) + \left(1 - \frac{2}{n}\right) + \left(1 - \frac{3}{n}\right) + \dots \text{ to } n \text{ terms}
$$

\n
$$
= (n \times 1) - \left[\frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \dots + \frac{n}{n}\right]
$$

\n
$$
= n - \left[\frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \dots + 1\right]
$$

\n
$$
= n - \left\{\frac{n}{2}\left[\frac{2}{n} + (n-1) \times \frac{1}{n}\right]\right\}
$$

\n
$$
= n - \left\{\frac{n}{2} \times \frac{2}{n} + (n-1) \times \frac{1}{n} \times \frac{n}{2}\right\} = n - \left\{1 + \frac{n-1}{2}\right\}
$$

\n
$$
= n - 1 - \frac{n-1}{2} = \frac{n}{2} - \frac{1}{2} = \frac{n-1}{2}
$$

(*iv*) We have

$$
\left(4 - \frac{1}{n}\right) + \left(4 - \frac{2}{n}\right) + \left(4 - \frac{3}{n}\right) + \dots \text{ to } n \text{ term}
$$

= $(4 + 4 + \dots \text{ to } n \text{ terms}) - \frac{1}{n}(1 + 2 + 3 + \dots + n)$
= $4n - \frac{1}{n} \times \frac{n(n+1)}{2}$

© Ratna Sagar

Arithmetic Progressions **18**Arithmetic Progressions $\overline{}$ 18

$$
= 4n - \frac{n+1}{2}
$$

= $\frac{8n-n-1}{2}$
= $\frac{7n-1}{2}$ which is the required sum.

5. (*i*) We have

$$
a_n = 2n + 1
$$
 [Given] ...(1)
\n∴ From (1), $a_1 = 2 \times 1 + 1 = 3$,
\n $a_2 = 2 \times 2 + 1 = 5$
\nand $a_3 = 2 \times 3 + 1 = 7$
\n∴ Required sum = $a_1 + a_2 + a_3$
\n $= 3 + 5 + 7 = 15$
\n(ii) Here, $a = 36$ and $d = -5$
\n $a_n = a + (n - 1)d$
\n $\Rightarrow 49 = 36 + (n - 1) (-5)$
\n $\Rightarrow n - 1 = \frac{-85}{-5} = 17$
\n∴ $n = 17 + 1 = 18$
\nNow, $S_n = \frac{n}{2} [2a + (n - 1)d]$
\n∴ $S_{18} = \frac{18}{2} [2(36) + (18 - 1) (-5)]$
\n $\Rightarrow S_{18} = 9[72 + (-85)]$
\n $= 9[-13] = -117$
\n6. AP: 5, 12, 19, ...
\n $a = 5, d = 7, n = 50$
\n $a_{50} = a + (n - 1)d$
\n $= 5 + (49) (7)$
\n $= 5 + 343$
\n $= 348$
\nLast term (l) = 348
\nNow to find the sum of last 15 terms
\n $a = 348, d = -7, n = 15$
\n $S_n = \frac{15}{2} [348 \times 2 + (14) (-7)]$
\n $= \frac{15}{2} \times 598$

$$
= 15 \times 299
$$

$$
= 4485
$$

7. Let First term $= a$ and Common diff. $= d$

Since,
$$
a_n = a + (n-1)d
$$

\n $\therefore a_{29} = a + (29 - 1)d = a + 28d$
\n $\Rightarrow a + 28d = 248$...(1) [\because It is given that $a_n = 248$]
\n $\therefore S_n = \frac{n}{2} [2a + (n-1)d]$

$$
S_{29} = \frac{29}{2} [2a + (29 - 1)d]
$$

\n
$$
\Rightarrow \frac{29}{2} [2a + 28d] = 3538 [:: It is given that S_{29} = 3538]
$$

\n
$$
\Rightarrow 2a + 28d = 3538 \times \frac{2}{29} = 244 \qquad ...(2)
$$

\nSubtracting (1) from (2), we get

$$
2a + 28d = 244
$$

$$
a + 28d = 248
$$

(-) (-) (-) (-)

$$
a = -4
$$

Now, from (1), we get

$$
-4 + 28d = 248 \text{ or } 28d = 252
$$

$$
\Rightarrow \qquad d = \frac{252}{28} = 9
$$

Thus, Common difference = **9**

First term $= -4$

8. Let the first term and the common difference of the AP be *a* and *d* respectively. Let a_n be its *n*th term and S_n be the sum of first *n* terms of the AP

Then
$$
a_n = a + (n-1)d
$$
 ...(1)

and $S_n = \frac{n}{2} [2a + (n-1)d]$

and
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
 ...(2)
\nNow, given that $a_{14} = 40$
\n \Rightarrow $a + 13d = 40$ [From (1)]
\n \Rightarrow $a = 40 - 13d$...(3)
\nAlso, given that $S_{14} = 287$

$$
\Rightarrow \qquad 287 = \frac{14}{2} [2a + 13d] \qquad \text{[From (2)]}
$$

$$
= 7(2a + 13d)
$$

$$
\Rightarrow \qquad \qquad 41 = 2a + 13d \qquad \qquad ...(4)
$$

∴ From (3) and (4), we have

$$
2(40 - 13d) + 13d = 41
$$

⇒ 80 – 41 = 13*d*

$$
\Rightarrow \qquad \qquad 39 = 13d
$$

$$
\Rightarrow \qquad \qquad d = 3 \qquad \qquad \dots (5)
$$

∴ From (3), we have $a = 40 - 13 \times 3 = 1$ …(6)

 ∴ From (5) and (6), the required common difference and the first term are **3** and **1** respectively.

9. Let First term = *a* and Common diff. = *d*
\n
$$
\therefore \qquad a_n = a + (n-1)d
$$
\n
$$
a_7 = a + 6d = 10 \qquad ...(1)
$$

Also,
$$
S_9 = \frac{9}{2} [2a + (9-1) \times d] = 0
$$

\n $\Rightarrow 2a + 8d = 0$...(2)
\nSolving (1) and (2) we get

 Solving (1) and (2), we get $a = -20$ and $d = 5$ Now, $S_{23} = \frac{23}{2} [2(-20) + (23 - 1) \times 5]$

$$
= \frac{23}{2} [-40 + 110]
$$

$$
= \frac{23}{2} \times 70 = 23 \times 35
$$

$$
= 805
$$

10. $a_{12} = -13$... (1)

 $S_4 = 24$... (2) From eq.(1) we get *a* + 11*d* = –13 $a = -13 - 11d$... (3)

From eq.(2) we get

 $\frac{4}{2}[2a+3d] = 24$ $2a + 3d = 12$... (4) Putting the value of a from eq.(3) in eq.(4) $2(-13 - 11d) + 3d = 12$ $-26 - 22d + 3d = 12$ $-19d = 38$ $d = -2$

We know

$$
a = -13 - 11d
$$

= -13 + 22
= 9

$$
S_{10} = \frac{10}{2} [2a + (10-1)d]
$$

= 5[18 + 9(-2)]
= 5[18 - 18]
= 0

11. Let $a =$ first term and $d =$ common diff.

Since,
\n
$$
a_n = a + (n - 1)d
$$

\n \Rightarrow $a_2 = a + (2 - 1)d = a + d$
\n $a_9 = a + (9 - 1)d = a + 8d$
\nNow,
\n $a_2 = 2$
\n \Rightarrow $a + d = 2$...(1)
\nand
\n $a_9 = 37$
\n \Rightarrow $a + 8d = 37$...(2)
\nSubtracting (1) from (2), we get
\n $7d = 35$
\n \Rightarrow $d = 5$
\nFrom (1), $a + 5 = 2$
\n \Rightarrow $a = -3$
\nNow
\n $S_{40} = \frac{40}{2} [2(-3) + (40 - 1) \times 5]$
\n $= 20[-6 + 195] = 20 \times 189$
\n $= 3780$

12. Let *a* be the first term, *d*, the common difference, $a_{n'}$, the *n*th term and $S_{n'}$, the sum of the first *n* terms of the AP

Then
$$
a_n = a + (n-1)d
$$
 ...(1)

$$
\therefore \text{ From (2)},
$$

13. Let

$$
S_{17} = \frac{17}{2} [2 \times (-6) + (17 - 1)(-3)]
$$

$$
= \frac{17}{2} (-12 - 48)
$$

$$
= -\frac{17}{2} \times 60 = -510
$$

which is the required sum.

13. Let First term = *a*
\nCommon difference = *d*
\n
$$
\therefore
$$
 $a_n = a + (n - 1)d$
\n \therefore $a_1 = a + (1 - 1)d = a$
\n $a_3 = a + (3 - 1)d = a + 2d$
\n $a_{17} = a + (17 - 1)d = a + 16d$
\nNow, $a_1 + a_3 + a_{17} = 216$
\n $\Rightarrow a + a + 2d + a + 16d = 216$
\n $\Rightarrow 3a + 18d = 216$
\n $\Rightarrow a + 6d = 72$...(1)
\nNow, using $S_n = \frac{n}{2}[2a + (n - 1)d]$, we get
\n $S_{13} = \frac{13}{2}[2a + (13 - 1)d]$
\n $= \frac{13}{2}[2a + 12d]$

$$
= \frac{13}{2} \times 2[a + 6d]
$$

= 13[a + 6d] \t...(2)

From (1) and (2), we have

$$
S_{13} = 13[72] = 936
$$

Thus, the sum of first thirteen terms of the AP is **936**.

14. Let *a* be the first term, *d*, the common difference, a_n , the *n*th term and S_n , the sum of first *n* term of the AP. Given that $a = 22$.

$$
a_n = a + (n-1)d
$$

= 22 + (n-1)d ...(1)
and

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

© Ratna Sagar

$$
= \frac{n}{2} \big[44 + (n-1)d \big] \qquad \qquad \ldots (2)
$$

Given that
$$
a_n = -11
$$

\n \therefore 22 + $(n - 1)d = -11$ [From (1)]

$$
\Rightarrow \qquad (n-1)d = -33 \qquad \dots (3)
$$

Also, given that $S_n = 66$

$$
\Rightarrow \quad \frac{n}{2} \Big[44 + (n-1)d \Big] = 66 \quad \text{[From (2)]}
$$

⇒ $\frac{n}{2} [44 - 33] = 66$ [From (3)]

 \Rightarrow 11*n* = 132

$$
f_{\rm{max}}
$$

$$
\Rightarrow \qquad n = \frac{132}{11} = 12 \qquad \dots (4)
$$

\n
$$
\therefore \text{ From (3)}, \qquad d = \frac{-33}{12 - 1} = \frac{-33}{11} = -3 \qquad \dots (5)
$$

 Hence, from (4) and (5), the required value of *n* and *d* are **12** and **–3** respectively.

−

15. Let First term = a and Common difference = d

$$
S_n = \frac{n}{2}[a+l]
$$

\n∴ $S_{26} = \frac{26}{2}[a+67]$ [It is given that $l = 67$]
\n⇒ $1092 = 13[a+67]$
\nor $a + 67 = \frac{1092}{13} = 84$
\n⇒ $a = 84 - 67 = 17$
\n⇒ First term = 17
\nAgain $S_{26} = 1092$
\n⇒ $\frac{26}{2}[2(17)+(26-1)d] = 1092$
\n{Using $S_n = \frac{n}{2}[2a + (n-1)]d$ }
\n⇒ $34 + 25d = \frac{1092}{13} = 84$
\n⇒ $25d = 84 - 34 = 50$
\n⇒ $d = \frac{50}{25} = 2$
\n∴ Common difference = 2

16. Let the two first terms of the first and the second AP's be a_1 and a_2 respectively and let d be their same common difference. Then $a_1 = 3$ and $a_2 = 8$.

Let S and S' be the sums of the first 50 terms of the two AP's respectively.

Then
$$
S = \frac{50}{2} \left[2a_1 + (50 - 1)d \right]
$$

$$
= 25 (2 \times 3 + 49d)
$$

$$
= 150 + 25 \times 49d \qquad ...(1)
$$
and
$$
S' = \frac{50}{2} [2a_2 + 49d]
$$

and

$$
= 25(2 \times 8 + 49d)
$$

= 400 + 25 \times 49d \t...(2)

Subtracting (1) from (2), we get

 S′ $S' - S = 400 - 150 = 250$

which is the required difference.

17. Let *a* be the first term, *d*, the common difference, a_n , the *n*th term and S_n , the sum of the first *n* terms of the AP. Then we have

$$
a_n = a + (n-1)d \qquad \qquad \dots (1)
$$

and
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
 ...(2)

Given that $a_{16} = 5a_3$

⇒

$$
\Rightarrow \qquad a + 15d = 5(a + 2d) \qquad \qquad \text{[From (1)]}
$$

$$
\Rightarrow \qquad 4a - 5d = 0
$$

$$
\Rightarrow \qquad a = \frac{5d}{4} \qquad \qquad \dots (3)
$$

Also, given that $a_{10} = 41$

$$
\Rightarrow \qquad a + 9d = 41 \qquad \qquad \text{[From (1)]}
$$

$$
\frac{5d}{4} + 9d = 41
$$
 [From (3)]

$$
\Rightarrow \qquad \frac{41d}{4} = 41
$$

$$
\Rightarrow \qquad d = 4 \qquad \qquad ...(4)
$$

$$
\therefore \text{ From (3),} \qquad a = \frac{5}{4} \times 4 = 5 \qquad \qquad \dots (5)
$$

∴ From (2), (4) and (5), we have

$$
S_{15} = \frac{15}{2} [2 \times 5 + (15 - 1)4]
$$

$$
= \frac{15}{2} (10 + 56)
$$

$$
= 15 \times 33 = 495
$$

which is the required sum.

18.
$$
a_5 = a + 4d = 8 \qquad \qquad ...(1)
$$

$$
a_8 = a + 7d
$$

$$
a_2 = a + d
$$

$$
\therefore \qquad a_8 = 3(a_2) + 2
$$

$$
\therefore \qquad a + 7d = 3(a + d) + 2
$$

$$
\Rightarrow \qquad a - 3a + 7d - 3d = 2
$$

$$
\Rightarrow \qquad -2a + 4d = 2
$$

$$
\Rightarrow \qquad a - 2d = -1 \qquad \qquad ...(2)
$$
Solving (1) and (2), we get

Now
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

\n \Rightarrow $S_{15} = \frac{15}{2} [2(2) + (15-1) \times \frac{3}{2}] = \frac{15}{2} [4+21]$
\n $= \frac{15}{2} \times 25 = \frac{375}{2} = 187.5$

Thus, $a = 2$, $d = 1.5$ and $S_{15} = 187.5$

 $a = 2$ and $d = \frac{3}{2}$ or 1.5

19.
\n
$$
a_{13} = 4a_3
$$
 ... (1)
\n $a_5 = 16$... (2)
\n $a + 4d = 16$... (3)
\nNow from eq.(1) we get
\n $a + 12d = 4(a + 2d)$
\n $a + 12d = 4a + 8d$... (4)
\n $3a = 4d$... (4)
\nNow putting the value of *d* from eq.(4) in eq.(3), we get
\n $a + 4d = 16$
\n $a + 3a = 16$
\n $4a = 16$
\n $a = 4$
\nWe know
\n $d = \frac{3a}{4} = \frac{12}{4} = 3$
\n $S_{10} = \frac{n}{2}[2a + (n-1)d]$
\n $= \frac{10}{2}[8 + 9(3)]$
\n $= 5[8 + 27]$
\n $= 5 \times 35$
\n $= 175$
\n20.
\n $S_7 = 49$... (1)
\n $S_{17} = 289$... (2)
\n $S_n = ?$
\nFrom equation (1) we get
\n $\frac{7}{2}[2a + (6)d] = 49$
\n $2a + 6d = 14$
\n $a + 3d = 7$... (3)

From equation (2) we get

 ¹⁷ ² [2*a* + 16*d*] = 289 2*a* + 16*d* = 34 *a* + 8*d* = 17 ... (4)

Subtracting equation (1) from equation (2) we get

$$
a + 8d = 17
$$

$$
-a \pm 3d = 7
$$

$$
5d = 10
$$

$$
d = 2
$$

We know

$$
a = 7 - 3d
$$

= 1

$$
S_n = \frac{n}{2} [2(1) + (n - 1)2]
$$

=
$$
\frac{n}{2} [2 + 2n - 2]
$$

=
$$
\frac{2n^2}{2}
$$

=
$$
n^2
$$

21. Let *a* be the first term, *d*, the common difference and S_n , the sum of the first *n* term of the AP.

Then
$$
S_n = \frac{n}{2}[2a + (n-1)d]
$$
 ...(1)
\nNow, $S_9 = 81$
\n $\Rightarrow \frac{9}{2}[2a + 8d] = 81$
\n $\Rightarrow 9(a + 4d) = 81$
\n $\Rightarrow a + 4d = 9$
\n $\therefore a = 9 - 4d$...(2)
\nAlso, it is given that
\n $S_{20} = 400$
\n $\Rightarrow \frac{20}{2}(2a + 19d) = 400$
\n $\Rightarrow 2a + 19d = 40$ [From (2)]
\n $\Rightarrow 11d = 40 - 18 = 22$
\n $\Rightarrow d = \frac{22}{11} = 2$...(3)
\n \therefore From (2), $a = 9 - 4 \times 2 = 1$...(4)
\n \therefore From (4) and (3), the required first term and the common difference of the AP are 1 and 2 respectively.
\n22. Let *a* be the first term, *d*, the common difference and S_{n'}, the sum of the first *n* terms of the AP. Then

$$
S_n = \frac{n}{2} [2a + (n-1)d] \qquad \dots (1)
$$

Given that $S_4 = 40$

⇒

⇒

$$
\Rightarrow \frac{4}{2}[2a+3d] = 40
$$

$$
\Rightarrow 2a + 3d = 20 \qquad ...(2)
$$

Also, given that $S_{14} = 280$ 14

$$
\Rightarrow \frac{14}{2}(2a+13d) = 280
$$

$$
\Rightarrow 2a + 13d = 40 \qquad ...(3)
$$

Subtracting (2) from (3), we get

$$
10d = 20
$$

∴ $d = 2$ …(4) Also, from (2) $2a = 20 - 3 \times 2 = 14$ \Rightarrow $a = 7$ …(5)

∴ From (1), (4) and (5), we get

$$
S_n = \frac{n}{2} [14 + (n - 1)2]
$$

= $n(7 + n - 1)$
= $n(n + 6)$
= $n^2 + 6n$

which is the required sum.

23. Let *a* be the first term, *d*, the common difference, a_n , the *n*th term and S_n , the sum of the first *n* terms of the AP. Then

$$
a_n = a + (n-1)d \qquad \qquad \dots (1)
$$

and $S_n = \frac{n}{2} [2a + (n-1)d]$...(2) Given that $S_7 = 63$ ⇒ $\frac{7}{2}(2a+6d) = 63$ [From (2)] \Rightarrow 7(*a* + 3*d*) = 63 \Rightarrow $a + 3d = 9$ $a = 9 - 3d$ …(3) Also, given that $S_{14} = 63 + 161 = 224$ ⇒ $\frac{14}{2}(2a+13d) = 224$ \Rightarrow 7(2*a* + 13*d*) = 224 \implies 2*a* + 13*d* = 32 ⇒ $2(9 - 3d) + 13d = 32$ [Using (3)] ⇒ $7d = 32 - 18 = 14$ ⇒ $d = \frac{14}{7} = 2$ …(4) ∴ From (3) and (4), $a = 9 - 3 \times 2 = 3$ …(5) Hence, from (1) , (4) and (5) , we have $a_{28} = 3 + 27 \times 2 = 57$ which is the required term. 24. \therefore Sum of first 10 terms of the AP = –150 \therefore $S_{10} = \frac{10}{2} [2a + 9d] = -150$ \Rightarrow 5[2*a* + 9*d*] = −150 ⇒ $2a + 9d = \frac{-150}{5} = -30$ \therefore 2*a* + 9*d* = –30 …(1) Since, sum of next 10 terms $= -550$ \therefore Sum of first 10 + 10, i.e. 20 terms $=-550 + (-150) = -700$ \therefore $S_{20} = \frac{20}{2} [2a + 19d] = -700$ \therefore 10[2*a* + 19*d*] = –700 ⇒ $2a + 19d = \frac{-700}{10} = -70$ \therefore 2*a* + 19*d* = –70 …(2) Solving (1) and (2), we have: $a = 3$ and $d = -4$ Now, an AP is given by: *a*, *a* + *d*, *a* + 2*d*, *a* + 3*d*, … \therefore The required AP is $[3], [3 + (-4)], [3 + 2(-4)], [3 + 3(-4)], ...$ or **3, –1, –5, –9, … 25.** Here, first term $= a = 6$ Let common difference = *d*

∴ S_{*n*} = Sum of first *n* terms = $\frac{n}{2} [2a + (n-1)d]$ S_3 = Sum of first three terms $=\frac{3}{2}[(2\times 6)+(3-1)d]$ $=\frac{3}{2}[12 + 2d] = 18 + 3d$ …(1) S_6 = Sum of first six terms $=\frac{6}{2}[(2\times 6)+(6-1)d]$ $= 3[12 + 5d] = 36 + 15d$ …(2) Now, $S_3 = \frac{1}{2}(S_6 - S_3)$ \Rightarrow 2S₃ = S₆ – S₃ \Rightarrow 2S₃ + S₃ = S₆ or 3S₃ = S₆ …(3) From (1), (2) and (3), we get 3[18 + 3*d*] = 36 + 15*d* $54 + 9d = 36 + 15d$ or $9d - 15d = 36 - 54$ ⇒ $-6d = -18$ ∴ $d = -\frac{-1}{4}$ $\frac{18}{-6}$ = 3 Thus, the common difference = **3** 26. Here, $a = 20$ and common difference $= d$ Sum of first 6 terms = S_6 Sum of first 12 terms = S_{12} Since, $S_6 = 5[S_{12} - S_6]$ $S_6 = 5S_{12} - 5S_6$ \Rightarrow $S_6 + 5S_6 = 5S_{12}$ \Rightarrow $6S_6 = 5S_{12}$ ∴ $6\left[\frac{6}{2}\{(2\times20)+(6-1)d\}\right] = 5\left[\frac{12}{2}\{(2\times20)+(12-1)d\}\right]$ $6[3{40 + 5d}] = 5[6{40 + 11d}]$ \Rightarrow 6 × 3(40 + 5*d*) = 6 × 5(40 + 11*d*) \Rightarrow 3(40 + 5*d*) = 5(40 + 11*d*) \Rightarrow 120 + 15*d* = 200 + 55*d* \Rightarrow 55*d* – 15*d* = 120 – 200 or 40*d* = –80 ⇒ $d = -\frac{80}{40} = -2$ Thus, the required common difference $= -2$ **27.** Let *a* be the first term and *d*, the common difference of the AP.

