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 EXERCISE 1A

For Basic and Standard Levels
 1. Euclid’s division lemma
  For any two given positive integers a and b, there exist 

unique integers q and r such that a = bq + r, 0 ≤ r < b.
  a and b are called dividend and divisor respectively,  

q and r are called quotient and remainder respectively.
  Thus, dividend = (divisor × quotient) + remainder.

 (i) Required number = 27 × 364 + 7 = 9835
 (ii) Dividend = divisor × quotient + remainder

  ⇒ 546 = divisor × 7 + 7

  ⇒  546 7
7

−  = divisor

  ⇒  divisor = 77

 2. Let a be any positive odd integer.
  On dividing a by 8, let q be the quotient and r be the 

remainder.
  Then, by Euclid’s division lemma, we have
   a = 8q + r
  where 0 ≤ r < 8.
  ⇒ a = 8q + r, where r = 0, 1, 2, 3, 4, 5, 6 or 7.
  ⇒  a = 8q (when r = 0),
   a = 8q + 1 (when r = 1),
   a = 8q + 2 (when r = 2),
   a = 8q + 3 (when r = 3),
   a = 8q + 4 (when r = 4),
   a = 8q + 5 (when r = 5),
   a = 8q + 6 (when r = 6),
   a = 8q + 7 (when r = 7)
  Now, a = 8q, a = 8q + 2, a = 8q + 4 
  and a = 8q + 6 are even values of a.
  Thus, when a is odd, it is of the form 8q + 1, 8q + 3,  

8q + 5 or 8q + 7 for some integer q.

 3. Let a be any positive integer.
  On dividing a by 4, let m be the quotient and r be the 

remainder.
  Then, by Euclid’s division lemma, we have  

 a = 4m + r,    where 0 ≤ r < 4
  ⇒ a = 4m (when r = 0), 
   a = 4m + 1 (when r = 1),
   a = 4m + 2 (when r = 2),  

and  a = 4m + 3 (when r = 3)
   a = 4m
  ⇒ a2 = 16m2

    = 4(4m2)
    = 4q,
  where q = 4m2

   a = 4m + 1
  ⇒  a2 = (4m + 1)2

    = 16m2 + 8m + 1  
  = 4(m2 + 2m) + 1  

    = 4q + 1,  
where  q = m2 + 2m
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   a = 4m + 2
  ⇒  a2 = (4m + 2)2

    = 16m2 + 16m + 4  
  = 4(4m2 + 4m + 1)

    = 4q,  
where  q = 4m2 + 4m + 1

   a = 4m + 3
  ⇒  a2 = (4m + 3)2  

  = 16m2 + 24m + 9 = 16m2 + 24m + 8 + 1   
  = 4(4m2 + 6m + 2) + 1

    = 4q + 1,
  where q = (4m2 + 6m + 2)
  Hence, square of any positive integer is of the form 4q 

or 4q + 1.

 4. Let a be any positive integer.
  On dividing a by 4, let q be the quotient and r the 

remainder.
  Then, by Euclid’s division lemma, we have
   a = 5q + r, where 0 ≤ r < 5
  ⇒  a = 5q (when r = 0),  

 a = 5q + 1 (when r = 1),  
 a = 5q + 2 (when r = 2),

   a = 5q + 3 (when r = 3), 
and  a = 5q + 4 (when r = 4)

   a = 5q
  ⇒ a2 = 25q2 = 5(5q2) = 5m,
  where m = (5q2) is an integer
   a = 5q + 1
  ⇒ a2 = (5q + 1)2

    = 25q2 + 10q + 1
    = 5(5q2 + 2q) + 1
    = 5m + 1,
  where m = 5q2 + 2q is an integer
   a = 5q + 2
  ⇒  a2 = (5q + 2)2

    = 25q2 + 20q + 4  
  = 5(5q2 + 4q) + 4

    = 5m + 4,  
where m = 5q2 + 4q is an integer

   a = 5q + 3
  ⇒  a2 = (5q + 3)2

    = 25q2 + 30q + 9  
  = 25q2 + 30q + 5 + 4  
  = 5(5q2 + 6q + 1) + 4

    = 5m + 4,  
where m = (5q2 + 6q + 1) is an integer

   a = 5q + 4
  ⇒ a2 = (5q + 4)2

    = 25q2 + 40q + 16  
  = 25q2 + 40q + 15 + 1  
  = 5(5q2 + 8q + 3) + 1

    = 5m + 1,  
where m = 5q2 + 8q + 3 is an integer

  Hence, the square of any positive integer is of the form 
5m, 5m + 1, 5m + 