Now, $S_n = \frac{n}{2} [2a + (n-1)d] ... (1)$ Given that $S_5 + S_7 = 167$ $\Rightarrow \frac{5}{2}(2a+4d) + \frac{7}{2}(2a+6d) = 167$ [From (1)] ⇒ $5(a + 2d) + 7(a + 3d) = 167$ \Rightarrow 12*a* + 31*d* = 167 …(2) Also, given that $S_{10} = 235$ ⇒ $\frac{10}{2}(2a + 9d) = 235$ [From (1)] \Rightarrow 2*a* + 9*d* = 47

23Arithmetic Progressions rithmetic Progressions

© Ratna Sagar

23

⇒
$$
a = \frac{47 - 9d}{2}
$$
 ...(3)
\n∴ From (2) and (3), we have
\n $12 \times \frac{(47 - 9d)}{2} + 31d = 167$
\n⇒ $282 - 54d + 31d = 167$
\n⇒ $23d = 282 - 167 = 115$
\n∴ $d = \frac{115}{23} = 5$...(4)
\n∴ From (3), we have $a = \frac{47 - 9 \times 5}{2} = \frac{2}{2} = 1$...(5)
\n∴ From (4) and (5), the required AP is 1, 1 + 5, 1 + 10, 1
\n+ 15 ..., i.e. 1, 6, 11, 16,...
\n28. First term = $a = 4$
\nLet Common diff. = d
\nLast term, $l = 61$
\nand $S_n = 650$
\n∴ $S_n = \frac{n}{2}(a + l)$
\n⇒ $\frac{n}{2}(4 + 61) = 650$
\n⇒ $n \times 65 = 2 \times 650$
\n⇒ $n = \frac{2 \times 650}{65} = 20$
\nNow, $S_n = \frac{n}{2}[2a + (n-1)d]$
\n∴ $S_{20} = \frac{20}{2}[(2 \times 4) + (20 - 1)d] = 650$
\n⇒ $8 + 19d = \frac{650}{10} = 65$
\n⇒ $19d = 65 - 8 = 57$
\n∴ $d = \frac{57}{19} = 3$
\n29. First term = $a = 2$
\nLast term = $l = 29$
\nSum of the terms = 155
\nLet the term of the AP be *n*
\n∴ Using $S_n = \frac{n}{2}(a + l)$, we have
\n $\frac{n}{2}(2 + 29) = 155$
\n⇒ $n(31) = 155 \times 2$
\n⇒ $n = \frac{155 \times 2}{31} = 10$
\nNow, using $S_n = \frac{n}{2}[2a + (n-1)d$

We get $155 = \frac{10}{2} [2 \times 2 + (10 - 1)d]$

 \Rightarrow 5[4 + 9*d*] = 155

 \Rightarrow 4 + 9*d* = $\frac{155}{5}$ = 31 ⇒ $9d = 31 - 4 = 27$ $d = \frac{27}{9} = 3$

Thus, the common difference = **3**

30. Let the first term $a = 7$, d , the common difference, last term, $l = 49$, a_n be the nth term and S_n be the sum of the first *n* terms of the AP.

Then
$$
a_n = a + (n-1)d
$$

$$
= 7 + (n-1)d \qquad \qquad \dots (1)
$$

and
$$
S_n = \frac{n}{2} \big[2a + (n-1)d \big]
$$

$$
= \frac{n}{2} \big[14 + (n-1)d \big] \qquad \qquad \dots (2)
$$

If *n* is the total number of terms of the AP, then $l = a_n$

⇒ $49 = 7 + (n-1)d$ [From (1)] ⇒ $(n-1)d = 49 - 7 = 42$ …(3) ∴ From (2), $S_n = 420$ $\Rightarrow \frac{n}{2} [14 + (n-1)d] = 420$ ⇒ $\frac{n}{2}[14 + 42] = 420$ [From (3)]

$$
\Rightarrow \qquad \frac{n}{2} \times (56) = 420
$$

$$
n = \frac{420}{28} = 15 \qquad \dots (4)
$$

$$
\therefore \text{ From (3),} \qquad d = \frac{42}{n-1} = \frac{42}{14} = 3 \qquad \dots (5)
$$

∴ From (5), the required common difference is **3**.

31. Given that the first term, $a = -4$, the last term, $l = 29$. If *n* be the total number of terms of the AP, then

Now,
\n
$$
a_n = l = 29
$$
\n
$$
a_n = a + (n - 1)d
$$
\n
$$
= -4 + (n - 1)d
$$
\n
$$
\Rightarrow \qquad 29 = -4 + (n - 1)d
$$
\n
$$
\Rightarrow \qquad (n - 1)d = 33 \qquad ...(1)
$$

If S_n be the sum of the first *n* terms of the AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

$$
= \frac{n}{2} [2a + 33] \qquad \text{[From (1)]}
$$

$$
= \frac{n}{2}[-8+33] = \frac{25n}{2} \qquad \dots (2)
$$

It is given that $S_n = 150$.

∴

 $\frac{5n}{2}$ = 150 [From (2)]

$$
\Rightarrow \qquad \qquad n = \frac{300}{25} = 12
$$

25

$$
\therefore \text{ From (1),} \qquad d = \frac{33}{12 - 1} = 3 \qquad \qquad \dots (3)
$$

∴ The required common difference is **3**.

32. Given that first term, $a = 5$ and the last term, $l = 45$ Let *n* be the number of terms of the AP, a_{n} , the *n*th term and S_n , the sum of first *n* terms of the AP.

Then
$$
a_n = l = 45
$$
 ...(1)
 $a_n = 5 + (n-1)d$ (2)

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [10 + (n-1)d]$...(3)

From (1) and (2), $45 = 5 + (n - 1)d$ $-1\lambda d = 45 = 5 - 40$ (4)

$$
\Rightarrow \qquad (n-1)a = 45 - 5 = 40 \qquad \dots (4)
$$

Now,
$$
S_n = 400
$$

$$
\Rightarrow \qquad \frac{n}{2}[10+40] = 400 \qquad \qquad \text{[From (3) and (4)]}
$$

$$
\Rightarrow \qquad n = \frac{800}{50} = 16 \qquad \qquad ...(5)
$$

$$
\therefore \text{ From (4),} \qquad d = \frac{40}{16 - 1} = \frac{40}{15} = \frac{8}{3} \qquad \dots (6)
$$

 ∴ From (5) and (6), the required values of *n* and *d* are respectively **16** and $\frac{8}{3}$.

34. Here the first term, $a = 5$

The common difference, $d = 12 - 5 = 7$

It a_n be the *n*th term and S_n be the sum of the first *n* terms of the AP, then

$$
a_n = a + (n - 1)d
$$

= 5 + (n - 1)7
= 7n - 2 ...(1)

and
\n
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
\n
$$
= \frac{n}{2} [2 \times 5 + (n-1)7]
$$
\n
$$
= \frac{n}{2} [10 + 7n - 7]
$$
\n
$$
= \frac{n(7n + 3)}{2} \qquad ...(2)
$$

It is given that the AP has 50 terms.

$$
a_{50} = 7 \times 50 - 2
$$

= 350 - 2 = 348

∴ Required last term = **348**

Now, the sum of the last 15 terms of the AP

 $=$ the sum of the whole 50 terms of the AP – the sum of 50 – 15, i.e. 35 terms of the AP from the beginning $= S_{50} - S_{35}$

$$
= \frac{50 \times (7 \times 50 + 3)}{2} - \frac{35 \times (7 \times 35 + 3)}{2}
$$
 [From (2)]
= 25 × 353 - $\frac{35 \times 248}{2}$
= 8825 - 35 × 124
= 8825 - 4340
= 4485

∴ Required sum of the last 15 terms of the AP is **4485**.

35. In the given AP, the first term, *a* = 8, the common difference, $d = 10 - 8 = 2$, $n =$ total number of terms = 60. Let a_n be the *n*th term and $l =$ last term = a_{60} .

Now,
\n
$$
a_n = a + (n - 1)d
$$
\n
$$
= 8 + (n - 1)2
$$
\n
$$
= 2n + 6 \qquad ...(1)
$$
\n
$$
l = a_{60} = 2 \times 60 + 6 \qquad \text{[From (1)]}
$$
\n
$$
= 126
$$

which is the required last term.

Now,
\n
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
\n
$$
= \frac{n}{2} [2 \times 8 + (n-1)2]
$$
\n
$$
= n(8 + n - 1)
$$
\n
$$
= n(7 + n)
$$
\n
$$
= 7n + n^2
$$
\n...(2)

∴ Sum of the last 10 terms of the AP

= Sum of the first 60 terms – Sum of the first 50 terms
\n=
$$
S_{60} - S_{50}
$$

\n= $7 \times 60 + 60^2 - (7 \times 50 + 50^2)$
\n= 420 + 3600 – 350 – 2500
\n= 70 + 1100 = **1170**

 which is the required Sum of the last 10 terms of the AP. **36.** Let *a* = First term, and

 d = Common difference

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

\n
$$
\therefore \frac{n}{2} [2a + (n-1)d] = 18 \qquad \qquad ...(1)
$$

\n
$$
\therefore a_1 = a = -16
$$

\n
$$
a_8 = a + 7d = -2
$$

\n
$$
\Rightarrow -16 + 7d = -2
$$

\n
$$
\Rightarrow 7d = -2 + 16 = 14
$$

\n
$$
\therefore d = \frac{14}{7} = 2
$$

Now, substituting $a = -16$ and $d = 2$, in (1), we get

$$
\frac{n}{2}[2(-16) + (n-1)2] = 18
$$

\n
$$
\Rightarrow -16n + n^2 - n = 18
$$

\n
$$
\Rightarrow n^2 - 17n - 18 = 0
$$

\nSolving $n^2 - 17n - 18 = 0$, we get
\n $n = -1$ or $n = 18$

Rejecting the negative value of *n*, we get

$$
n=18
$$

37. In the given AP, the first term, $a = -12$, the common difference, $d = -9 + 12 = 3$

Let the number of terms of the original AP be *n*.

Let a_n be the *n*th term of the original AP and S_n be the sum of its first *n* terms.

Then $a_n =$ last term ⇒ $21 = a + (n-1)d$ $=-12 + 3(n - 1)$ $= 3n - 15$ \implies 21 + 15 = 3*n* \Rightarrow 36 = 3*n* \Rightarrow *n* = 12

which is the required number of terms.

Also,
\n
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
\n
$$
= \frac{n}{2} [-2 \times 12 + (n-1)3]
$$
\n
$$
= \frac{n}{2} [-24 + 3n - 3]
$$
\n
$$
= \frac{n(3n - 27)}{2} \qquad ...(1)
$$

∴ When $n = 12$, then from (1)

$$
S_n = \frac{12 \times (3 \times 12 - 27)}{2}
$$

= 6 \times (36 - 27)
= 54 ...(2)

 Now, if 1 is added to each of 12 terms of the original AP, then the sum of all the 12 new terms of the AP is $54 + 12 \times 1 = 66$ which is the required sum of all the terms of the new AP.

38. We have 54, 51, 48, … are in AP.

$$
\therefore \qquad a = 54
$$

$$
d = 51 - 54 = (-3)
$$

Let the number of terms be '*n*'.

⇒
$$
37n - n^2 = 342
$$

\n⇒ $n^2 - 37n + 342 = 0$
\n⇒ $n^2 - 18n - 19n + 342 = 0$
\n⇒ $n(n - 18) - 19(n - 18) = 0$
\n∴ $n = 18$ or $n = 19$
\nThus, $n = 18$ or $n = 19$
\n39. AP: 27, 24, 21, 18, ...
\nGiven that $S_n = 0$, $a = 27$, $d = -3$
\n $S_n = \frac{n}{2} [2a + (n - 1)d]$
\n⇒ $0 = \frac{n}{2} [54 + (n - 1) (-3)]$
\n⇒ $54n + n(n - 1) (-3) = 0$
\n⇒ $54n - 3n^2 + 3n = 0$
\n⇒ $3n^2 - 57n = 0$
\n⇒ $n(3n - 57) = 0$
\n⇒ $n = 0$ or $n = \frac{57}{3} = 19$
\n $n = 0$ does not satisfy the condition.

 \therefore $n = 19$

40. In the given AP, the first term, *a* = 9, common difference, $d = 17 - 9 = 8$. Let *n* be the required number of terms of the AP, with sum $S_n = 363$ …(1)

Now,
$$
S_n = \frac{n}{2} \big[2a + (n-1)d \big]
$$

$$
= \frac{n}{2}[2 \times 9 + (n-1)8]
$$

= $n (9 + 4n - 4)$
= $n(5 + 4n)$
= $4n^2 + 5n$...(2)

∴ From (1) and (2), we have

$$
4n^2 + 5n - 636 = 0
$$

 Comparing this quadratic equation with the standard quadratic equation $Ax^2 + Bx + C = 0$, we have $A = 4$, $B = 5$ and $C = -636$.

$$
n = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}
$$

=
$$
\frac{-5 \pm \sqrt{5^2 + 4 \times 636 \times 4}}{2 \times 4}
$$

=
$$
\frac{-5 \pm \sqrt{25 + 10176}}{8}
$$

=
$$
\frac{-5 \pm \sqrt{10201}}{8}
$$

=
$$
\frac{-5 \pm 101}{8}
$$

=
$$
\frac{96}{8}, -\frac{106}{8}
$$

© Ratna Sagar

Arithmetic Progressions **26**Arithmetic Progressions $\overline{}$ 26

$$
= 12, -\frac{53}{4}
$$

 Neglecting the negative value of *n,* i.e. neglecting $n = -\frac{53}{4}$ which is not a natural number, we get $n = 12$ ∴ Required number of terms = **12**.

 $d = 71 - 78 = -7$

 $S_n = 468$

41. $a = 78$

 $S_n = \frac{n}{2} [2a + (n-1)d]$

$$
\therefore \qquad \frac{n}{2} [2(78) + (n-1) (-7)] = 468
$$

 Solving the quadratic equation and rejecting the negative value, we get

 $n = 13$

 \therefore The required number of terms = 13

Again, using

$$
S_n = \frac{n}{2}(a+l), \text{ we get}
$$

$$
\frac{13}{2}(78+l) = 468
$$

$$
\Rightarrow \qquad 78 + l = 468 \times \frac{2}{13} = 72
$$

$$
\Rightarrow \qquad l = 72 - 78 = -6
$$

$$
\therefore \qquad \text{Last term} = -6
$$

42. Terms of the AP are
$$
-7
$$
, $\frac{-13}{2}$, -6 , $\frac{-11}{2}$, -5 , ...

Here, $a = -7$

$$
d = \frac{-13}{2} - (-7) = \frac{-13 + 14}{2} = \frac{1}{2}
$$

Let the required number of terms be *n*

 \therefore $S_n = -45$

Using
\n
$$
S_n = \frac{n}{2} [2a + (n-1)d], \text{ we get}
$$
\n
$$
\frac{n}{2} \left[2(-7) + (n-1) \left(\frac{1}{2} \right) \right] = -45
$$
\n
$$
\Rightarrow \qquad n \left[-14 - \frac{1}{2} + \frac{n}{2} \right] = -90
$$
\n
$$
\Rightarrow \qquad n \left[\frac{-29}{2} + \frac{n}{2} \right] = -90
$$
\n
$$
\Rightarrow \qquad \frac{-29n}{2} + \frac{n^2}{2} = -90
$$
\n
$$
\Rightarrow \qquad -29n + n^2 = -180
$$
\n
$$
\Rightarrow \qquad n^2 - 29n + 180 = 0
$$
\n
$$
\Rightarrow \qquad n^2 - 20n - 9n + 180 = 0
$$
\n
$$
\Rightarrow \qquad n(n - 20) - 9(n - 20) = 0
$$
\n
$$
\Rightarrow \qquad (n - 9) (n - 20) = 0
$$

$$
\therefore \qquad n = 9 \text{ and } n = 20
$$

 Thus, the required number of terms is **9** or **20**. \Rightarrow Sum of first 9 terms = Sum of first 20 terms. It means sum of all terms of 10th to 20th is **zero**.

43.
$$
\therefore
$$
 $a_n = 4 + 3n$ [Given]
\n \therefore $a_1 =$ First term = 4 + 3(1) = 7
\n a_2 = Second term = 4 + 3(2) = 10
\n \Rightarrow $d = (a_2 - a_1) = 10 - 7 = 3$
\nNow $S_n = \frac{n}{2}[2a + (n - 1)d]$ [$\because a = 7, d = 3$]
\n \therefore $S_n = \frac{n}{2}[2(7) + 3n - 3]$
\n \Rightarrow $S_n = \frac{n}{2}[14 - 3 + 3n]$
\n \Rightarrow $S_n = \frac{n}{2}[11 + 3n]$
\n44. \therefore The *n*th term of AP = 2*n* + 1
\n \therefore $a_n = 2n + 1$
\n \Rightarrow $a_1 = 2(1) + 1 = 3$ [First term]
\n $a_2 = 2(2) + 1 = 5$ [Second term]
\n \therefore $d = a_2 - a_1 = 5 - 3 = 2$
\nNow, $S_n = \frac{n}{2}[2a + (n - 1)d]$
\n $= \frac{n}{2}[2(3) + (n - 1)(2)]$

$$
= \frac{n}{2} [6 + 2n - 2]
$$

= $\frac{n}{2} [4 + 2n] = \frac{n}{2} \times 2 [2 + n]$
= $n [2 + n] = 2n + n^2$

Thus, the sum of *n* terms = $n^2 + 2n$

45.
$$
\therefore
$$
 *n*th term = $\frac{31-n}{3}$
\n \therefore $a_n = \frac{31-n}{3}$
\n \Rightarrow $a_1 = \frac{31-1}{3} = \frac{30}{3} = 10$
\n $a_2 = \frac{31-2}{3} = \frac{29}{3} = 9\frac{2}{3}$
\n $a_3 = \frac{31-3}{3} = \frac{28}{3} = 9\frac{1}{3}$
\n $a_4 = \frac{31-4}{3} = \frac{27}{3} = 9$

 ∴ The required sequence is

$$
10, \, 9\frac{2}{3}, \, 9\frac{1}{3}, \, 9, \, \ldots
$$

Now $a = 10$

© Ratna Sagar

… … …

$$
d = a_2 - a_1 = \frac{29}{3} - 10 = \frac{29 - 30}{3} = -\frac{1}{3}
$$

$$
\therefore \qquad S_n = \frac{n}{2} [2a + (n-1)d]
$$

$$
\therefore S_{12} = \frac{12}{6} \left[2(10) + (12 - 1) \left(-\frac{1}{3} \right) \right]
$$

$$
= 6 \left[20 + \left(-\frac{11}{3} \right) \right]
$$

$$
= 6 \left[\frac{60 - 11}{3} \right] = 6 \times \frac{49}{3}
$$

$$
= 2 \times 49 = 98
$$

$$
\Rightarrow S_{12} = 98
$$

46. It *ar* denote any *r*th term of the AP, then $a_r = 5r - 1$

 \therefore $S_n = \sum_{r=1}^n a_r$ *n* $\sum_{r=1}$ $= \sum (5r - 1)$ 1 *r r n* $(5r - 1)$ $\sum_{r=1}$ (5*r* – 1) [From (1)] $= 5$ 1 *r n r n* − $\sum_{r=1}$ $=\frac{5 \times n(n+1)}{2} - n$ $=\frac{5n^2+5n-2}{2}$ $n^2 + 5n - 2n$ $=\frac{5n^2+3n}{2}$ **2**

= 5*r* – 1 [Given] …(1)

 which is the required sum of the first *n* terms of the AP. From this, we have

$$
S_{20} = \frac{5 \times 20^2 + 3 \times 20}{2}
$$

$$
= \frac{2000 + 60}{2}
$$

$$
= \frac{2060}{2}
$$

$$
= 1030
$$

which is the required value of S_{20} .

47. Let a_p be the *p*th term and S_p be the sum of the first p terms of the AP.

Then
$$
S_p = ap^2 + bp
$$
...(1)
\n
$$
a_p = S_p - S_{p-1}
$$
 [Given]...(2)
\n
$$
= ap^2 + bp - a(p-1)^2 - b(p-1)
$$

\n
$$
= ap^2 + bp - ap^2 + 2ap - a - bp + b
$$

\n
$$
= 2ap + b - a
$$
...(3)

If *d* be the common difference, then

$$
d = a_p - a_{p-1}
$$

= 2ap + b - a - 2a(p - 1) - b + a [Using(3)]
= 2ap + b - a - 2ap + 2a - b + a
= 2a

which is the required common difference.

48. Let S_n be the sum of the first *n* terms of the AP.
Then $S_n = n^2$ [Give Then $S_n = n^2$ [Given] ...(1) \therefore If a_n be the *n*th term of the AP, then $a_n = S_n - S_{n-1}$ …(2)

$$
= n2 - (n - 1)2 \qquad \text{[From (1)]}
$$

$$
= (n + n - 1) (n - n + 1)
$$

$$
= 2n - 1 \qquad \dots (3)
$$

Hence, $a_{10} = 2 \times 10 - 1 = 19$ which is the required 10th term.

49. It a_n be the *n*th term, then

$$
a_n = S_n - S_{n-1}
$$

\n
$$
= 2n^2 + 3n - 2(n - 1)^2 - 3(n - 1)
$$

\n
$$
= 2n^2 + 3n - 2n^2 + 4n - 2 - 3n + 3
$$

\n
$$
= 4n + 1
$$
 ...(1)
\n∴ $a_{16} = 4 \times 16 + 1$ [From (1)]
\n
$$
= 65 \text{ which is the required 16th term.}
$$

\n50. ∴ $S_n = 3n^2 - 4n$
\n∴ $S_1 = 3(1)^2 - 4(1) = -1$ ⇒ $a = -1$
\n $S_2 = 3(2)^2 - 4(2) = 4$
\nSince, S_2 = sum of first two terms = 4
\n∴ $a + (a + d) = 4$
\n⇒ $(-1) + (-1 + d) = 4 \text{ or } d = 4 + 2 = 6$
\nNow $a_n = a + (n - 1)d$
\n∴ $a_n = -1 + (n - 1) \times 6$
\n
$$
= -1 + 6n - 6 = 6n - 7
$$

\nThus the *n*th term is $6n - 7$.

Thus the *n*th term is $6n - 7$.

51.
$$
S_n = \frac{1}{2} (3n^2 + 7n)
$$

$$
= \frac{3}{2} n^2 + \frac{7}{2}n
$$

We know

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $an + n(n-1)\frac{d}{2}$
= $an + n^2 \frac{d}{2} - n\frac{d}{2}$
= $n^2 \frac{d}{2} + n\left(a - \frac{d}{2}\right)$... (2)

² *n n* + ... (1)

Comparing equations (1) and (2) we get

$$
\frac{d}{2} = \frac{3}{2} \qquad a - \frac{d}{2} = \frac{7}{2}
$$

\n
$$
d = 3 \qquad a - \frac{3}{2} = \frac{7}{2}
$$

\n
$$
a = 5
$$

\n
$$
a_n = a + (n - 1)d
$$

\n
$$
= 5 + (n - 1)3
$$

\n
$$
= 5 + 3n - 3
$$

\n
$$
= 3n + 2
$$

\n
$$
a_{20} = a + (n - 1)d
$$

\n
$$
= a + 19d
$$

\n
$$
= 5 + 57
$$

\n
$$
= 62
$$

© Ratna Sagar

Arithmetic Progressions **28**Arithmetic Progressions $\frac{1}{2}$ 28 **52.** Let S_n be the sum of the first *n* terms of the AP and a_n be its *n*th term.

Then
$$
S_n = \frac{3n^2 + 5n}{2}
$$
 ...(1)

Then $a_n = S_n - S_{n-1}$ [Given]

$$
= \frac{3n^2 + 5n - 3(n-1)^2 - 5(n-1)}{2}
$$
 [From (1)]

$$
= \frac{3n^2 + 5n - 3n^2 + 6n - 3 - 5n + 5}{2}
$$

$$
= \frac{6n + 2}{2}
$$

$$
= 3n + 1
$$
...(2)

which is the required *n*th term.

$$
\therefore \qquad a_{25} = 3 \times 25 + 1 = 76
$$

which is the required **25th** term. [From (2)]

53. Let S_n be the sum of the first *n* terms of the AP and a_n be its *n*th term.

Then
$$
S_n = \frac{5n^2 + 3n}{2}
$$
 [Given] ...(1)
\nThen
$$
a_n = S_n - S_{n-1}
$$

$$
= \frac{5n^2 + 3n - 5(n-1)^2 - 3(n-1)}{2}
$$

$$
= \frac{5n^2 + 3n - 5n^2 + 10n - 5 - 3n + 3}{2}
$$

$$
= \frac{10n - 2}{2}
$$

$$
= 5n - 1
$$
 ...(2)

which is the required *n*th term.

$$
\therefore
$$
 From (2), $a_{20} = 5 \times 20 - 1 = 99$ which is the required 20th term.

54. (*i*) If a_n be the *n*th term, then

$$
a_n = S_n - S_{n-1}
$$

= 3n² - n -3(n - 1)² + (n - 1)
= 3n² - n - 3n² + 6n - 3 + n - 1
= 6n - 4 ...(1)

which is the required *n*th term.

 (iii) Putting $n = 1$ in (1), we have

$$
a_1 =
$$
 first term = 6 – 4 = 2

which is the required first term.

(*iii*) If *d* be the common difference, then

$$
d = a_n - a_{n-1}
$$

= 6n - 4 - 6(n - 1) + 4
= 6n - 4 - 6n + 6 + 4
= 6

which is the required common difference.

55. \therefore Sum of *n* terms is $5n^2 - 3n$

$$
S_n = 5n^2 - 3n
$$

\n
$$
S_1 = 5(1)^2 - 3(1)
$$

\n
$$
= 5 - 3 = 2
$$

 \Rightarrow $a = 2$ $S_2 = 5(2)^2 - 3(2) = 20 - 6 = 14$ Now, S_2 = sum of first two terms = 14 \implies (*a*) + (*a* + *d*) = 14 \Rightarrow 2*a* + *d* = 14 \Rightarrow 2(2) + *d* = 14 \Rightarrow $d = 14 - 4 = 10$ Since, *a*, *a* + *d*, *a* + 2*d*, … are in AP. \Rightarrow 2, (2 + 10), [2 + 2(10)], ... are in AP. \Rightarrow 2, 12, 22, ... are in AP. ∴ The required AP is **2, 12, 22, …** Now, using $a_n = a + (n-1)d$, we get $a_{10} = 2 + (10 - 1) \times 10$ $= 2 + (9 \times 10) = 92$ 56. \therefore $S_n = 3n^2 - n$ \therefore $S_1 = 3(1)^2 - 1 = 3 - 1 = 2 \Rightarrow a = 2$ $S_2 = 3(2)^2 - 2 = 12 - 2 = 10$ \Rightarrow [1st term] + [2nd term] = 10 ⇒ $(a) + (a + d) = 10$ ⇒ $2 + 2 + d = 10$ [$\because a = 2$] $d = 10 - 2 - 2 = 6$ Let n th term $= 50$ $a_n = a + (n-1)d$ $a_n = 2 + (n-1)6 = 50$ ⇒ $6(n-1) = 50 - 2 = 48$ \Rightarrow $n = 8 + 1 = 9$

Hence, **9th term** of the AP is 50.

57. Let
$$
S_m
$$
 be the sum of the first m terms of the AP. Then given that

$$
S_m = 4m^2 - m
$$
...(1)

$$
\therefore a_n = S_n - S_{n-1}
$$

$$
= 4n^2 - n - 4(n - 1)^2 + (n - 1)
$$
 [From (1)]

$$
= 4n^{2} - n - 4(n - 1)^{2} + (n - 1)
$$
 [From (1)]
= 4n² - n - 4n² + 8n - 4 + n - 1
= 8n - 5 ...(2)

Given that

$$
a_n = 107
$$

\n
$$
\therefore \text{ From (2),}
$$

\n
$$
8n - 5 = 107
$$

 a_{21}

$$
\therefore \qquad n = \frac{112}{8} = 14 \qquad \qquad \dots (3)
$$

∴ From (2),

$$
= 8 \times 21 - 5
$$

$$
= 168 - 5 = 163 \qquad \dots (4)
$$

∴ From (3) and (4), the required values of *n* and a_{21} are **14** and **163** respectively.

58. Let S_q be the sum of first *q* terms of the AP and a_q be its *q*th term.

Then
$$
S_q = 63q - 3q^2
$$
 [Given] ...(1)

© Ratna Sagar

$$
a_q = S_q - S_q - 1
$$

= $63q - 3q^2 - 63(q - 1) + 3(q - 1)^2$
= $63q - 3q^2 - 63q + 63 + 3q^2 - 6q + 3$
= $66 - 6q$...(2)

It is given that

 $a_p = -60$ ∴ $66 - 6p = -60$ \Rightarrow 6*p* = 60 + 66 = 126 ∴ *p* = 21 …(3) Also, from (2),

 $a_{11} = 66 - 6 \times 11 = 0$ …(4)

 $..., 99$

∴ From (3) and (4), the required values of p and a_{11} are **21** and **0** respectively.

59. (*i*) \therefore Odd numbers between 0 and 100 are

1, 3, 5, 7,
\n
$$
\therefore
$$

\n $a = 1$
\n $d = 3 - 1 = 2$
\n $l = 99$

Let number odd numbers between 0 and $100 = n$

$$
\therefore \quad a_n = a + (n - 1)d = 99
$$
\n
$$
\Rightarrow \quad 1 + (n - 1)2 = 99
$$
\n
$$
\Rightarrow \quad (n - 1)2 = 99 - 1 = 98
$$
\n
$$
\Rightarrow \quad n - 1 = \frac{98}{2} = 49
$$
\n
$$
\therefore \quad n = 49 + 1 = 50
$$
\nUsing

\n
$$
S_n = \frac{n}{2}(a + l)
$$
, we get

$$
S_{50} = \frac{50}{2} \left(1 + 99 \right) = 25(100) = 2500
$$

 Thus, the sum of all odd numbers (between 0 and 100) is **2500.**

 (ii) \therefore Three digit numbers are

100, 101, 102, 103, 104, …, 999.

 ∴ The 3-digit numbers which when divided by 5 leaves remainder 3, are : 103, 108, 113, 118, …, 998

$$
\therefore \quad a = 103
$$
\n
$$
d = 108 - 103 = 5
$$
\n
$$
l = 998
$$

Let such numbers be *n*.

∴ Using
$$
a_n = a + (n-1)d
$$
, we get
\n $a_n = 103 + (n-1) \times 5 = 998$
\n⇒ $(n-1) \times 5 = 998 - 103 = 895$
\n⇒ $n-1 = \frac{895}{5} = 179$
\n∴ $n = 179 + 1 = 180$
\nNow, using $S_n = \frac{n}{2}(a + l)$, we get
\n $S_{180} = \frac{180}{2}(103 + 998)$

 $= 90(1101)$ $= 99090$

Thus, the required sum = **99090**

 (iii) \therefore Odd numbers between 50 and 100 and divisible by 3 are

 51, 57, 63, …, 99 \therefore $a = 51, d = 57 - 51 = 6, l = 99$ Now, using $a_n = a + (n-1)d$, we get $a_n = 51 + (n - 1)6 = 99$ \Rightarrow $n-1 = \frac{99-51}{6} = \frac{48}{6} = 8$ $\therefore \hspace{1.6cm} n = 8 + 1 = 9$ Since, $S_n = \frac{n}{2}(a + l)$ \therefore $S_9 = \frac{9}{2} (51 + 99)$ $= 9 \times 75 = 675$ (iv) \therefore Two digit natural numbers are 10, 11, 12, 13, …, 99 \therefore $a = 10, d = 1$ and $l = 99$ Using $a_n = a + (n-1)d$, we get $a_n = 10 + (n - 1)1 = 99$ \Rightarrow $n - 1 = 99 - 10 = 89$ \implies $n = 89 + 1 = 90$ Now, using $S_n = \frac{n}{2}(a + l)$, we get $S_{90} = \frac{90}{2} (10 + 99)$ $= 45 \times 109 = 4905$ \therefore Required sum = 4905 (*v*) Natural numbers less than 100 and divisible by 4 are 4, 8, … 96 \therefore $a = 4, d = 4$ and $l = 96$ Using, $a_n = a + (n - 1)d$ \Rightarrow 4 + (*n* – 1) 4 = 96 \Rightarrow $(n-1)$ 4 = 92 \Rightarrow $(n-1) = 23$ \Rightarrow *n* = 24 Now, using $S_n = \frac{n}{2}(a + l)$, we get $S_{24} = \frac{24}{2}(4 + 96)$ $= 12 \times 100$ = **1200** (*vi*) Three digit numbers which are multiples of 7 are 105, 112, 119, …, 994 \therefore $a = 105$, $d = 112 - 105 = 7$ and $l = 994$

 \therefore $a_n = a + (n-1)d$ $994 = 105 + (n - 1) \times 7$

© Ratna Sagar

$$
\Rightarrow n-1 = \frac{994 - 105}{7}
$$

$$
\Rightarrow n-1 = \frac{889}{7} = 127
$$

$$
\Rightarrow n = 127 + 1 = 128
$$

Now, using $S_n = \frac{n}{2}(a + l)$, we get

$$
S_{128} = \frac{128}{2} (105 + 994)
$$

$$
= 64 \times 1099 = 70336
$$

Thus, the required sum = **70336**

(*vii*) : Numbers between 101 and 304 which are divisible by 3 are

 102, 105, 108, 111, …, 303 $a = 102, d = 105 - 102 = 3$ and *l* = 303 Using $a_n = a + (n - 1)d$, we get $a + (n - 1)d = 303$ or $102 + (n - 1) \times 3 = 303$ \Rightarrow $n-1 = \frac{303 - 102}{3} = \frac{201}{3} = 67$ ⇒ $n = 67 + 1 = 68$ \therefore $S_{68} = \frac{68}{2} [102 + 303]$ [Using $S_n = \frac{n}{2} (a + l)$] $= 34 \times 405 = 13770$...(1) \therefore Numbers between 101 and 304 which are divisible by 5 are 105, 110, 115, 120, …, 300 \therefore $a = 105$, $d = 110 - 105 = 5$ and $l = 300$ $a_n = a + (n-1)d$ \Rightarrow $a_n = 105 + (n-1)5 = 300$ \Rightarrow $n-1 = \frac{300 - 105}{5} = \frac{195}{5} = 39$ \implies $n = 39 + 1 = 40$ Now, $S_{40} = \frac{40}{2} [105 + 300]$ [Using $S_n = \frac{n}{2} (a + l)$] $= 20 \times 405 = 8100$ …(2) \therefore Numbers between 101 and 304, which are divisible by 3 × 5 i.e. 15 are 105, 120, 135, …, 300 \therefore $a = 105$, $d = 120 - 105 = 15$ and $l = 300$ \Rightarrow 300 = 105 + (*n* - 1)15[Using *a_n* = *a* + (*n* - 1)*d*] \Rightarrow $(n-1) = \frac{300 - 105}{15} = \frac{195}{15} = 13$ \Rightarrow $n = 13 + 1 = 14$ $S_{14} = \frac{14}{2} [105 + 300]$ $= 7 \times 405 = 2835$ …(3)

 Since the multiples of 15, i.e. 105, 120, 135, …, 300 are included in the multiples of 3 as well of 5, from (1), (2) and (3) , we have

 The sum of numbers between 101 and 304 which are divisible by 3 or 5 :

 $[13770 + 8100] - 2835 = 21870 - 2835 = 19035$

Thus, the required sum = **19035**

- (*viii*) We know that odd numbers are not divisible by 2. Also all odd numbers that are not divisible by 5 do not have 5 in ones place.
	- \therefore Required sum

= [Sum of all odd numbers up to 1000]
\n- [Sum of odd numbers up to 1000
\nthat are divisible by 5]
\n= [1 + 3 + 5 + 7 + ... + 999]
\n- [5 + 15 + 25 + ... + 995] ... (1)
\n
$$
\therefore
$$
 1, 3, 5, ... 999 are in AP such that
\n $a = 1, d = 2, l = 999$
\n $a_n = a + (n - 1)d$
\n⇒ 1 + (n - 1) × 2 = 999
\n⇒ (n - 1) × 2 = 999 - 1 = 998
\nor (n - 1) = $\frac{998}{2}$ = 499
\n⇒ n = 499 + 1 = 500
\n∴ S₅₀₀ = $\frac{500}{2}$ (1 + 999)
\n= 250 × 1000 = 250000 ... (2)
\nAlso, 5, 15, 25, ..., 995 are in AP such that
\n $a = 5, d = 10$ and $l = 995$
\n⇒ $a_n = a + (n - 1)d$
\n⇒ 5 + (n - 1)10 = 995
\n⇒ (n - 1)10 = 995 - 5 = 990
\n⇒ n - 1 = $\frac{990}{10}$ = 99
\n⇒ n = 99 + 1 = 100
\n∴ S₁₀₀ = $\frac{100}{2}$ (5 + 995)
\n= 50 × 100 = 50000 ... (3)

Now from (1) , (2) and (3) we have

Required sum = 250000 – 50000 = **200000**

(*ix*) First seven multiples of 2 as well as 9 are

18, 36, 54, 72, 90, 108, 126. $a = 18$, $d = 36 - 18 = 18$ and $l = 126$

∴
$$
u = 10, u = 30 - 10 = 10
$$
 and $t = 120$
\n∴ $n = 7$
\n∴ Using $S_n = \frac{n}{2}(l + a)$, we get

$$
S_7 = \frac{7}{2}(126 + 18) = \frac{7}{2} \times 144
$$

$$
= 7 \times 72 = 504
$$

 ∴ The required sum = **504**

 (x) \therefore Two digit numbers which leave remainder 1, when divided by 3 are 10, 13, 16, 19, …, 97

© Ratna Sagar

$$
a = 10, d = 13 - 10 = 3 \text{ and } l = 97
$$

Using $a_n = a + (n - 1)d$, we get

$$
10 + (n - 1) \times 3 = 97
$$

$$
\Rightarrow (n - 1) \times 3 = 97 - 10 = 87
$$

$$
\Rightarrow n - 1 = \frac{87}{3} = 29
$$

$$
\therefore n = 29 + 1 = 30
$$

Now,
using $S_n = \frac{n}{2}(l + a)$, we get

$$
S_{30} = \frac{30}{2}(10 + 97)
$$

$$
= 15 \times 107 = 1605
$$

$$
\therefore \text{ The required sum = 1605
$$

$$
(xi) Let a = first term and d = common differenceHere, the middle term = 6th term[\because Total number of terms = 11]
$$
\therefore \text{ 6th term = 20}
$$

$$
a + (6 - 1)d = 20
$$
$$

$$
\Rightarrow \qquad a + (6-1)d = 20
$$

$$
\Rightarrow \qquad a + 5d = 20 \qquad \qquad ...(1)
$$

Now,
\nusing,
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
, we get
\n
$$
S_{11} = \frac{11}{2} [2a + (10)d]
$$
\n
$$
= \frac{11}{2} \times 2[a + 5d]
$$
\n
$$
= 11[a + 5d] \qquad \qquad ...(2)
$$

From (1) and (2), we get

$$
S_{11} = 11[20] = 220
$$

Hence, the required sum = **220**

- (*xii*) We have 8, 10, 12, …, 126
	- \therefore $d = 10 8 = 2$

 To find the sum from the end, we take –*d* (i.e. common difference is taken negative) and start with the last term (as the first term)

i.e. $l = 126$, $d = -2$, $n = 10$

Using
$$
S_n = \frac{n}{2} [2l + (n-1)d]
$$
, we get
\n
$$
S_{10} = \frac{10}{2} [2(126) + (10 - 1) (-2)]
$$
\n
$$
\Rightarrow S_{10} = 5[252 + 9 \times (-2)]
$$

$$
\Rightarrow \qquad S_{10} = 5[252 - 18] = 5 \times 234 = 1170
$$

Thus, sum of the 10 term from the end = **1170**

 (*xiii*) All three-digit natural numbers which are multiples of 11 are 110, 121, 132, 143, 154 …990.

 This sequence is in AP with the first term, *a* = 110 and common difference, *d* = 121 – 110 = 11.

Let a_n be the *n*th term and S_n be the sum of the first *n* terms of the AP.

Then
$$
a_n = a + (n-1)d
$$

$$
= 110 + (n - 1)11
$$

= 11n - 99 ... (1)
and

$$
S_n = \frac{n}{2} [2a + (n - 1)d]
$$

= $\frac{n}{2} [2 \times 110 + (n - 1)11]$

$$
= \frac{n}{2} [2 \times 110 + (n - 1)11]
$$

$$
= \frac{n(220 - 11 + 11n)}{2}
$$

$$
= \frac{(11n + 209)n}{2}
$$

$$
= \frac{11n^2 + 209n}{2} \qquad ...(2)
$$

If $a_n = 990$, where *n* is the total number of terms of the AP.

Then from (1),

$$
11 \times n - 99 = 990
$$

\n⇒
$$
11n = 990 - 99 = 891
$$

\n⇒
$$
n = \frac{891}{11} = 81
$$
 ...(3)

∴ There are 81 terms of this AP.

∴ From (2), we have

$$
S_{81} = \frac{11 \times 81^2 + 209 \times 81}{2}
$$

$$
= \frac{81(11 \times 81 + 209)}{2}
$$

$$
= \frac{81 \times (891 + 209)}{2}
$$

$$
= \frac{81 \times 1100}{2}
$$

$$
= \frac{89100}{2}
$$

$$
= 44550
$$

which is the required sum.

 (*xiv*) 40 positive integers which are divisible by 6 are 6, 12, 18, 24 … to 440 terms.

All these numbers are in AP with the first term

 $a = 6$ and the common difference, $d = 12 - 6 = 6$.

If S_n denote the sum of the first *n* terms of the AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 6 + (n-1) \times 6]$
= $n(6 + 3n - 3)$
= $n(3n + 3)$
= $3n^2 + 3n$...(1)

If $n = 40$, then

 $S_{40} = 3 \times 40^{2} + 3 \times 40$ [From (1)] $= 4800 + 120$ = **4920**

which is the required sum of 40 terms of the AP.

© Ratna Sagar

 (*xv*) The first 8 multiples of 3 are 3, 6, 9, 12, 15, 18, 21 and 24. These numbers form an AP with the first term, $a = 3$ and the common difference, $d = 6 - 3 = 3$. If S_n be the sum of the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} \times [2 \times 3 + (n-1)3]$
= $\frac{n}{2} [6 + 3n - 3]$
= $\frac{3n^2 + 3n}{2}$...(1)

When $n = 8$, then

From (1), $S_8 = \frac{3 \times 8^2 + 3 \times 8}{2}$

$$
= \frac{192 + 24}{2}
$$

$$
= \frac{216}{2} = 108
$$

 \times 8² + 3 \times

which is required sum.

 (*xvi*) All three-digit natural numbers which are divisible by 13 are 104, 117, 130, 143 …988.

 These numbers form an AP with the first term, $a = 104$ and the common difference, $d = 117 - 104 = 13$. If S_n be the sum of the first such natural numbers, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 104 + (n-1)13]$
= $\frac{n}{2} [208 + 13n - 13]$
= $\frac{n(13n + 195)}{2}$
= $\frac{13n(n + 15)}{2}$...(1)

If a_n be the *n*th term of this AP, then

$$
a_n = a + (n - 1)d
$$

= 104 + (n - 1)13
= 104 + 13n - 13
= 13n + 91
= 13(n + 7) ...(2)

If $a_n = 988$, i.e. if the total number of terms is *n*,
Then $13(n + 7) = 988$

Then
$$
13(n+7) = 988
$$

$$
\Rightarrow \qquad n+7 = 76
$$

$$
\Rightarrow \qquad n = 76 - 7 = 69
$$

∴ From (1) , S

$$
\therefore \text{ From (1),} \quad S_{69} = \frac{13 \times 69 \times (69 + 15)}{2} = \frac{13 \times 69 \times 84}{2} = 13 \times 69 \times 42 = 37674
$$

[From (2)]

© Ratna Sagar

which is the required sum.

 (*xvii*)All natural numbers between 200 and 400, which are divisible by 7, are 203, 210, 217, 224, …,399.

 These numbers form an AP with the first term, $a = 203$ and the common difference, $d = 210 - 203 = 7$ If S_n be the sum of the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 203 + (n-1)7]$
= $\frac{n}{2} [406 + 7n - 7]$
= $\frac{n}{2} (7n + 399)$
= $\frac{7n(n + 57)}{2}$...(1)

Also, if a_n be the *n*th term, then

$$
a_n = a + (n - 1)d
$$

= 203 + (n - 1)7
= 7n + 196
= 7(n + 28) ...(2)

If *n* be the total number of terms of this AP, then

$$
a_n = 399
$$
, the last term.

$$
\therefore \text{ From (2),}
$$
\n
$$
7(n + 28) = 399
$$
\n
$$
\Rightarrow \qquad n = \frac{399}{7} - 2
$$

$$
\Rightarrow \qquad n = \frac{37}{7} - 28
$$

$$
= 57 - 28 = 29 \qquad \dots (3)
$$

∴ From (1), we have

$$
S_{29} = \frac{7 \times 29}{2} (29 + 57)
$$

= $\frac{7 \times 29}{2} \times 86$
= $7 \times 29 \times 43$
= 8729

which is the required sum.

 (*xviii*) We know that all natural numbers which are divisible by 5 must end with 0 or 5. But natural numbers ending with 5 are not even numbers and all natural numbers ending with 0 are even natural numbers divisible by 5.

 Hence, all 100 even numbers divisible by 5 (which are clearly divisible by $2 \times 5 = 10$) are 10, 20, 30, 40, … 100 term.

 All these numbers form an AP with the first term, $a = 10$, and the common difference, $d = 20 - 10 = 10$. If S_n be the sum of the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 10 + (n-1)10]$
= $\frac{n}{2} [20 + 10n - 10]$

$$
= \frac{(10n + 10)n}{2}
$$

= 5n(n + 1) ...(1)
When n = 100, then from (1), we have

$$
S_{100} = 5 \times 100 \times 101
$$

= 50500

which is the required sum.

 (*xix*) (*a*) Natural numbers between 100 and 200 which are divisible by 9 are 108, 117, 126, …, 198.

 These numbers form an AP with the first term, $a = 108$, the common difference, $d = 117 - 108 = 9$ and the last term, $l = 198$.

If a_n be the *n*th term of the AP, then

$$
a_n = a + (n - 1)d
$$

= 108 + (n - 1)9
= 9n + 99
= 9(11 + n) ...(1)

It S_n be the sum of the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 108 + (n-1)9]$
= $\frac{n}{2} [216 + 9n - 9]$
= $\frac{n(9n + 207)}{2}$
= $\frac{9n(n + 23)}{2}$...(2)

If *n* be the total number of terms of the AP, then

$$
a_n = \text{last term} = 198
$$

\n
$$
\Rightarrow \qquad 9(11 + n) = 198 \qquad \qquad \text{[From (1)]}
$$

\n
$$
\Rightarrow \qquad n + 11 = 22
$$

\n
$$
\Rightarrow \qquad n = 11
$$

∴ Total number of terms of the AP is 11.

∴ From (2),

$$
S_{11} = \frac{9 \times 11(11 + 23)}{2}
$$

$$
= \frac{99 \times 34}{2}
$$

$$
= 17 \times 99 = 1683 \qquad ...(3)
$$

which is the required sum.

 (*b*) We shall first find the sum S′ *ⁿ* of all natural numbers between 100 and 200, i.e. 101, 102, 103, …, 199 with first term, $a_1 = 101$, common difference, $d_1 = 1$ and the total number of terms, $n = 200 - 100 - 1 = 99$

Then

Then
$$
S'_{99} = \frac{99}{2} \times (2 \times 101 + 98)
$$

= $\frac{99}{2} \times (202 + 98)$
= $\frac{99 \times 300}{2}$

$$
= 150 \times 99
$$

= 14850 ... (4)

 ∴ Required sum of all numbers from 100 to 200, not divisible by 9, is

$$
S'_{99} - S_{11} = 14850 - 1683
$$

[From (3) and (4)]

= **13167**

60. Two digit numbers divisible by 7 are

14, 21, 28, ..., 98
\n∴
\n
$$
a = 14, d = 21 - 14 = 7
$$
 and $l = 98$
\nNow
\n $a_n = a + (n - 1)$
\n⇒ $14 + (n - 1) \times 7 = 98$
\n⇒ $n - 1 = \frac{98 - 14}{7} = \frac{84}{7} = 12$
\n∴
\n $n = 12 + 1 = 13$

Now, using $S_n = \frac{n}{2}(a + l)$, we get

$$
S_{13} = \frac{13}{2} (14 + 98)
$$

$$
= \frac{13}{2} \times 112 = 13 \times 56 = 728
$$

Thus, number of terms = **13**

Required sum = **728**

61. Let *a* be the first term and *d* be the common difference of the AP. If a_n be the *n*th term of the AP and S_n is the sum of its first term, then

$$
a_n = a + (n-1)d \qquad \qquad \dots (1)
$$

…(2)

and $S_n = \frac{n}{2} [2a + (n-1)d]$

⇒

Given that $S_6 = 42$

- ∴ From (2) , $42 = \frac{6}{2} [2a + 5d]$
- ⇒ $2a + 5d = 14$ …(3)

Also, given that $\frac{a_{10}}{a_{30}}$ $\frac{10}{30} = \frac{1}{3}$

$$
\Rightarrow \frac{a+9d}{a+29d} = \frac{1}{3}
$$
 [From (1)]

$$
\Rightarrow 3a + 27d = a + 29d
$$

$$
\Rightarrow 2a - 2d = 0
$$

$$
\Rightarrow a = d
$$
...(4)

$$
\therefore \text{ From (3)}, \quad 2a + 5a = 14
$$
\n
$$
\Rightarrow \qquad 7a = 14
$$
\n
$$
\Rightarrow \qquad a = 2 \qquad \qquad ...(5)
$$
\n
$$
\therefore \qquad d = 2 \qquad \qquad [\text{From (4)}] \dots (6)
$$

 ∴ Required first term and the 13th term are respectively **2** and **26**.

62. Let the first term of the first AP be a_1 and the common difference be d_1 . Then $a_1 = 8$ and $d_1 = 20$. If S_n be sum of first *n* terms of this AP, then

$$
S_n = \frac{n}{2} \big[2a_1 + (n-1)d_1 \big]
$$

© Ratna Sagar

$$
= \frac{n}{2} [2 \times 8 + (n - 1)20]
$$

= n[8 + (n - 1) 10]
= n(10n - 2) ...(1)

For the second AP, the first term a_2 and the common difference d_2 , are given by $a_2 = -30$ and $d_2 = 8$. Let S'_{2n} be the sum of the first 2*n* terms.

Then

Then
$$
S'_{2n} = \frac{2n}{2} [2 \times a_2 + (2n - 1)8]
$$

$$
= n[-2 \times 30 + (2n - 1)8]
$$

$$
= n[-60 + 16n - 8]
$$

$$
= n(16n - 68) \qquad \dots (2)
$$

It is given that

 $S_n = S'_{2n}$ ∴ From (1) and (2), we have $n(10n - 2) = n(16n - 68)$ \Rightarrow 16*n* – 10*n* = 68 – 2 \Rightarrow 6*n* = 66 ∴ *n* **= 11** which is the required value of *n*.

63. We need to form an AP of 3 digit numbers which leave remainder 5 on dividing by 7.
 $AP: 103, 110, 117, 902, 999$ $AD. 103, 110, 117$

Ar: 103, 110, 117, ..., 992, 999
\n
$$
a = 103
$$
, $d = 7$, $l = a_n = 999$
\n $a_n = a + (n - 1)d$
\n $999 = 103 + (n - 1)7$
\n $896 = (n - 1)7$
\n $n - 1 = 128$
\n $n = 129$
\n 129
\n $a_{65} = a + 64d$
\n $a_{65} = a + 64d$
\n $= 103 + 64(7)$
\n $= 103 + 448$
\n $= 551$

 To find the sum of numbers on the former side of middle term

$$
a = 103, \ d = 7, \ n = 64
$$
\n
$$
S_n = \frac{n}{2} [2a + (n - 1)d]
$$
\n
$$
= \frac{64}{2} [206 + (64 - 1)7]
$$
\n
$$
= 32 \times 647
$$
\n
$$
= 20704
$$

 Now we will find the sum of numbers on the latter side of middle term

 a = 999, *d* = –7, *n* = 64 $S_n = \frac{n}{2} [2a + (n-1)d]$

$$
= 32 [1998 + 63 \times (-7)]
$$

$$
= 32 [1998 - 441]
$$

$$
= 32 \times 1557
$$

= **49824**

64. Let $a =$ first term and $d =$ common difference

Here, $S_n = \text{sum of } 'n'$ terms

$$
\therefore \qquad S_n = \frac{n}{2} [2a + (n-1)d]
$$

$$
\Rightarrow \qquad S_{n-1} = \frac{(n-1)}{2} [2a + (n-2)d]
$$

$$
\Rightarrow \qquad S_{n-2} = \frac{(n-2)}{2} [2a + (n-3)d]
$$

Now,
$$
S_n - 2S_{n-1} + S_{n-2} = \frac{n}{2} [2a + (n-1)d] -
$$

$$
\frac{2(n-1)}{2} [2a + (n-2)d] + \left(\frac{n-2}{2}\right) [2a + (n-3)d]
$$

$$
= an + \frac{(n)(n-1)d}{2} - 2(n-1) \times a - (n-1)(n-2)d
$$

$$
+ (n-2)a + \frac{(n-2)(n-3)d}{2}
$$

2

$$
= [an - 2(n - 1)a + (n - 2)a] +
$$

\n
$$
\left[\frac{(n)(n-1)d}{2} - (n-1)(n-2)d + \frac{(n-2)(n-3)d}{2} \right]
$$

\n
$$
= [an - 2an + 2a + an - 2a] +
$$

\n
$$
\left[\frac{n^2d}{2} - \frac{nd}{2} - n^2d + 3nd - 2d + \frac{n^2d}{2} - \frac{5nd}{2} + \frac{6d}{2} \right]
$$

\n
$$
= 0 + [3d - 2d]
$$

\n
$$
= d
$$

65. Let
$$
a =
$$
 first term and $d =$ common difference
Here, $S_1 =$ Sum of '*n'* terms

$$
\Rightarrow S_1 = \frac{n}{2} [2a + (n-1)d]
$$

\n
$$
S_2 = \text{Sum of '2n' terms}
$$

\n
$$
\Rightarrow S_2 = \frac{2n}{2} \{2a + (2n-1)d\}
$$

\n
$$
S_3 = \text{Sum of '3n' terms}
$$

\n
$$
\Rightarrow S_3 = \frac{3n}{2} [2a + (3n-1)d]
$$

Now,
$$
3S_1 - 3S_2 + S_3
$$

\n
$$
= 3\{S_1\} - 3\{S_2\} + \{S_3\}
$$
\n
$$
= 3\{\frac{n}{2}[2a + (n-1)d]\} - 3\{\frac{2n}{2}[2a + (2n-1)d]\} + \frac{3n}{2}[2a + (3n-1)d]
$$
\n
$$
= \frac{3n}{2}(2a) + \frac{3n}{2}(n-1)d - 3n(2a) - 3n(2n-1)d
$$
\n
$$
+ 3an + \frac{3n}{2}(3n-1)d
$$

35Arithmetic Progressions

Arithmetic Pr

$$
= 3an + \frac{3n^2d}{2} - \frac{3nd}{2} - 6an - 6n^2d + 3nd
$$

\n
$$
+ 3an + \frac{9n^2d}{2} - \frac{3nd}{2}
$$

\n
$$
= (3an + 3an - 6an) + (\frac{3n^2d}{2} - 6n^2d + \frac{9n^2d}{2}) + (\frac{-3nd}{2} + 3nd - \frac{3nd}{2})
$$

\n
$$
= (0) + (0) + (0) = 0
$$

\nHence, $3S_1 - 3S_2 + S_3 = 0$
\n66. AP_1 AP_2 AP_3
\n $a = 1$ $a = 1$ $a = 1$
\n $d = 1$ $d = 2$ $d_3 = 3$
\n $S_n = S_1$ $S_n = S_2$ $S_n = S_3$
\n
$$
S_1 = \frac{n}{2} [2a + (n - 1) d]
$$

\n
$$
= \frac{n}{2} [2 + (n - 1) d]
$$

\n
$$
= \frac{n}{2} [2 + (n - 1) d]
$$

\n
$$
= \frac{n}{2} [2 + (n - 1) d]
$$

\n
$$
= \frac{n}{2} [2 + (n - 1) d]
$$

\n
$$
= \frac{n}{2} [2 + (n - 1) d]
$$

\n
$$
= \frac{n}{2} [2 + (n - 1) d]
$$

\n
$$
= \frac{n}{2} [2 + (n - 1) 3]
$$

\n
$$
= \frac{n}{2} [2 + 3n - 3]
$$

\n
$$
= \frac{n(n+1)}{2} + \frac{n}{2} (3n-1)
$$

\n
$$
= \frac{n(n+1)}{2} + \frac{n}{2} (3n-1)
$$

\n
$$
= 2S_2 = RHS
$$

\nHence proved.

67. Odd numbers are 1, 3, 5, 7, ...,
\n
$$
a = 1, d = 2, n = p
$$

\n \therefore $S_p = \frac{p}{2} [2(1) + (p - 1) \times 2] = p(p) = p^2$...(1)
\nEven numbers are 2, 4, 6, 8, ...
\n $a = 2, d = 2$ and $n = p$
\n \therefore $S'_p = \frac{p}{2} [2(2) + (p - 1)2] = p[2 + p - 1]$
\n $= p[1 + p] = p^2 + p$

$$
= p^2 \left[1 + \frac{1}{p} \right] \tag{2}
$$

From (1) and (2), we have

$$
S'_{p} = S_{p} \left(1 + \frac{1}{p} \right)
$$

 ⇒ [Sum of *p* even numbers]

= [Sum of *p* odd numbers]
$$
\left(1 + \frac{1}{p}\right)
$$

68. Let S_n be the first *n* terms of the AP, and let a_n be its *n*th term.

Now, it is given that
\n
$$
S_k = 3k^2 + 5k
$$
 ...(1)
\nand
\n $a_k = 164$...(2)
\nAlso,
\n $a_k = S_k - S_k - 1$
\n \Rightarrow 164 = 3k² + 5k - 3(k - 1)² - 5(k - 1)
\n[From (1) and (2)]
\n $= 3k^2 + 5k - 3k^2 + 6k - 3 - 5k + 5$
\n $= 6k + 2$
\n \therefore 6k = 164 - 2
\n $= 162$
\n \Rightarrow $k = \frac{162}{6} = 27$

which the required value of *k*.

69.
$$
\frac{S_{1n}}{S_{2n}} = \frac{7n+1}{4n+27}
$$

\nAP₁ AP₂
\n $a = a_1$ AP₂
\n $d = d_1$ $d = d_2$
\n
$$
S_{1n} = \frac{n}{2} [2a_1 + (n-1)d_1]
$$

\n
$$
S_{2n} = \frac{n}{2} [2a_2 + (n-1)d_2]
$$

\n
$$
\frac{S_{1n}}{S_{2n}} = \frac{\frac{n}{2} [2a_1 + (n-1)d_1]}{\frac{n}{2} [2a_2 + (n-1)d_2]} = \frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2}
$$

\n
$$
\frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2} = \frac{7n+1}{4n+27}
$$
 ... (1)

The ratio of *m*th terms is

$$
\frac{a_{m1}}{a_{m2}} = \frac{a_1 + (m-1)d_1}{a_2 + (m-1)d_2}
$$

(i) To obtain the ratio of mth terms, we used to put $n = 2m - 1$ in eq. (1) $\frac{2a_1+(2m-1-1)d_1}{2a_2+(2m-1-1)d_2}$ $a_1 + (2m - 1 - 1)d$ $a_2 + (2m - 1 - 1)d$ $+(2m-1 +(2m - 1 \frac{(2m-1-1)d_1}{(2m-1-1)d_2} = \frac{7(2m-1)+1}{4(2m-1)+27}$ $(2m-1)$ $(2m-1)$ *m m* $-1+$ -1) +

$$
2a_2 + (2m - 1 - 1)u_2
$$

\n
$$
\frac{2a_1 + (2m - 2)d_1}{2a_2 + (2m - 2)d_2} = \frac{14m - 7 + 1}{8m - 4 + 27}
$$

\n
$$
\frac{2}{2} \left[\frac{a_1 + (m - 1)d_1}{a_2 + (m - 1)d_2} \right] = \frac{14m - 6}{8m + 23}
$$

$$
\frac{a_{m1}}{a_{m2}} = \frac{14m-6}{8m+23}
$$

(*ii*) To obtain the ratio of 9th terms, put *m* = 9

$$
\frac{a_{9(1)}}{a_{9(2)}} = \frac{14(9) - 6}{8(9) + 23}
$$

$$
= \frac{126 - 6}{72 + 23}
$$

$$
= \frac{120}{95} = \frac{24}{19}
$$

$$
\Rightarrow \qquad 24 : 19
$$

70. We have: $1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots$ up to 2*n* terms \therefore S = (1² – 2²) + (3² – 4²) + (5² – 6²) + ... up to *n* brackets $= (1 - 4) + (9 - 16) + (25 - 36) + ...$ up to *n* brackets

$$
= (-3) + (-7) + (-11) + \dots
$$
 up to *n* terms

which is an AP.

Here, $a = -3$, $d = -7 - (-3) = -4$

Using
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
, we get
\n
$$
S_n = \frac{n}{2} [2 (-3) + (n-1) (-4)]
$$
\n
$$
= \frac{n}{2} [-6 - 4n + 4]
$$
\n
$$
= \frac{n}{2} [-2 - 4n]
$$
\n
$$
= \frac{n}{2} [1 + 2n] (-2)
$$
\n
$$
= n[1 + 2n] (-1)
$$
\n
$$
= -n[2n + 1]
$$
\nHence, $[1^2 - 2^3 + 3^2 - 4^2 + 5^2 - 6^2 + \dots$ up to 2n terms]
\n
$$
= -n[2n + 1]
$$

 EXERCISE 5C

For Basic and Standard Levels

1. Here,
$$
P = \overline{\xi}
$$
 2000, $r = 7\%$ p.a. (simple interest)

$$
\therefore
$$
 Interest at the end of 1st year

$$
=
$$
 ₹ $\frac{2000 \times 7 \times 1}{100} =$ ₹ 140 $\left[$ Using S.I. = $\frac{P \times r \times t}{100} \right]$

Similarly,

S.I. at the end of 2nd year = ₹
$$
\frac{2000 \times 7 \times 2}{100}
$$
 = ₹ 280
S.I. at the end of 3rd year = ₹ $\frac{2000 \times 7 \times 3}{100}$ = ₹ 420
and so on

∴ 280 - 140 = 420 - 280 = 140
\n∴ 140, 280, 420 ... form an AP with
\n
$$
a = 140
$$
 and $d = 140$
\nUsing $a_n = a + (n - 1)d$, we get
\n $a_{20} = 140 + (20 - 1) \times 140$

 $= 140 + 19 \times 140 = 140 + 2660 = 2800$

© Ratna Sagar

Hence, the interest at the end of 20 years = $\bar{\tau}$ 2800

2. Original cost of the machine = $\bar{\tau}$ 62,500 Let the annual depreciation = $\bar{\tau}$ *x* \therefore Value of the machine at the end of 1st year = ₹ (62500 – *x*) end of 2nd year = \bar{z} (62500 – 2*x*) end of 3rd year = \bar{z} (62500 – 3*x*) end of 5th year = $\overline{5}$ 57500 Obviously, the depreciated values for an AP with First term $a_1 = (62500 - x)$ and Common difference = $d = (-x)$ \therefore The depreciated value of the machine at the end of 5th year = $\bar{\tau}$ 57500 \therefore $a_5 = 57500$ Now, using $a_n = a + (n-1)d$, we have $a_5 = [62500 - x] + (5 - 1) (-x)$ $= 57500$ \Rightarrow 62500 – *x* – 4*x* = 57500 ⇒ $-5x = -62500 + 57500 = -5000$ \Rightarrow $x = \frac{-50}{-}$ $\frac{5000}{-5}$ = ₹ 1000 Again, $a_{15} = a + (n-1)d$ $a_{15} = (62500 - x) + (15 - 1) (-x)$ $= (62500 - 1000) + 14 \times (-1000)$ $= 61500 - 14000$ $= 47500$ Thus, the value of the machine after 15 years = $\bar{\tau}$ 47500 **3.** $a_3 = 600$ $a_7 = 700$ $a + 2d = 600$... (1) $a + 6d = 700$... (2) Subtract eq. (2) from eq. (1) we obtain $a + 2d = 600$ $-a + (-6d) = -700$ $-4d = -100$ $d = 25$ Putting the value of *d* in eq. (1) we get $a + 2 \times 25 = 600$ $a = 550$ (*i*) Production in first year = $a = 550$ (*ii*) $a_{10} = a + (10 - 1)d$ $= 550 + (10 - 1)25$ $= 550 + 9 \times 25$ $= 550 + 225$ = **775** (*iii*) $S_7 = \frac{7}{2} [2a + (7 - 1) d]$ $=\frac{7}{2}$ [1100 + 6 × 25]

$$
= \frac{7}{2} [1100 + 150]
$$

$$
= \frac{7}{2} \times 1250 = 4375
$$

4. The distances 60 m, 54 m, 48 m, … climbed during 1st minute, 2nd minute, 3rd minute, … respectively form an AP with

$$
a = 60
$$
 m, $d = 54 - 60 = -6$

(*i*) Distance covered (climbed) during 5th minute = a_5

Now using
$$
a_n = a + (n-1)d
$$
, we have

$$
a_5 = 60 + (5-1) \times (-6)
$$

$$
= 60 - 24 = 36
$$

Thus, the boy will climb **36 m** in 5th minute.

(*ii*) The total distance climbed in 5 minutes is given by S_5 .

Now, using
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
, we get
\n
$$
S_5 = \frac{5}{2} [2(60) + (5-1) \times (-6)]
$$
\n
$$
= \frac{5}{2} \times [2 \times (60) + 4 \times (-6)]
$$
\n
$$
= \frac{5}{2} \times 2[60 - 12]
$$
\n
$$
= 5 \times 48 = 240
$$

Thus, total distance climbed in 5 minutes = **240 m**

5. The distances covered 20 m, 18 m, 16 m … during 1st minute, 2nd minute, 3rd second … respectively, form an AP with

$$
a =
$$
 first term = 20
 $d =$ common difference = 18 – 20 = –2

(*i*) The distances climbed during 10th minute is a_{10} .

Now using
$$
a = a + (n - 1)d
$$
, we have
\n
$$
a_{10} = 20 + (10 - 1) \times (-2)
$$
\n
$$
= 20 + [9 \times (-2)] = 20 + (-18)
$$
\n
$$
= 20 - 18 = 2
$$

Thus, distance climbed during 10 minute = **2 m**

 (*ii*) Total distance covered in 10 minutes will be given by S_{10} .

$$
\therefore \text{ Using } S_n = \frac{n}{2} [(2a) + (n-1)d], \text{ we have}
$$
\n
$$
S_{10} = \frac{10}{2} [2(20) + (10 - 1) \times (-2)]
$$
\n
$$
= \frac{10}{2} [2 \times 20 + 9 \times (-2)]
$$
\n
$$
= \frac{10}{2} \times 2[20 - 9]
$$
\n
$$
= 10 \times 11 = 110
$$

Hence, distance covered in 10 minutes = **110 m**

6. Let the face value of the bonds bought in first year = $\bar{\tau}$ *x* The face value of bonds increase every year uniformly by a fixed amount of $\bar{\bar{\tau}}$ 500. Therefore, they form an AP, i.e. *x*, (*x* + 500), [*x* + 2(500)], … are in AP with

 $a =$ First term $= x$

$d =$ Common difference = 500

 \therefore Total value of the bonds after 10 years is $\bar{\tau}$ 72500

$$
\therefore \qquad \text{Using } S_n = \frac{n}{2} [2a + (n-1)d], \text{ we have}
$$
\n
$$
S_{10} = \frac{10}{2} [2 \times x + (10 - 1) \times 500] = 72500
$$

$$
\Rightarrow 2x + 9 \times 500 = 72500 \times \frac{2}{10} = 14500
$$

$$
\Rightarrow \qquad 2x + 4500 = 14500
$$

$$
\Rightarrow \qquad \qquad 2x = 14500 - 4500
$$

$$
\Rightarrow \qquad 2x = 10000 \text{ or } x = \frac{10000}{2} = 5000
$$

Thus, the face value of the bond in the first year is \bar{z} **5000**.

7. Let the number of visitors on 1st Nov. be *x*

Number of visitors on Nov. 30 = 6150

 \therefore Number of visitor is increasing uniformly with a constant number 10 daily.

 ∴ No. of visitors on 1st day = *x*

No. of visitors on 2nd day = $x + 10$

No. of visitors on 3rd day = $x + 10 + 10 = x + 20$

$$
= x + (2 \times 10) = x + 20
$$

No. of visitors on 4th day = $x + (3 \times 10) = x + 30$

 \therefore *x*, (*x* + 10), (*x* + 20), (*x* + 30), ... up to 30 terms form on AP with

First term $= a = x$

Common difference $= d = 10$

$$
\therefore \qquad n = 30 \text{ and } S_n = 6150
$$

∴ Using $S_n = \frac{n}{2} [2a + (n-1)d]$, we get $S_{30} = \frac{30}{2} [2x + (30 - 1) \times 10] = 6150$

$$
\Rightarrow \qquad 15[2x + 29 \times 10] = 6150
$$

$$
\Rightarrow \qquad 15[2x + 290] = 6150
$$

$$
\Rightarrow \qquad \qquad 2x + 290 = \frac{6150}{15} = 410
$$

$$
\Rightarrow \qquad \qquad 2x = 410 - 290 = 120
$$

$$
\Rightarrow \qquad \qquad x = \frac{120}{2} = 60
$$

Thus, the number of visitors on 1st Nov. = **60**

8. Money collected on 1st day = $\bar{\mathfrak{r}}$ 8100

Money collected on 2nd day = ₹ 8100 – ₹ 150 = ₹ 7950 Money collected on 4th day = ₹ 7800 – ₹ 150 = ₹ 7650 Money collected on *n*th day = $\bar{\tau}$ 1650 – $\bar{\tau}$ 150 = $\bar{\tau}$ 1500 $\text{We note that money } ₹ 8100, ₹ 7950, ₹ 7800 ... ₹ 1500$ collected from the sale of tickets on 1st, 2nd, 3rd, …, *n*th days respectively, form an AP with

These every year uniformly by
\nTherefore, they form an AP, i.e.

\nare in AP with

\n
$$
l = ₹ 1500
$$

\n© Ratna Saqa

Note that, the sale of tickets on *n*th day is \bar{z} 1500 because, the show in profitable so long as the sale of tickets for the day fetches more than $\bar{\tau}$ 1500.

∴
$$
a_n = l = 1500
$$

\nNow, using $a_n = l = a + (n - 1)d$, we get
\n
$$
8100 + [(n - 1) (-150)] = 1500
$$
\n⇒
$$
8100 + [-150n + 150] = 1500
$$
\n⇒
$$
-150n = 1500 - 150 - 8100
$$
\n=
$$
1500 - 8250
$$
\n⇒
$$
-150n = -6750
$$
\n⇒
$$
n = \frac{-6750}{-150} = 45
$$

Hence, the show ceases to be profitable on **45th day**.

9. Here, the daily saving form an AP, as the savings increase uniformly by a fixed amount of $\bar{\tau}$ 1 each day.

We have

First term = $a = 1$, common difference = $d = 1$

and
$$
n = 144
$$
 (days)

Now, the total savings in 144 days will be $S₁₄₄$

Using $S_n = \frac{n}{2} \{2a + (n-1)d\}$

$$
\Rightarrow \qquad S_{144} = \frac{144}{2} \{2 \times 1 + (144 - 1) \times 1\}
$$

$$
= 72\{2 + 143\} = 72 \times 145 = 10440
$$

Hence, the total savings in 144 days

$=$ $\overline{5}$ 10440

- **10.** \therefore The monthly increment of $\bar{\tau}$ 100 is fixed.
	- ∴ Here annual salaries form an AP with

First term = $a = ₹ 8000 \times 12 = ₹ 96000$

Common difference = $d = ₹ 100 \times 12 = ₹ 1200$

 Since, total earnings from salary in 10 years is given by $\mathrm{S}_{10}.$

$$
\therefore \text{ Using } S_n = \frac{n}{2} [2a + (n-1)d], \text{ we have}
$$
\n
$$
S_{10} = \frac{10}{2} [2 \times 96000 + (10 - 1) \times 1200]
$$
\n
$$
= 5[2 \times 96000 + 9 \times 1200]
$$
\n
$$
= 5[192000 + 10800]
$$
\n
$$
= 5 \times 202800 = 1014000
$$

Thus, the woman will earn $\bar{\tau}$ 1014000 in a period of 10 years.

11. The savings ₹ 200, ₹ 250, ₹ 300, ₹ 350, ... form an AP with

> $a =$ first term $= 200$, $d =$ common difference = 50

 Thus, total savings in 12 months of the year 2019 is given by S_{12} .

Using S_n

$$
_{n} = \frac{n}{2} [2a + (n-1)d]
$$
, we have

$$
S_{12} = \frac{12}{2} [2 \times 200 + (12 - 1) \times 50]
$$

= 6[400 + 11 \times 50]
= 6 \times [400 + 550] = 6 \times 950
= 5700

Thus, the savings in the year $2019 = \text{\textless} 5700$.

12 We see that the numbers 32, 36, 40, 44, … form an AP with the first term, $a = 32$ and the common difference, $d = 36 - 32 = 4.$

If *n* be the number of terms of this AP and S_n , the sum of the first *n* terms of the AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 32 + (n-1)4]$
= $\frac{n}{2} [64 + 4n - 4]$
= $\frac{n}{2} (4n + 60)$
= $n(2n + 30)$...(1)

If the sum is 2000, then $S_n = 2000$

∴ From (1),

$$
2n^2 + 30n - 2000 = 0
$$

$$
\implies n^2 + 15n - 1000 = 0
$$

Solving this quadratic equation in *n*, we get

$$
n = \frac{-15 \pm \sqrt{15^2 + 4 \times 1000}}{2}
$$

=
$$
\frac{-15 \pm \sqrt{225 \times 4000}}{2}
$$

=
$$
\frac{-15 \pm \sqrt{4225}}{2}
$$

=
$$
\frac{-15 \pm 65}{2}
$$

=
$$
\frac{50}{2}, -\frac{80}{2}
$$

= 25, -40

Since *n* is a natural number, we reject $n = -40$

$$
\therefore \hspace{1.6cm} n=25
$$

 Hence, the required number of months in which she saves `2000 in **25 months**.

13. Let the value of the first prize be \bar{x} *x*. Then the values of 3 successive prizes are ₹(*x* – 20), ₹(*x* – 40) and ₹(*x* – 60). Now, the numbers x , $x - 20$, $x - 40$, form an AP, with the first term, *a* = *x* and the common difference, *d* $= x - 20 - x = -20.$

If
$$
S_n
$$
 be the sum of the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2x - (n-1)20]$
= $n(x - 10n + 10)$...(1)

© Ratna Sagar

39Arithmetic Progressions Arithmetic Progressions $\overline{}$ 39 When $n = 4$, then S_n is given to be 280.

$$
280 = 4 (x - 40 + 10)
$$

\n
$$
\Rightarrow \qquad x - 30 = 70
$$

\n
$$
\Rightarrow \qquad x = 100
$$

 ∴ Required values of 4 prizes will be `**100,** `**80,** `**60** and `**40**.

14. Resham's savings in successive months will be ₹450, ₹470, $\bar{x}490, \bar{x}510, \ldots$ for 12 months.

 Now, the numbers 450, 470, 490, … form an AP with first term, $a = 450$ and the common difference, $d = 470 - 450$ $= 20.$

If S_n be the sum of the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 450 + (n-1)20]$
= $n(450 + 10n - 10)$
= $n(10n + 440)$...(1)
If $n = 12$, then from (1), we have

If $n = 12$, then from (1) ,

$$
S_{12} = 12(10 \times 12 + 440)
$$

= 12(120 + 440)
= 12 \times 560
= 6720

 ∴ Required total amount of Resham's savings for 12 months is $\overline{6}720$. Since this amount is $\overline{6}500$, hence, she will be able to send her daughter to the school next year.

15. The child's daily savings of five-rupee coins will be 1 coin, 2 coins, 3 coins, 4 coins,… Now, the numbers 1, 2, 3, 4… form an AP with the first term, $a = 1$ and the common difference, $d = 2 - 1 = 1$. If S_n be the sum of the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} \Big[2a + (n-1)d \Big]
$$

$$
= \frac{n}{2} \Big[2 + (n-1) \Big]
$$

$$
= \frac{n(n+1)}{2} \qquad \qquad ...(1)
$$

When the piggy bank holds a total of 190 coins, then

$$
S_n = 190
$$

∴ From (1), we have

$$
\frac{n(n+1)}{2} = 190
$$

 \implies $n^2 + n - 380 = 0$

This is a quadratic solution.

∴ Its solutions are

$$
n = \frac{-1 \pm \sqrt{1^2 + 4 \times 380}}{2}
$$

$$
= -1 \pm \sqrt{1 + 1520}
$$

$$
= \frac{-1 \pm \sqrt{1521}}{2}
$$

$$
= \frac{-1 \pm 39}{2}
$$

$$
= \frac{38}{2}, -\frac{40}{2}
$$

$$
= 19, -20
$$

Since *n* is a natural number, we reject $n = -20$.

∴ *n* = 19

∴ Required number of days = **19 days**

Also, the total amount of her savings = ₹190
$$
\times
$$
 5 = ₹950

16.
$$
a = 8
$$
, $d = \frac{4}{12} = \frac{1}{3}$, $S_n = 168$
\n
$$
S_n = \frac{n}{2} [2a + (n-1) d]
$$
\n
$$
\Rightarrow \qquad 168 = \frac{n}{2} [16 + (n-1) \frac{1}{3}]
$$
\n
$$
\Rightarrow \qquad 168 = 8n + \frac{n(n-1)}{6}
$$
\n
$$
\Rightarrow \qquad 1008 = 48n + n^2 - n
$$
\n
$$
\Rightarrow \qquad n^2 + 47n - 1008 = 0
$$
\n
$$
\Rightarrow \qquad n = \frac{-47 \pm \sqrt{2209 + 4032}}{2}
$$
\n
$$
= \frac{-47 \pm \sqrt{6241}}{2}
$$
\n
$$
= \frac{-47 \pm 79}{2}
$$
\n
$$
\Rightarrow \qquad n = 16, -63
$$

 Since number of students cannot be negative, hence we will neglect –63.

$$
n = 16
$$

\n
$$
\therefore \qquad a_{16} = a + (16 - 1)d
$$

\n
$$
= 8 + 15 \times \frac{1}{3} = 13
$$

Age of the eldest participant = **13 years**

17. Number of sides of the polygon = 31

Let the smallest side $= x$ \therefore The largest side = 16 × (smallest side) = 16*x*

 \therefore The lengths of sides of the polygon starting from the smallest are in AP.

 \therefore The smallest side = First term of the AP = *x* The largest side $=$ 31st side of AP

$$
\Rightarrow a_{31} = 16x
$$

Perimeter of the polygon = Sum of 31 terms of AF

 $= 527$

$$
f_{\rm{max}}
$$

$$
\Rightarrow \qquad \qquad S_{31} = 527
$$

Now using $S_n =$

Now using
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

$$
S_{31} = \frac{31}{2} [2 \times x + (31 - 1)d] = 527
$$

$$
\frac{31}{2}[2x + 30d] = 527
$$

© Ratna Sagar

⇒

$$
\Rightarrow \qquad 31[x + 15d] = 527
$$

$$
\Rightarrow \qquad x + 15d = \frac{527}{31} = 17 \qquad \qquad \dots (1)
$$

Also $a_n = a + (n-1)d$ $a_{31} = x + (31 - 1)d = 16x$ $x + 30d = 16x$ \Rightarrow $x + 30d - 16x = 0$ \Rightarrow $-15x + 30d = 0$ \Rightarrow $-x + 2d = 0$ …(2)

Solving (1) and (2), we get

$$
d = 1
$$
 and $a = 2 \Rightarrow x = 2$

\therefore **Smallest side** = 2 cm

Common difference = 1 cm

18. Numbers of trees that each section of each class will plant are 2, 4, 6, 8, 10,…24 for class I to XII. Now, these numbers form an AP, with the first term, $a = 2$ and the common difference, $d = 4 - 2 = 2$. If *n* be the number of terms of this AP and if S_n be the first *n* terms of this AP, then

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{n}{2} [2 \times 2 + (n-1)2]$
= $n(2 + n - 1)$
= $n(n + 1)$...(1)

When $n = 12$ for 12 classes, then from (1)

 $S_{12} = 12 \times 13 = 156$

 ∴ Required number of trees planted by the students for 2 sections of each class = 156 × 2 = **312**

 Value: Concern for the pollution of the environment and its remedial measures.

For Standard Level

19. Let the 2nd cyclist overtakes the first cyclist after '*t*' hours. Then, the two cyclists travel the same distance in '*t*' hours.

 ∴ Distance travelled by the 1st cyclist in '*t*' hours

 $= 11 \times t$ km

 Distance travelled by 1st cyclist in '*t*' hours = 11 *t* km But the distance covered by 2nd cyclist in '*t*' hours

= Sum of *t* terms of an AP with first term,

$$
a = 10 \text{ and common difference } (d) = \frac{1}{3}
$$
\n
$$
= \frac{t}{2} \left[2 \times 10 + (t - 1) \frac{1}{3} \right]
$$
\n
$$
\left[\text{using, } S_n = \frac{n}{2} [2a + (n - 2)d] \right]
$$
\n
$$
= \frac{t}{2} \left[20 - \frac{1}{3} + \frac{1}{3}t \right] = \frac{t}{2} \left[\frac{59}{3} + \frac{1}{3}t \right]
$$
\n
$$
\therefore \qquad 11t = \frac{t}{2} \left[\frac{59}{3} + \frac{1}{3}t \right]
$$
\n
$$
\Rightarrow \qquad 11t = \frac{59t}{6} + \frac{1}{6}t^2
$$

$$
\Rightarrow \frac{59t}{6} - 11t + \frac{1}{6}t^2 = 0
$$

$$
\Rightarrow \frac{1}{6}t^2 - \frac{7}{6}t = 0
$$

$$
\Rightarrow t\left[\frac{t}{6} - \frac{7}{6}\right] = 0
$$

$$
\therefore \text{ Either } t = 0 \qquad \text{[Not required]}
$$

or
$$
\frac{t}{6} - \frac{7}{6} = 0
$$

$$
\Rightarrow \frac{t}{6} = \frac{7}{6}
$$

$$
\Rightarrow t = \frac{7}{6} \times 6 = 7
$$

 Thus, second cyclist will overtake the first one after **7 hours**.

20. When the police starts running, the thief is 100 m apart. Speed for 1st minute is 60 m/minute and increases by 5 m/minute.

AP: 10, 15, ...
\n
$$
a = 10
$$
 m/minute (distance reduced in 1st min)
\n $d = 5$
\nS_n = 100
\n
$$
S_n = \frac{n}{2} [2a + (n-1) d]
$$
\n
$$
\Rightarrow 100 = \frac{n}{2} [20 + (n-1) 5]
$$
\n
$$
\Rightarrow 200 = n [20 + 5n - 5]
$$

⇒ $200 = n [15 + 5n]$ \Rightarrow 200 = $15n + 5n^2$ \Rightarrow $n^2 + 3n - 40 = 0$ \implies *n* (*n* – 5) + 8(*n* – 5) = 0 ⇒ $(n + 8) (n - 5) = 0$

 \Rightarrow $n = -8$ $n = 5$

 Since time cannot be negative, hence we will reject – 8. Policeman will catch the thief in **5 minutes**.

CHECK YOUR UNDERSTANDING

MULTIPLE-CHOICE QUESTIONS

For Basic and Standard Levels

1. (*c*) $\sqrt{162}$ $\sqrt{18} = \sqrt{3^2 \times 2} = 3\sqrt{2}$ $\sqrt{50} = \sqrt{5^2 \times 2} = 5\sqrt{2}$ \Rightarrow *d* = $5\sqrt{2} - 3\sqrt{2}$ = $2\sqrt{2}$ Now use $a_4 = a + (n - 1)d$ where $n = 4$ **2.** (*b*) **5.5** Use: $a_n = a + (n-1)d$

41Arithmetic Progressions

where $a = -1$, $d = -1.5 - (-1) = -0.5$ and $n = 10$ **3.** (*d*) **10 – 3***n* Using $a = 7$ $d = 4 - 7 = -3$ i.e. $a + (n-1)d \implies 7 + (n-1)(-3)$ \implies 7 + 3 – 3*n* or (10 – 3*n*) **4.** (*c*) **20** $a_{11} = (-5) + (11 - 1) \left(\frac{5}{2}\right)$ ſ $\left(\frac{5}{2}\right) \quad \left(\because d = -\frac{5}{2} - (-5) = \frac{5}{2}\right)$ $=-5 + 25 = 20$ **5.** (*c*) **1331** $a_n = (-1)^{n-1} \times n^3$ $\Rightarrow a_{11} = (-1)^{10} \times 11^3 = 1 \times 11 \times 11 \times 11 = 1331$ **6.** (*b*) **74** $d = 4 - (-3) = 4 + 3 = 7$ $a_{12} = -3 + 11(7) = -3 + 77 = 74$ **7.** (*c*) **78** $a_{18} = a + 17d = -7 + 17 \times 5 = -7 + 85 = 78$ **8.** (*b*) **8** $a_n = a + (n-1)d$ \Rightarrow *a* + (31 – 1) $\Big(-\Big)$ $\left(-\frac{1}{4}\right) = \frac{1}{2}$ \Rightarrow $a + 30 \left(-\frac{1}{4}\right)$ $\left(-\frac{1}{4}\right) = \frac{1}{2}$ ⇒ $a - \frac{15}{2} = \frac{1}{2}$ or $a = \frac{1}{2}$ 15 $+\frac{16}{2}$ = 8 **9.** (*b*) **–2.5** $a_n = a + (n-1)d$ $= -2.5 + 0 = -2.5$ [: *d* = 0 $\Rightarrow (n-1)d = 0$] **10.** (*b*) **83** From end, $a_7 = 107 + (7 - 1) \times (-4) = 107 - 24 = 83$ [Note that first term equal to last term and *d* is taken as negative] **11.** (*d*) **20** $a_{15} = a + 14d$ and $a_{11} = a + 10d$
 $a_{15} = a + 14 \times 5$ $a_{11} = a + 10 \times 5$ $\Rightarrow a_{15} = a + 14 \times 5$
= $a + 70$ $= a + 50$ $\therefore a_{15} - a_{11} = (a + 70) - (a + 50) = 20$ **12.** (*b*) **–4** $a_{20} - a_{12} = a + 19d - (a + 11d) = -32$ $19d - 11d = -32$ $8d = -32$ $d = \frac{-32}{8} = -4$ 13. (c) **an AP** with $d = 4$ \therefore $-1 - (-5) = -1 + 5 = 4$ $d = 4$
3 – (–1) = 3 + 1 = 4 $d = 4$ **14.** (*b*) **0.3, 0.55, 0.80, 1.05** AP [0.30 + 0], [0.30 + 0.25], [0.30 + 2(0.25)],

 $(0.30 + 3(0.25))$... = [0.30], [0.55], [0.80], [1.05] ... **15.** (*b*) **28** $n = 29$ a_{29} = First term + $(n - 1)d$ $=$ First term $+ (29 - 1)d$ = First term + 28*d* \Rightarrow *d* = 28 **16.** (*d*) **37** $a_n = 111$
 \implies $3 + (n - 1)3 = 111$ $3 + (n - 1)\overline{3} = 111$ \Rightarrow $(n-1) = \frac{111-3}{3} = 36$ \therefore $n = 36 + 1 = 37$ **17.** (*a*) $k = 40$ k th term = a_k = 1000 = *x* $a + (k - 1)d = 1000$ $25 + (k - 1) 25 = 1000$ \Rightarrow $k - 1 = \frac{1000 - 25}{25} = 39$ \therefore $k = 39 + 1 = 40$ **18.** (*d*) **16** $S_n = \frac{n}{2}(a + l) = 400$ ⇒ $\frac{n}{2}$ (5 + 45) = 400 [⇒] *ⁿ* $\frac{n}{2} = \frac{400}{50} = 8$ $n = 16$ **19.** (*b*) **3**

$$
3(a_1) = a_4 \Rightarrow 3a = a + 3d \Rightarrow 2a = 3d \qquad ...(1)
$$

\n
$$
a_7 = 2(a_3) + 1 \Rightarrow a + 6d = 2(a + 2d) + 1
$$

\n
$$
\Rightarrow -a + 2d = 1 \qquad ...(2)
$$

Solving (1) and (2), we get *a* = 3

20. (c) -1
\n
$$
\frac{1-p}{p} - \frac{1}{p} = \frac{1-2p}{p} - \frac{1-p}{p}
$$
\n
$$
\Rightarrow \frac{1-p-1}{p} = \frac{1-2p-1+p}{p}
$$
\n21. (c) 30
\nTwo digits numbers divisible by 3 are
\n12, 15, 18, ..., 99
\nThey are in AP with $a = 12$, $d = 3$ and $l = 99$
\n $a_n = a + (n-1)d = 99$
\n $\Rightarrow 12 + (n-1)3 = 99$
\n $n - 1 = \frac{99-12}{3} = 29$
\n $\Rightarrow n = 29 + 1 = 30$
\n22. (b) $S_n - S_{n-1}$
\nSum of *n* terms = S_n

Sum of $(n - 1)$ term = S_{n-1}

© Ratna Sagar

21. (*c*) **30**

42Arithmetic Progressions Arithmetic Progressions $\overline{}$ 42

 \therefore *n*th term = [Sum of *n* terms] – [Sum of (*n* – 1) terms] $=[S_n] - [S_{n-1}]$ **23.** (*b*) $\frac{5}{2}$ **9 2 13 2** $\frac{9}{2}, \frac{13}{2}, \frac{17}{2}$ $a_n = \frac{4n+1}{2}$ *n* + ⇒ $a_1 = \frac{4+1}{2} = \frac{5}{2}, a_2 = \frac{4(2)+1}{2} = \frac{9}{2}$ Similarly, $a_3 = \frac{13}{2}$ and $a_4 = \frac{17}{2}$ **24.** (*c*) **6** $a_n = 6n + 1$ and $d = a_2 - a_1$ \therefore $a_1 = 6 + 2 = 8$ $a_2 = 6(2) + 2 = 14$ $d = 14 - 8 = +6$ **25.** (*b*) **3** $(2k + 1) - (2k - 1) = (2k - 1) - (k) =$ common diff. \Rightarrow 2*k* + 1 – 2*k* + 1 = 2*k* – 1 – *k* \Rightarrow 2 = k – 1 \Rightarrow $k = 3$ **26.** (*b*) **–2, –2, –2, –2** $a_1 = a$ $a_2 = a + d$ $a_3 = a + 2d$ $a_4 = a + 3d$ \Rightarrow $a_1 = -2$ $a_2 = a + d = -2 + 0 = -2$ $a_3 = -2 + 2d = -2 + 0 = -2$ and $a + 3d = -2 + 0 = -2$ **27.** (*c*) **Gauss 28.** (*c*) **0** $5(a_5) = 10(a_{10})$ \Rightarrow $a_5 = 2(a_{10})$ \therefore $a + 4d = 2(a + 9d)$ \Rightarrow $a + 14d = 0$ …(1) $a_{15} = a + (15 - 1)d$ \Rightarrow $a + 14d = a_{15}$ \Rightarrow *a*₁₅ = 0 [From (1)] **29.** (*c*) **25th term** $a = 19, d = \left(18\frac{1}{5}\right)$ ſ $\left(18\frac{1}{5}\right) - 19 = \frac{-4}{5}$ Let a_n be the first negative term

 \therefore $a_n = 0$ \Rightarrow $[a + (n-1)d] < 0$ \Rightarrow $\left[19 + (n-1)\left(-\frac{4}{5}\right)\right]$ $\left[19 + (n-1)\left(-\frac{4}{5}\right)\right] < 0$ \Rightarrow $\left[19 + \frac{4}{5}\right]$ 4 $\left[19 + \frac{4}{5} - \frac{4}{5}n\right] < 0$

 ⇒ 99 $\frac{39}{5} < \frac{4}{5}$ $\frac{4}{5}n$ or $\frac{4}{5}n > \frac{99}{5}$ 5 \Rightarrow $n > \frac{99}{5}$ 5 5 $\times\frac{1}{4}$ or $n > \frac{99}{4}$ or $n \ge 24\frac{3}{4}$ \therefore Natural number next to $24\frac{3}{4}$ is 25. **30.** (*b*) **2, 7, 12, ...** $a_7 = 32$ \Rightarrow $a + 6d = 32$ $a_{13} = 62$ $d = 5$ and $a = 2$ \Rightarrow $a + 12d = 62$ \therefore AP is 2, (2 + 5), (2 + 10), (2 + 15) ... i.e. 2, 7, 12, ... **31.** (*c*) **25th term** AP 3, 10, 17, … ⇒ $a = 3, d = 10 - 3 = 7$ Let $a_n = 84 + a_{13}$ \therefore 3 + $(n - 1)7 = 84 + 3 + (13 - 1) \times 7$ \Rightarrow $-4 + 7n = 84 + 3 + 84$ \Rightarrow $7n = 84 + 3 + 84 + 4 = 175$ \Rightarrow $n = \frac{175}{7} = 25$ **32.** (*b*) **55** $a = 3, d = 7 - 3 = 4$ $\therefore S_5 = \frac{5}{2} [2(3) + (5 - 1)4] = \frac{5}{2} [22] = 55$ **33.** (*c*) **676** $a = 1, d = 1$ \Rightarrow S₂₆ = $\frac{26}{2}$ [2(1) + (26 – 1)2] = 13(2 + 50) $= 13 \times 52 = 676$ **34.** (*b*) **4** a_n ['] from the end is determined by $a_n = l + (n - 1) (-d)$ where $l =$ last term and $d =$ common diff. \therefore *a*₈ from the end = 119 + (8 – 1) (-*d*) = 91 \Rightarrow 119 – 7*d* = 91 or $-7d = 91 - 119$ ⇒ *d* = $\frac{-2}{-}$ 28 $\frac{1}{7}$ = 4 **35.** (*d*) **6** $S_n = 3n^2 + 4n$ \therefore $S_1 = 3(1) + 4(1) = 7 = a$ $S_2 = 3(4) + 4(2) = 20 = a_1 + a_2$ \Rightarrow $a_2 = 20 - a = 20 - 7 = 13$ Now $d = a_2 - a_1 = 13 - 7 = 6$

© Ratna Sagar

Arithmetic Progressions **43**Arithmetic Progressions $\overline{}$ 43

36. (b)
$$
p = 65
$$

\t $a = 3$ and $d = 15 - 3 = 12$
\t $a_{50} = a + 49d$ and $a_p = a + (p - 1)d$
\t $a_p - a_5 = 180$
\t $\Rightarrow [a + (p - 1) \times 12] - [a + 49 \times 12] = 180$
\t $p = 65$
37. (b) $\frac{1}{4}$
\t $a_{19} = a_{12} + \frac{7}{4}$
\t $\Rightarrow a + 18d = a + 11d + \frac{7}{4}$
\t $\therefore (a + 18d) - (a + 11d + \frac{7}{4}) = 0$
\t $\Rightarrow 18d - 11d = \frac{7}{4}$
\t $\Rightarrow 7d = \frac{7}{4}$ or $d = \frac{1}{4}$
38. (d) $n = 20$
\t $a_1 = 21 \Rightarrow$ First term = 21
\t $a_2 = 42$
\t $\Rightarrow a + d = 42$ or $d = 42 - 21 = 21$
\tNow, $a_n = 21 + (n - 1) \times 21 = 420$
\t $\text{or } (n - 1) = \frac{420 - 21}{21}$
\t $\Rightarrow n - 1 = \frac{399}{21} = 19$
\t $\therefore n = 19 + 1 = 20$
39. (d) $5n - 1$
\t $\therefore S_n = \frac{5n^2}{2} + \frac{3n}{2}$
\t $\therefore S_1 = \frac{5(1)^2}{2} + \frac{3(1)}{2} = \frac{8}{2} = 4$
\t \Rightarrow First term $a = 4$
\t $S_2 = \frac{5(2)^2}{2} + \frac{3(2)}{2} = 10 + 3 = 13$
\t $\therefore S_2 = a_1 + a_2$
\t $\Rightarrow a_2 = 13 - 4 = 9$
\t $\therefore d = 9 -$

Subtracting (1) from (2), we get $d = 5$ From (1), $a + 25 = 12$ ⇒ *a* = –13 Now, $a_3 = a + 2d = -13 + 2(5)$ \Rightarrow $a_3 = -3$ **For Standard Level 41.** (*d*) **5** AP with $a = 8$ $a_{30} = 8 + 29d$ AP with $a = 3$ $a_{30} = 3 + 29d$ ∵ *'d'* for these AP's is the same \therefore $[8 + 29d] - [3 + 29d] = 8 - 3 = 5$ 42. (*c*) $\frac{b-a}{a}$ *n* − − **1** \therefore $a_n = b$: $a + (n-1)d = b$ \Rightarrow $(n-1)d = b - a$ \Rightarrow $d = \frac{b-a}{n-1}$ − − 1 **43.** (*b*) **735** $a_2 = a + d = 8$ $a_4 = a + 3d = 14$ $d = 3$ and $a = 5$ Now, using $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{21} = \frac{21}{2} [2(5) + (21 - 1)3]$ $=\frac{21}{2}[10 + 60] = \frac{21}{2} \times 70 = 735$ **44.** (*d*) **2, 6, 10, 14** Four numbers in AP are $(a-3-d)$, $(a-d)$, $(a+d)$ and (*a* + 3*d*) :. $(a-3d) + (a-d) + (a+d) + (a+3d) = 32$ \Rightarrow $a = 8$ Also $(a - 3d) = \frac{1}{7} (a + 3d)$ \Rightarrow 7*a* – 21*d* = *a* + 3*d* \Rightarrow *d* = 2 \therefore AP $[8 - 3(2)]$, $[8 - 2]$, $[8 + 2]$, $[8 + 3(2)]$ \Rightarrow 2, 6, 10, 14 45. (*b*) $k = 0, 2$ $a_1 = (4k + 8)$, $a_2 = 2k^2 + 3k + 6$ and $a_3 = 3k^2 + 4k + 4$ For an AP $a_2 - a_1 = a_3 - a_2$ $⇒$ $[(2k² + 3k + 6) - (4k + 8)]$ $= [(3k^2 + 4k + 4) - (2k^2 + 3k + 6)]$ $\Rightarrow k = 0$ or $k = 2$

$$
d = \frac{5}{4},
$$

\n $a_9 = a + 8d = -6$
\n $\Rightarrow a + 8\left(\frac{5}{4}\right) = -6$
\n $\Rightarrow a = -16$
\nNow, $a_{25} = a + 24d = (-16) + 24\left(\frac{5}{4}\right) = -16 + 30 = 14$
\n47. (b) 10
\n $a_1 = a = 4$
\n $a + d = 7 \Rightarrow d = 7 - 4 = 3$
\n $a_n = 31 \Rightarrow a + (n - 1)d = 31$
\n $\Rightarrow 4 + (n - 1)3 = 31$
\n $\Rightarrow n = 10$
\n48. (b) 3 : 1
\n $\frac{a_{18}}{a_{11}} = \frac{a + 17d}{a + 10d} = \frac{3}{2}$
\n $\Rightarrow a = 4d$
\n $\frac{a_{21}}{a_5} = \frac{a + 20d}{a + 4d} = \frac{4d + 20d}{4d + 4d} = \frac{24d}{8d} = \frac{3}{1}$
\n $\Rightarrow a_{21} : a_5 = 3 : 1$
\n49. (c) $\frac{\sqrt{3} n(n + 1)}{2}$
\n $a = \sqrt{3}, d = \sqrt{12} - \sqrt{3} = 2\sqrt{3} - \sqrt{3} = \sqrt{3}$
\n $S_n = \frac{n}{2}[2(\sqrt{3}) + (n - 1)\sqrt{3}]$
\n $= n\sqrt{3}[\frac{2}{2} + \frac{n - 1}{2}] = \sqrt{3}.n(1 + \frac{n - 1}{2})$
\n $= \sqrt{3}.n(\frac{2 + n - 1}{2}) = \frac{\sqrt{3}n(n + 1)}{2}$

50. (*b*) **9**

Let three consecutive terms of an AP be $(a - d)$, *a,* (*a* + *d*)

$$
(a-d) + a + (a+d) = 21
$$
\n
$$
\Rightarrow \qquad a = 7
$$
\n
$$
(a-d) (a+d) = 45
$$
\n
$$
\Rightarrow \qquad a^2 - d^2 = 45
$$
\n
$$
a^2 - d^2 = 45 \qquad \Rightarrow \qquad d^2 = 4
$$
\n
$$
\Rightarrow \qquad d = 2 \qquad \text{(Reject } d = -2\text{)}
$$
\nNow, $a_3 = a + d = 2 + 7 = 9$

51. (*b*) $n(n + 2)$

 $a_n = 2n + 1$ $a_1 = 2(1) + 1 = 3$ = First term $a_2 = 2(2) + 1 = 5 =$ Second term $d = a_2 - a_1 = 5 - 3 = 2$

Now $S_n = \frac{n}{2} [2(3) + (n-1) \times 2]$ $= n[3 + n - 1] = n(n + 2)$ **52.** (*d*) **2475** Two digit odd numbers are 11, 13, 15, …, 99, and they are in AP with $a = 11$, $d = 2$ and $l = 99$ $a_n = a + (n-1)d = 99$ \Rightarrow *n* = 45 Now, $S_{45} = \frac{45}{2} [11 + 99] = 45 \times \frac{110}{2} = 45 \times 55 = 2475$ **53.** (*b*) **1665** All positive 2-digit numbers divisible by 3 are 12, 15, 18, 21, …, 99 such that $a = 12$, $d = 3$ and $l = 99$ $a_n = a + (n - 1)d = 12 + (n - 1)3 = 99$ \implies *n* = 30 Now, $S_{30} = \frac{30}{2} [12 + 99] = 15 \times 11 = 1665$ **54.** (*b*) **3774** $a + d = 2$ $a + 3d = 8$ \Rightarrow *d* = 3 and *a* = -1 Using $S_n = \frac{n}{2} [2a + (n-1)d]$, $S_{51} = 3774$ **55.** (c) $\frac{5n-1}{2}$ *n* − $a_1 = \left(3 - \frac{1}{n}\right) = a$ $a_2 = \left(3 - \frac{2}{n}\right)$ $\Rightarrow d = a_2 - a_1 = \left(3 - \frac{2}{n}\right) - \left(3 - \frac{1}{n}\right) = -\frac{1}{n}$ Now, using $S_n = \frac{n}{2} [2a + (n-1)d]$, $S_n = \frac{n}{2} \left[2 \left(3 - \frac{1}{n} \right) + (n-1) \times \left(-\frac{1}{n} \right) \right]$ $=\frac{n}{2} \left[6 - \frac{2}{n} - 1 + \frac{1}{n} \right] = \frac{n}{2} \left[5 - \frac{1}{n} \right]$ $=\frac{5i}{2}$ 1 $\frac{n}{2} - \frac{1}{2} = \frac{5n-1}{2}$ *n* − **56.** (*a*) **–8930** $a = -5$, $d = -8 - (-5) = -3$, $l = (-230)$

© Ratna Sagar

$$
a = -5, d = -8 - (-5) = -3, l = (-230)
$$

\n
$$
\therefore \quad a_n = a + (n - 1)d = (-5) + (n - 1) (-3) = -230
$$

\n
$$
\Rightarrow n - 1 = \frac{-230 + 5}{-3} = 75
$$

45Arithmetic Progressions

Arithmeti

⇒
$$
n = 75 + 1 = 76
$$

\nNow, Using $S_n = \frac{n}{2}(a + l)$
\n $S_{76} = \frac{76}{2} [(-5) + (-230)]$
\n $= 38[-235] = -8930$
\n57. (c) 2
\n∴ $S_n = 3n^2 - n$
\n∴ $S_1 = 3(1)^2 - (1) = 3 - 1 = 2$
\nBut $S_1 = a =$ First term
\n∴ First term = 2
\n58. (d) n^2
\n $S_7 = 49$
\n⇒ $\frac{7}{2}[2a + 6d] = 49$
\n⇒ $a + 3d = 7$...(1)
\n $S_{17} = 289$
\n⇒ $\frac{17}{2}[2a + 16d] = 289$
\n⇒ $a + 8d = 17$...(2)
\nSolving (1) and (2),
\n $a = 1$ and $d = 2$
\n∴ $S_n = \frac{n}{2}[2(1) + (n - 1)2]$
\n $= n(1 + n - 1) = n \times n = n^2$
\n59. (b) 35
\nHere, $a = 5$, $d = 7 - 5 = 2$ and $S_n = 320$
\n $S_n = 320$ ⇒ $\frac{n}{2}[2(5) + (n - 1)2] = 320$
\n⇒ $n^2 + 4n - 320 = 0$
\nSolving it $n = 16$ or -20 $[n = -20$ rejected]
\nNow $a_{16} = a + (16 - 1)d$
\n $= 5 + 15 \times 2 = 35$
\n60. (d) $(a + k) + (n - 1)d$
\nNow first term = $a' = (a + k)$, Common diff. = d
\n∴ $a'_n = a' + (n - 1)d$
\n $= (a + k) + (n - 1)d$
\n $= (a + k) + (n - 1)d$
\n $= (a + k) + (n - 1)d$

62. (*c*) **2, 4, 6, 8** $a_n = 3 + \frac{2}{3}n$ $a_1 = 3 + \frac{2}{3}(1) = \frac{11}{3}$ $a_2 = 3 + \frac{2}{3}(2) = \frac{13}{3}$ \Rightarrow $d = \frac{13}{3}$ $-\frac{11}{3} = \frac{2}{3}$ $S_{24} = \frac{24}{2} \left[2 \left(\frac{11}{3} \right) + (24 - 1) \times \frac{2}{3} \right]$ ſ $2\left(\frac{11}{3}\right) + (24-1) \times$ $\left[2\left(\frac{11}{3} \right) + (24-1) \times \frac{2}{3} \right] = 24 \left[\frac{11}{3} \right]$ 23 $\left[\frac{11}{3} + \frac{23}{3}\right]$ $=24 \times \frac{34}{3} = 272$ **63.** (*c*) **2, 4, 6, 8** Let the four numbers in AP be $(a - 3d)$, $(a - d)$, (*a* + *d*) and (*a* + 3*d*) \therefore $a - 3d + a - d + a + d + a + 3d = 20$ \Rightarrow $a = 5$ …(1) Also $(a - 3d)^2 + (a - d)^2 + (a + d)^2 + (a + 3d)^2 = 120$ or $4a^2 + 20d^2 = 120$ \Rightarrow $a^2 + 5d^2 = 30$ …(2) From (1) and (2) $5d^2 = 30 - 25$ \Rightarrow 5*d*² = 5 \Rightarrow $d^2 = 1$ \Rightarrow *d* = ± 1 \therefore AP: (5 – 3), (5 – 1), (5 + 1), (5 + 3) or 2, 4, 6, 8, ... **64.** (*a*) **21, 22** $S_n = \frac{n}{2} [2(63) + (n-1) (-3)] = 693$

 \implies *n*[126 – 3*n* + 3] = 1386 or $3n^2 - 129n + 1386 = 0$ \therefore $n^2 - 43n - 462 = 0$ \Rightarrow *n* = 22, 21 **65.** (*c*) **6, 7, 8** Let the three numbers in AP are *a* – *d*, *a* and *a* + *d* \therefore $a - d + a + a + d = 21$ ⇒ *a* = 7 Also, $(a - d) (a + d)a = 336$ or $7(7^2 - d^2) = 336$ \Rightarrow *d* = 1 \therefore AP is (7 – 1), 7, (7 + 1) or 6, 7, 8

SHORT ANSWER QUESTIONS

For Basic and Standard Levels

1. Taxi fare for 1st km = \overline{z} 20 for 2nd km = \bar{z} 20 + \bar{z} 14 = \bar{z} 34

© Ratna Sagar

for 3rd km = ₹20 + ₹28 = ₹48
\n∴ 34 – 20 = 48 – 34 = 14
\n∴ 20, 34, 48, ... form an AP.
\n2. (i) For
$$
n = 1, 1 + n + n^2 = 1 + 1 + 1 = 3
$$

\n $n = 2, 1 + n + n^2 = 1 + 2 + 4 = 7$
\n $n = 3, 1 + n + n^2 = 1 + 3 + 9 = 13$
\n∴ 7 – 3 ≠ 13 – 7
\n∴ 1 + n + n² is not *n*th term of an AP
\n(ii) For $n = 1, 5n - 1 = 5(1) - 1 = 4$
\nFor $n = 2, 5n - 1 = 5(2) - 1 = 9$
\nFor $n = 3, 5n - 1 = 5(3) - 1 = 14$
\n∴ 5n – 1 is *n*th term of an AP
\n3. Let common diff. = d
\n∴ $a_{25} = a + 24d = -67$...(1)
\nand $a_{10} = a + 9d = -22$...(2)
\nSubtracting (2) from (1),
\n $15d = -45$
\n⇒ $d = -3$ and $a = 5$
\n∴ Last term = -82 = a_n
\n∴ $a + (n - 1)d = -82$
\n⇒ $b = (n - 1)(-3) = -82$
\n⇒ $n = 30$
\n4. $a_4 = 0$
\n $a + 3d = 0$...(1)
\n $a = -3d$
\nNow we have to prove that $a_{25} = 3a_{11}$
\n $a_{25} = a + (n - 1)d$
\n $= a + 24d$...(2)
\nPutting the value of a from eq. (1) in eq. (2)
\n $a_{25} = -3d + 24d$
\n $= 21d$
\n $a_{11} = a + (n - 1)d$

$$
a_{11} = a + (n - 1)d
$$

= $a + (11 - 1)d$
= $a + 10d$... (3)

Putting the values of *a* from eq. (1) in eq. (3)

$$
a_{11} = -3d + 10d
$$

$$
= 7d
$$

We have

$$
a_{25} = 21d
$$

= 3 × 7d

$$
a_{25} = 3a_{11}
$$
 [:: $a_{11} = 7d$]

5. Sum of *n* terms = $\frac{3n}{2}$ 13 $\frac{n^2}{2} + \frac{13n}{2}$ For $n = 1$, First term $(a) = \frac{3}{2}$ 13 $+\frac{13}{2} = \frac{16}{2} = 8$ For $n = 2$, $S_2 = \frac{12}{2}$ 26 $+\frac{26}{2}=\frac{38}{2}=19$ \Rightarrow [1st term + 2nd term] = 19 ⇒ 2nd term = $19 - 8 = 11 = a_2$
Now, $d = a_2 - a_1 = 11 - 8 = 3$ Now, $d = a_2 - a_1 = 11 - 8 = 3$
 $\therefore \quad a_{25} = a + 24d = 8 + 24 \times 3$ $a_{25} = a + 24d = 8 + 24 \times 3 = 80$ **6.** $a_1 \times a_3 = a_2 + 46$ \Rightarrow $a \times (a + 2d) = a + d + 46$ ⇒ $a^2 + 2ad = a + d + 46$ … (1) $S_3 = 33 \Rightarrow S_3 = \frac{3}{2} [2a + 2d] = 33$ \Rightarrow 2*a* + 2*d* = 33 × $\frac{2}{3}$ = 22 \Rightarrow $a + d = 11$ … (2) From (1) and (2), we get $a^2 + 2ad = 11 + 46$ ⇒ $a^2 + 2ad = 57$ … (3) But $d = (11 - a)$ [From (1)]

Then AP is 3, 11, 19, ...
\nFor
$$
a = 19
$$
, $d = -8$, [From (1)]
\nThen AP is 19, 11, 3, ...
\n7. Middlemost term of 11 terms = a_6
\n \therefore $a + 5d = 30$... (1)
\nNow, $S_{11} = \frac{11}{2} \times [2a + (11 - 1)d]$
\n $= \frac{11}{2} \times 2[a + 5d]$... (2)

For $a = 3, d = 8$ [From (1)]

 From (1) and (2), $S_{11} = 11[30] = 330$

 \therefore From (3), $a^2 + 2a(11 - a) = 57$

Solving, this quadratic equation, *a* = 3 or *a* = 19

 \Rightarrow $a^2 - 22a + 57 = 0$

8. Numbers between 10 and 600 which when divided by 3 leave a remainder 2, are

$$
11, 14, 17, ..., 599
$$

These numbers are in AP with *a* = 11, *d* = 3 and *l* = 599
\n
$$
\therefore
$$
 $a_n = l = 11 + (n - 1)3 = 599$

$$
\Rightarrow \qquad n - 1 = \frac{599 - 11}{3} = \frac{588}{3} = 196
$$

$$
\Rightarrow \qquad n = 196 + 1 = 197
$$

9. AP: $-\frac{4}{3}$, -1 , $\frac{-2}{3}$, ..., $4\frac{1}{3}$

$$
a = -\frac{4}{3}
$$

Arithmetic Progressions **47**Arithmetic Progressions

© Ratna Sagar

 $\overline{}$ 47

$$
d = a_2 - a_1
$$

$$
= -1 - \left(-\frac{4}{3}\right)
$$

$$
= -1 + \frac{4}{3}
$$

$$
= \frac{1}{3}
$$

$$
a_n = a + (n - 1)d
$$

$$
\Rightarrow \qquad \frac{13}{3} = -\frac{4}{3} + (n - 1)\frac{1}{3}
$$

$$
\Rightarrow \qquad \frac{17}{3} = \frac{(n - 1)}{3}
$$

 \Rightarrow $n = 18$

 Since we have even number of terms, the middle terms will be $\frac{n}{2}$ and $\frac{n}{2}+1$ i.e 9th and 10th.

$$
a_9 = a + 8d
$$

$$
= \frac{-4}{3} + 8 \times \frac{1}{3}
$$

$$
= \frac{-4}{3} + \frac{8}{3}
$$

$$
= \frac{4}{3}
$$

$$
a_{10} = a + 9d
$$

$$
= \frac{-4}{3} + 9 \times \frac{1}{3}
$$

$$
= \frac{5}{3}
$$

Sum of middlemost terms

$$
= a_9 + a_{10}
$$

$$
= \frac{4}{3} + \frac{5}{3}
$$

$$
= \frac{9}{3}
$$

$$
= 3
$$

10. Let the common difference = d and $a = 1$ (Given) Now, $S_4 = 4 + 6d$, $S_8 = 8 + 28d$ Sum of next 4 terms beyond first 4 terms

$$
= S_8 - S_4 = S'_4
$$

or
$$
S'_4 = (8 + 28d) - (4 + 6d) = 4 + 22d
$$

Now, it is given that
$$
S_4 = \frac{1}{3}S'_4
$$

\n
$$
\therefore \qquad 4 + 6d = \frac{1}{3}[4 + 22d]
$$
\n
$$
\Rightarrow \qquad \frac{22}{3}d - 6d = 4 - \frac{4}{3}
$$

$$
\Rightarrow \frac{4}{3}d = \frac{8}{3}
$$

$$
\Rightarrow d = \frac{8}{3} \times \frac{3}{4} = 2
$$

Thus, common difference = **2**

11. Three digit numbers when divided by 16 leave remainder as 7 are

$$
103, 119, 135, 151, \ldots 999
$$

These numbers are in AP with

$$
a = 103, d = 16 \text{ and } l = 999
$$

Now $a_n = a + (n - 1)d$
 \Rightarrow 999 = 103 + $(n - 1) \times 16$
or $n - 1 = \frac{999 - 103}{16} = 56$
 \Rightarrow $n = 56 + 1 = 57$
 \therefore $S_{57} = \frac{57}{2} [103 + 999] = \frac{57}{2} \times 1102 = 31407$
Thus the required sum = 31407

Thus, the required sum = **31407**

12.
$$
a = \text{First term} = \frac{p-q}{p+q}, d = \frac{3p-2q}{p+q} - \frac{p-q}{p+q} = \frac{2p-q}{p+q}
$$

\n
$$
\therefore S_{12} = \frac{12}{2} \left[2 \cdot \left(\frac{p-q}{p+q} \right) + 11 \left(\frac{2p-q}{p+q} \right) \right]
$$
\n
$$
= 6 \left[\frac{2p-2q+22p-11q}{p+q} \right]
$$
\n
$$
= \frac{6[24p-13q]}{p+q}
$$

13. Let '*a*' be the 1st and '*d*' be the common difference of an AP.

$$
a_{m+n} = a + (m+n-1)d
$$

\n
$$
a_{m-n} = a + (m-n-1)d
$$

\nLHS = $a_{m+n} + a_{m-n}$
\n
$$
= a + (m+n-1)d + a + (m-n-1)d
$$

\n
$$
= 2a + 2(m-1)d
$$

\n
$$
= 2[a + (m-1)d] = 2a_m = \text{RHS}
$$

14. Let the numbers be $(a-d)$, a , $(a+d)$

∴
$$
a-d+a+a+d = 21
$$

\n⇒ $a = 7$...(1)
\n∴ $(a-d)^2 + a^2 + (a+d)^2 = 155$

 \therefore $3a^2 + 2d^2 = 155$ …(2)

From (1) and (2) we have

$$
3(7)^{2} + 2d^{2} = 155
$$
\n
$$
\Rightarrow \qquad 147 + 2d^{2} = 155
$$
\n
$$
\Rightarrow \qquad 2d^{2} = 8
$$
\n
$$
\Rightarrow \qquad d^{2} = 4
$$
\n
$$
\Rightarrow \qquad d = \pm 2
$$
\nBut the numbers are in increasing order

 \therefore $d = -2$ is rejected Thus $d = 2$ \therefore *a* − *d*, *a*, *a* + *d*, … \Rightarrow (7 − 2), 7, (7 + 2) … or **5, 7, 9, …**

15. (*i*) **False**

 $[\because 13 - 20 = 6 - 13 = -7 \neq 7]$

© Ratna Sagar

Arithmetic Progressions **48**Arithmetic Progressions $\frac{1}{2}$ 48

(ii) False
$$
\begin{bmatrix}\n\text{(interset at the } \text{end of 2nd year} - \text{(interset at the } \text{end of 1st year})\n\begin{bmatrix}\n\text{Interest at the } \text{end of 1st year} \\
\text{1.1 } \text{d} = \text{end of 3rd year}\n\end{bmatrix}\n\begin{bmatrix}\n\text{(Interest at the } \text{end of 3rd year} - \text{end of 1st year} \\
\text{(iii) True } [\because a_n = a + (n - 1)d \neq n^2 + 1]\n\begin{bmatrix}\n\text{(iv) False } [\because a_n = a + (n - 1)d \neq n^2 + 1] \\
\text{(iv) False } [\because a_n = a + (n - 1)d \neq n^2 + 1]\n\end{bmatrix}
$$
\n16. (i) Yes\n
$$
\therefore a_{40} = a + 39d \text{ and } a_{30} = a + 29d \therefore a_{40} = a + 39d \text{ and } a_{30} = a + 29d \therefore (1) \text{ No } \\
\therefore a_{40} = a + 39d - (a + 29d) = 10d \qquad ...(1)
$$
\nand $d = -7 - (-5) = -2$ \nFrom (1) and (2), $a_{40} - a_{30} = 10 \times (-2) = -20$ \n\nFrom (1) and (2), $a_{40} - a_{30} = 10 \times (-2) = -20$ \n\nFrom (1) and (2), $a_{40} - a_{30} = 10 \times (-2) = -20$ \n\nFrom (2) 33\n
$$
\therefore a_n = 29 + (n - 1)(-4) = 0
$$
\n
$$
\Rightarrow n = \frac{33}{4} \text{, which is not a natural number.}
$$
\n17. Let the three parts of 177 are: $a - d, a, a + d$ $[\because \text{These parts are given to be in AP}]$ \n
$$
\therefore (a - d) + a + (a + d) = 177
$$
\n
$$
\Rightarrow a = 59
$$
\nProofed: 3599\n
$$
\Rightarrow 59(59 + d) = 3599
$$
\n
$$
\Rightarrow 59(59 + d) = 3599
$$
\n
$$
\Rightarrow 59(59 + d) = 359
$$

19. We have *n*th term of an AP.

$$
a_n = a + nb[where 'a' and 'b' are real numbers]
$$

\n
$$
\Rightarrow \qquad l = (a + nb)
$$

+

For $n = 1$, $a_1 = a + b$ [First term]
For $n = 2$, $a_2 = a + 2b$ [Second term] For $n = 2$, $a_2 = a + 2b$ [Second term]
For $n = 3$, $a_3 = a + 3b$ [Third term] For $n = 3$, $a_3 = a + 3b$ Now $a_2 - a_1 = (a + 2b) - (a + b) = b$ $a_3 - a_2 = (a + 3b) - (a + 2b) = b$ ⇒ $(a + b)$, $(a + 2b)$, $(a + 3b)$, ... is an AP. with First term = $(a + b)$ and Common difference = *b* Now, using $S_n = \frac{n}{2} [a+l]$, we get $S_{20} = \frac{20}{2} [(a + b) + (a + 20b)]$ $= 10[2a + 21b]$ $= 20a + 210b$ **20.** Here, first term, $a = 5$ …(1) Let the common difference $= d$ \therefore $S_8 = \frac{8}{2} [2a + 7d] = 8a + 28d$ $S_4 = \frac{4}{2} [2a + 3d] = 4a + 6d$ S'_{4} = Sum of next 4 terms beyond first 4 terms $= S - S$

$$
S'_4 = [8a + 28d] - [4a + 6d] = 4a + 22d
$$

It is given that

$$
S_4 = \frac{1}{2} S'_4
$$

\n
$$
\Rightarrow 4a + 6d = \frac{1}{2} [4a + 22d] = \frac{2}{2} [2a + 11d]
$$

\n
$$
\Rightarrow 6d - 11d = 2a - 4a
$$

\n
$$
\Rightarrow 5d = 2a \qquad ...(2)
$$

\nFrom (1) and (2),
\n
$$
5d = 2 \times 5 = 10
$$

 \overline{a}

$$
\Rightarrow \qquad d = \frac{10}{5} = 2
$$

Hence, common difference, *d* **= 2**

21. The required sum

$$
= \begin{bmatrix} \text{Sum of multiples} \\ \text{of 2 from 1 to 500} \end{bmatrix} + \begin{bmatrix} \text{Sum of multiples} \\ \text{of 5 from 1 to 500} \end{bmatrix}
$$

$$
= \begin{bmatrix} \text{Sum of multiples} \\ \text{of 10 from 1 to 500} \end{bmatrix}
$$

$$
= \begin{bmatrix} 2 + 4 + 6 + ... + 500 \\ \Rightarrow n = 250 \end{bmatrix} + \begin{bmatrix} 5 + 10 + 15 + ... + 500 \\ \Rightarrow n = 100 \end{bmatrix}
$$

$$
= \begin{bmatrix} 10 + 20 + 30 ... + 500 \\ \Rightarrow n = 50 \end{bmatrix}
$$

$$
= \begin{bmatrix} 250 \\ 2 \end{bmatrix} \{2 + 500\} + \begin{bmatrix} 100 \\ 2 \end{bmatrix} \{5 + 500\} - \begin{bmatrix} 50 \\ 2 \end{bmatrix} \{10 + 500\}
$$

$$
= [125 \times 502] + [50 \times 505] - [25 \times 510]
$$

$$
= 62750 + 25250 - 12750
$$

$$
= 88000 - 12750 = 75250
$$

© Ratna Sagar

 $\overline{}$

22. Numbers between 1 to 500 which are multiples of 2 as well as 5 are 10, 20, 30, … 500 These numbers are in AP with $a = 10$, $d = 10$ and $l = 500$ Using, $a_n = a + (n-1)d$, we have $500 = 10 + (n - 1)10$ \Rightarrow $n-1 = \frac{500-10}{10} = 49$ \Rightarrow $n = 50$ Now, $S_{50} = \frac{50}{2} (10 + 500) = 25 \times 510 = 12750$ **23.** First term = *a* Second term = *b* \Rightarrow *d* = (*b* – *a*) $a_n = a + (n-1)d$ \Rightarrow $l = a + (n - 1) (b - a)$ ⇒ $(n-1) = \frac{l-a}{b-a}$ or $n = \frac{l-a+b-a}{b-a} = \frac{b+l-2a}{b-a}$ $b - a$ $b - a$ $b - a$ $b - a$ Now $S_n = \frac{1}{2}$ $\times \left| \frac{b+l-2}{l}\right|$ − I $\left[\frac{b+l-2a}{b-a}\right][a+l]$ Using $S_n = \frac{1}{2} \times n [a+l]$ $= \frac{b + l - 2a}{2(b - a)} (a + l)$ $=\frac{(b+l-2a)(a+l)}{2(b-a)}$ *b* + *l* – 2*a*) (*a* + *l b a* $+ l - 2a$) (a + − 2 2 $=\frac{(a+l)(b+l-2a)}{2(b-a)}$ $a + l$ $(b + l - 2a)$ *b a* $+ l$ + $l -$ − **2 2 24.** It is given that *a*, *b*, *c*, *d*, *e* form an AP.

Let D be the common difference

$$
\therefore \quad b = a + D
$$
\n
$$
c = a + 2D
$$
\n
$$
d = a + 3D
$$
\n
$$
e = a + 4D
$$
\n
$$
\Rightarrow \quad a - 4b + 6c - 4d + e
$$
\n
$$
= a - 4(a + D) + 6(a + 2D) - 4(a + 3D) + (a + 4D)
$$
\n
$$
\Rightarrow \quad a - 4b + 6c - 4d + e
$$
\n
$$
= a - 4a - 4D + 6a + 12D - 4a - 12D + a + 4D
$$
\n
$$
= (a - 4a + 6a - 4a + a) - (-4D + 12D - 12D + 4D)
$$
\n
$$
= (8a - 8a) + (16D - 16D)
$$
\n
$$
= 0 + 0
$$

Hence, $a - 4b + 6c - 4d + e = 0$

25. Two digit natural numbers which when divided by 3 give remainder 1 are:

10, 13, 16, … 97

$$
\therefore \quad a = 10, d = 3 \text{ and } l = 97
$$
\n
$$
a_n = a + (n - 1)d
$$
\n
$$
\Rightarrow \quad 97 = 10 + (n - 1)3
$$
\n
$$
\Rightarrow \quad n = 30
$$

Using $S_n = \frac{n}{2}(a+l)$ $S_{30} \frac{30}{2} [10 + 97] = 1605$ 26. Let first term $= a$ and common diff. $= d$ \therefore $n = 27$ \therefore 3 middle terms are a_{13} , a_{14} and a_{15} i.e. $a_{13} = a + 12d$, $a_{14} = a + 13d$, $a_{15} = a + 14d$ $a_{13} + a_{14} + a_{15} = 81$ \therefore $(a + 12d) + (a + 13d) + (a + 14d) = 81$ \Rightarrow $a + 13d = 27$ …(1) Also, $a_{25} + a_{26} + a_{27} = 153$ \therefore $(a + 24d) + (a + 25d) + (a + 26d) = 153$ ⇒ $a + 25d = 51$ …(2) Subtracting (1) from (2), we get $12d = 24$ \Rightarrow *d* = 2 From (1), $a + 13(2) = 27$ \Rightarrow $a=1$ Now, the AP is (*a*), (*a* + *d*), (*a* + 2*d*), (*a* + 3*d*), … or (1), $(1 + 2)$, $(1 + 4)$, $(1 + 6)$, ... or **1, 3, 5, 7, …** 27. Let $a = \text{first term}$ and $d = \text{common diff.}$ Using $S_n = \frac{n}{2} [2a + (n-1)d]$ \therefore $S_4 = \frac{4}{2} [2a + 3d] = 2[2a + 3d]$ $S_8 = \frac{8}{2} [2a + 7d] = 4[2a + 7d]$ $S_{12} = \frac{12}{2} [2a + 11d] = 6[2a + 11d]$ …(1) $Now, 3[S_8 - S_4] = 3[4(2a + 7d) - 2(2a + 3d)]$ \Rightarrow 3[S_o – S₄] = 3 × 2[2(2*a* + 7*d*) – (2*a* + 3*d*)]

$$
\Rightarrow [S_8 - S_4] = 6[4a + 14d - 2a - 3d] = 6[2a + 11d]...(2)
$$

From (1) and (2), we have:

$$
S_{12} = 3(S_8 - S_4)
$$

VALUE-BASED QUESTIONS

For Basic and Standard Levels

1. (*i*) Number of students in the 1st row = 9 Number of students in the 2nd row = 7 Number of students in the 3rd row = 5 and so on.

> Numbers, 9, 7, 5, … decrease uniformly by a constant number 2.

© Ratna Sagar

 \therefore 9, 7, 5, ... form an AP with

 $a = 9$, and $d = -2$

Let all the 25 students are involved using '*n*' rows.

$$
\therefore S_n = \frac{n}{2} [2(9) + (n - 1) (-2)] = 25
$$

\n
$$
\Rightarrow n[9 + (n - 1) (-1)] = 25
$$

\n
$$
\Rightarrow n(9 - n + 1) = 25
$$

\n
$$
\Rightarrow n(10 - n) = 25
$$

\n
$$
\Rightarrow 10n - n^2 = 25
$$

\n
$$
\Rightarrow n^2 - 10n + 25 = 0
$$

\n
$$
\Rightarrow n = 5
$$

Thus, **all the 25 students** are involved in **5 rows**.

(*ii*) Empathy and decision-making.

For Standard Level

- **2.** (*i*) Formation of circles continued for 60 seconds, i.e. after 5 seconds, 10 seconds, 15 seconds, …
	- \therefore 5 sec, 10 sec, 15 sec, ..., 60 sec form an AP with $a = 5, d = 5$ and $l = 60$

$$
u = 3, u = 3 \text{ and } t = 6
$$

Using $a_n = a + (n-1)d$, we get

$$
60 = 5 + (n - 1)5
$$

$$
60 = 5 + (n - 1)5
$$

$$
\Rightarrow \quad n-1 = \frac{1}{5} = 11
$$

$$
\Rightarrow \qquad n = 11 + 1 = 12
$$

- \therefore Corresponding to each interval of 5 sec there is 1 circle.
- \therefore Number of circles = **12**
- (*ii*) Number of flags in the circle $C_1 = 4$ Number of flags in the circle $C_2 = 7$ Number of flags in the circle $C_3 = 10$

 \therefore 7 – 4 = 3 = 10 – 7

 \therefore Numbers 4, 7, 10, ... form an AP with $a = 4, d = 7 - 4 = 3$

There are 12 circles in all

 \Rightarrow *n* = 12

Using
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
, we get
\n
$$
S_{12} = \frac{12}{2} [2(4) + (12 - 1) \times 3]
$$
\n
$$
= 6[8 + 11 \times 3]
$$
\n
$$
= 6 \times 41 = 246
$$

Now, Total number of flags

$$
= \begin{bmatrix} \text{Number of flags} \\ \text{in 12 circles} \end{bmatrix} + \begin{bmatrix} \text{Number of circle} \\ \text{at the centre} \end{bmatrix}
$$

$$
= 246 + 1
$$

$$
= 247
$$

(*iii*) Students learn to explore creative thinking and patriotism.

3. (*i*) Since, the savings of the friends A and B increase by one coin of $\bar{\tau}$ 5 daily, therefore they form an AP.

Let $a =$ first term $d =$ common difference,

$$
n =
$$
 number of days and

 S_n = total number of five rupees coins saved.

Then,

 $a = 5$, $d = 5$, $n = 4$

and S_4 = total number of five rupee coins saved

$$
S_4 = \frac{n}{2} [2a + (n-1)d]
$$

= $\frac{4}{2} [2 \times 5 + (4-1)5]$
= 2(10 + 15) = 2(25) = 50

Hence, each friend saved $\bar{\mathfrak{c}}(50 \times 5) = \bar{\mathfrak{c}} 250$

A divides his saving into 2 parts.

 Let one part of his saving be *x*. Then, the other part is (250 – *x*)

each being ` **125.**

B divides his saving into two parts.

 Let one part of his saving be *y*. Then the other part is $(250 - y)$.

 Given, product of the two parts = 15600 \therefore $y(250 - y) = 15600$ ⇒ $250y - y^2 = 15600$ \Rightarrow $y^2 - 250y + 15600 = 0$ \Rightarrow $y^2 - 130y - 120y + 15600 = 0$ \Rightarrow *y*(*y* −130) − 120(*x* − 130) = 0 ⇒ $(y -130)(y - 120) = 0$ \Rightarrow *y* = 130 or *y* = 120

 Hence, **B divides his saving into two unequal portions of** `**130 and** `**120.**

 (*ii*) A and B both exhibited the value of self awareness and decision-making by making the resolution to save money and executing it.

 A also showed honesty and responsibility whereas B failed to be responsible and fair.

UNIT TEST 1

For Basic Level

1. (*d*) $p + 9q$

© Ratna Sagar

 \therefore First term = *p* \Rightarrow *a_n* = *p* + (*n* – 1)*q* Common diff. = q $\therefore a_{10} = p + 9q$

2. (*c*) **25th** \therefore *a* = 2, *d* = −1 − 2 = −3 and *a_n* = −70 $a + (n - 1)d = -70$ \Rightarrow 2 + (*n* – 1) (–3) = –70 \Rightarrow $n-1 = \frac{-70-1}{-3}$ $70 - 2$ 3 \Rightarrow $n-1=24$ or $n = 24 + 1 = 25$ **3.** (*d*) **2** $a = 7$ and $a_7 = 19 \implies 7 + (7 - 1)d = 19$ \implies 6*d* = 19 – 7 = 12 $\Rightarrow d = \frac{12}{6} = 2$ **4.** (*a*) **10 terms** Let $S_n = 120$ \Rightarrow $\frac{n}{2}$ [2(3) + (*n* - 1) (2)] = 120 [\therefore *a* = 3 and *d* = 5 – 3 = 2] \Rightarrow $\frac{n}{2} [6 + (n-1)2] = 120$ \Rightarrow *n*[3 + *n* – 1] = 120 \implies $n^2 + 2n - 120 = 0$ Solving it, $n = 10$, rejecting $n = -12$ **5.** (*b*) **–925** \therefore $a_n = 2 - 3n$ $\therefore a_1 = 2 - 3 = -1$ $a_2 = 2 - 6 = -4$ \Rightarrow $d = a_2 - a_1 = -4 - (-1) = -3$ \therefore $S_{25} = \frac{25}{2} [2(-1) + (25 - 1) (-3)]$ $= 25 \times (-37) = -925$ **6.** \therefore $a_2 = 38$ and $a_6 = -22$ \therefore $a + d = 38$ $a + 5d = -22$ \Rightarrow 4*d* = –60 or *d* = –15 Now $a_1 = a_2 - d = 38 - (-15) = 53$ $a_3 = a + 2d = 53 + 2(-15) = +23$ $a_4 = a + 3d = 53 + 3(-15) = 8$ $a_5 = a + 4d = 53 + 4(-15) = -7$ Thus, we have: **[53], 38, [23], [8], [–7], –22** 7. \therefore *x*, 2*x* + *p*, 3*x* + 6 are in AP. \therefore First term = $a = x$ Second term = $a_2 = (2x + p)$ \Rightarrow Common diff. = $d = a_2 - a$ $=[2x + p] - x$ $= 2x + p - x = x + p$ Now a_3 = Third term = $3x + 6$ \therefore $a + (3 - 1)d = 3x + 6$

 \Rightarrow $x + 2(x + p) = 3x + 6$ \Rightarrow $x + 2x + 2p = 3x + 6$ \Rightarrow 3*x* + 2*p* – 3*x* = 6 \Rightarrow 2*p* = 6 or *p* = 3 **8.** First term $= a = 22$ $a_n = -11 \implies 22 + (n-1)d = -11$ \Rightarrow $(n-1)d = -11 - 22 = -33$ …(1) $S_n = 66$ \implies $\frac{n}{2} [2(22) + (n-1)d] = 66$ $\Rightarrow n[44 + (n-1)d] = 132$ …(2) From (1) and (2), we have $n[44 + (-33)] = 132$ \Rightarrow *n*[11] = 132 \Rightarrow $n = \frac{132}{11} = 12$ Thus, $n = 12$ **9.** The given AP is

62, 59, 56, ..., 8
\n
$$
\therefore
$$
 $a = 62$ and $d = 59 - 62 = -3$

 To find the sum of 12 terms from the end, we replace the 1st term by the last term and reverse sign of common diff.

.. From the end
$$
S'_{12} = \frac{12}{2} [2(8) + (12 - 1) (-d)]
$$

= 6[16 + 11 × 3]
= 6[16 + 33]
= 6 × 49 = 294

Thus, the sum of last 12 terms = **294**

10.
$$
\therefore
$$
 $S_n = \frac{3n^2}{2} + \frac{13n}{2}$
\n \therefore $S_1 = \frac{3(1)^2}{2} + \frac{13(1)}{2}$
\n $= \frac{3}{2} + \frac{13}{2} = \frac{16}{2} = 8$
\n \Rightarrow $a = 8$
\n $S_2 = \frac{3(2)^2}{2} + \frac{13(2)}{2}$
\n $= \frac{12}{2} + \frac{26}{2}$
\n $= \frac{38}{2} = 19$
\nSince, S_2 = sum of first two terms = 19
\n \therefore $a + (a + d) = 19$
\n \Rightarrow $8 + (8 + d) = 19$
\n \Rightarrow $16 + d = 19$
\n \Rightarrow $d = 3$

Now, $a_n = a + (n-1)d$ $= 8 + (n - 1)3$

 $= 8 + 3n - 3$ $a_n = 3n + 5$ ∴ $a_{25} = 3(25) + 5$ $= 75 + 5$ \Rightarrow $a_{25} = 80$ Thus, 25th term is **80**. **11.** We have $1 + 4 + 7 + 10 + \ldots + x = 590$ The given series is AP with $a = 1$ and $d = 3$. Here $S_n = 590$ Now, using $S_n = \frac{n}{2} [2a + (n-1)d]$, we get \therefore 1 + 4 + 7 + 10 + … + *x* = 590 ⇒ $\frac{n}{2}$ [(2 × 1) + (*n* − 1) × 3] = 590 \Rightarrow $\frac{n}{2}$ $\frac{n}{2}[2 + 3n - 3] = 590$ \Rightarrow *n*[3*n* – 1] = 1180 ⇒ $3n^2 - n - 1180 = 0$ \implies $3n^2 - 60n + 59n - 1180 = 0$ ⇒ $3n(n-20) + 59(n-20) = 0$ ⇒ $(n - 20) (3n + 59) = 0$ \Rightarrow $n = 20 \text{ or } n = -\frac{59}{3}$ But $n = -\frac{59}{3}$ is rejected \therefore $n = 20$ Now, $x = n$ th term = 20th term \therefore $a_{20} = 1 + (20 - 1)3$ [Using $a_n = a + (n - 1)d$] $= 1 + 19 \times 3$ $= 1 + 57 = 58$ \therefore $x = 58$ **12.** Amount paid in the first month $=$ $\bar{\tau}$ 1000

Thereafter the monthly instalments increases by $\bar{\tau}$ 100

- \Rightarrow *a* = ₹ 1000 and *d* = ₹ 100
- \therefore Number of instalments = 30

$$
\Rightarrow \qquad \qquad n=30
$$

 \therefore Total loan amount is given by

$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

\n
$$
\Rightarrow \qquad S_{30} = \frac{30}{2} [2(1000) + (30 - 1) \times 100]
$$

\n
$$
= 15[2000 + 29 \times 100]
$$

\n
$$
= 15[2000 + 2900]
$$

\n
$$
= 15 \times 4900
$$

\n
$$
= 73500
$$

Thus, the loan amount $=$ $\overline{5}$ 73500

UNIT TEST 2

For Standard Level

1. (*b*) **27th term** $S_n = 3n^2 + 5n$ \therefore S₁ = *a* = 8 and S₂ = 22 \Rightarrow $a_2 = S_2 - S_1 = 22 - 8 = 14$ $d = a_2 - a_1 = 14 - 8 = 6$ Now $a_n = a + (n-1)d$ \implies 164 = 8 + (*n* – 1)6 \implies *n* = 27 **2.** (*d*) **–142** $a = 5$ $a_{100} = 5 + (100 - 1)d = -292$ $\Rightarrow d = \frac{-292 - 5}{99} = -3$ $a_{50} = 5 + 49 \times -3 = -142$ **3.** (*b*) **4***n* **+ 3** $S_n = 2n^2 + 5n$ $S_1 = 2 + 5 = 7 = a$ $S_2 = 8 + 10 = 18$ $a_2 = S_2 - S_1 = 18 - 7 = 11$ $d = a_2 - a_1 = 11 - 7 = 4$ \therefore $a_n = 7 + (n-1)4$ $= 7 + 4n - 4 = 3 + 4n$ \Rightarrow *a_n* = 4*n* + 3 **4.** (*b*) **108** $a_1 = 8$ $a_2 = 10$ \Rightarrow $d = a_2 - a_1 = 2$ To find 10th term from the end we take the last term

as the first term and '*d*' as negative.

$$
\therefore \text{ From the end} \quad a_{10} = 126 + (10 - 1) (-2) = 126 - 18 = 108
$$

5. (*c*) **60°**

Let the angles be $(a-d)^\circ$, a° , $(a+d)^\circ$ ⇒ $[a - d]^\circ + a^\circ + [a + d]^\circ = 180^\circ$ $a - d + a + a + d = 180^{\circ}$ $3a = 180^{\circ}$ $a = 60^\circ$

6. Natural numbers which are multiples of 7 and which lie between 500 and 900 are 504, 511, 518, 525 …, 896.

These numbers form an AP with the first term, $a = 504$ and the common difference, $d = 511 - 504 = 7$. If a_n be the nth term and S_n be the sum of the first *n* terms of this AP, then

$$
a_n = a + (n - 1)d
$$

= 504 + (n - 1)7
= 7n + 497 ...(1)

53Arithmetic Progressions Arithmetic Progressions $\overline{}$ 53

and
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$

$$
= \frac{n}{2} [2 \times 504 + 7(n-1)]
$$

$$
= \frac{n}{2} [1008 + 7n - 7]
$$

$$
= \frac{n}{2} [7n + 1001] \qquad \qquad ...(2)
$$

If the last term, $a_n = 896$, then from (1), we have

$$
7n + 497 = 896
$$
\n
$$
\Rightarrow \qquad 7n = 399
$$
\n
$$
\Rightarrow \qquad n = \frac{399}{7} = 57 \qquad \qquad ...(3)
$$

∴ There are 57 terms in the AP

$$
\therefore \text{ From (2),} \qquad \text{S}_{57} = \frac{57}{2} (7 \times 57 + 1001)
$$
\n
$$
= \frac{57}{2} \times 1400 = 39900
$$

which is the required sum.

7. If *a* be the first term, *d*, the common difference of an AP, a_n be its *n*th term and S_n , the sum of the first *n* terms of the AP, then

$$
a_n = a + (n-1)d \qquad \qquad \dots (1)
$$

 $\dots(2)$

and
$$
S_n = \frac{n}{2} \big[2a + (n-1)d \big]
$$

Now, given that

$$
\frac{a_{11}}{a_{18}} = \frac{2}{3}
$$
\n
$$
\Rightarrow \qquad \frac{a + 10d}{a + 17d} = \frac{2}{3}
$$
\n
$$
\Rightarrow \qquad 2a + 34d = 3a + 30d
$$
\n[From (1)]

$$
\Rightarrow \qquad a = 4d \qquad \qquad \dots (3)
$$

$$
\therefore \qquad \frac{a_5}{a_{21}} = \frac{a + 4d}{a + 20d} \qquad \qquad \text{[From (1)]}
$$

$$
= \frac{4d + 4d}{4d + 20d} \qquad \qquad \text{[From (3)]}
$$

 $=\frac{8}{24}$ $\frac{d}{d}$ = $\frac{1}{3}$ which is the required ratio.

Again,
$$
\frac{S_5}{S_{21}} = \frac{5/2(2a + 4d)}{21/2(2a + 20d)}
$$
 [From (2)]

$$
= \frac{5}{21} \times \frac{2 \times 4d + 4d}{2 \times 4d + 20d}
$$
 [From (3)]

$$
= \frac{5}{21} \times \frac{12d}{28d} = \frac{5}{49}
$$

which is the required second ratio.

∴ Required ratios are **1 : 3** and **5 : 49**.

8. Let the first, 2nd and 3rd terms of the AP are

$$
(a-d), a, (a+d)
$$

\n
$$
\therefore (a-d) + a + (a+d) = 33
$$

\n
$$
\Rightarrow a = 11
$$

Also $(a - d) (a + d) = a + 29$ \implies $(11 - d) (11 + d) = 11 + 29 = 40$ \implies 121 – $d^2 = 40$ \Rightarrow $d^2 = 81$ \Rightarrow *d* = ±9 For *d* = 9, (*a* – *d*), *a*, (*a* + *d*) … are **2, 11, 20 …** For *d* = –9, (*a* – *d*), *a*, (*a* + *d*) … are **20, 11, 2, …**

9. Let *a* be the first term and *d* be the common difference of the AP. Let S_n be the sum of the first *n* terms of the AP.

Then
$$
S_n = \frac{n}{2} [2a + (n-1)d]
$$
 ...(1)

Now, given that $S_6 = 36$ …(2) and $S_{16} = 256$...(3)

∴ From (1) and (2), we have

$$
36 = \frac{6}{2} [2a + 5d]
$$

$$
\Rightarrow \qquad 36 = 3(2a + 5d)
$$

$$
\Rightarrow \qquad 2a + 5d - 12 = 0 \qquad \qquad \dots (4)
$$

Also, from (1) and (3), we have

$$
256 = \frac{16}{2} [2a + 15d]
$$

\n
$$
\Rightarrow \qquad 256 = 8(2a + 15d)
$$

\n
$$
\Rightarrow \qquad 2a + 15d - 32 = 0 \qquad \qquad ...(5)
$$

Subtracting (5) from (4), we get

$$
-10d + 20 = 0
$$

\n
$$
\Rightarrow \qquad d = 2 \qquad ...(6)
$$

$$
\therefore \text{ From (4)}, \qquad 2a = 12 - 5 \times 2 = 2
$$

$$
\therefore \qquad a = 1 \qquad \qquad \dots(7)
$$

∴ From (1) , (6) and (7) , we have

$$
S_{10} = \frac{10}{2} [2 \times 1 + 9 \times 2]
$$

$$
= 5(2 + 18)
$$

$$
= 100
$$

Which is the required sum.

10. A three digit number is given by $[100x + 10y + c]$ Digits 100*x*, 10*y*, *c* are in AP.

Let
$$
100x = 100(a - d)
$$
, $10y = 10a$, $c = (a + d)$

$$
\therefore
$$
 In general three numbers in AP are

$$
(a-d), a, (a+d)
$$

$$
\Rightarrow \qquad a = 5
$$

 \therefore Digits of the given number are

 $100(5-d)$, $10(5)$, $(5+d)$

Digits in reverse order are

 \Rightarrow $a + d + a + a + d = 15$

$$
100(5 + d), 10(5), (5 - d)
$$

 Since the given number is greater than the number obtained by reversing the digits by 594

 \sim | Number formed by the digits ||
| taken in reverse order || Given number |

 $= 594$

© Ratna Sagar

 \Rightarrow $[100(5-d) + 10(5) + (5+d)] - [100(5+d) + 10(5)$ $+(5-d)$] = 594

Solving it for d , we get $d = 3$

$$
\therefore \quad \text{The given numbers} = 100(5 + 3) + 10(5) + (5 - 3)
$$
\n
$$
= 100(8) + 50 + 2
$$
\n
$$
= 800 + 50 + 2
$$
\n
$$
= 852
$$

11. Let the thief get caught after running for *n* minutes. Then the distance covered by the thief in *n* minutes = the distance covered by the police in $(n - 1)$ minutes.

$$
\therefore \qquad 100n = \frac{n-1}{2} [2 \times 100 + (n-1-1) \times 10]
$$

$$
= (n-1) [100 + (n-2)5]
$$

$$
= (n - 1) (5n + 90)
$$

\n
$$
= 5n^2 + 90n - 5n - 90
$$

\n⇒
$$
5n^2 + 90n - 100n - 5n - 90 = 0
$$

\n⇒
$$
5n^2 - 15n - 90 = 0
$$

\n⇒
$$
n^2 - 3n - 18 = 0
$$

\n∴
$$
n = \frac{3 \pm \sqrt{3^2 + 4 \times 18}}{2}
$$

\n
$$
= \frac{3 \pm \sqrt{9 + 72}}{2}
$$

\n
$$
= \frac{3 \pm 9}{2}
$$

\n= 6 or -3

Since *n* is not negative,

∴ We take *n* = 6.

- ∴ The policeman catches the thief after (*n* 1) minutes
- $= (6 1)$ minutes $= 5$ minutes of his starting time.

∴ Required time = **5 minutes**.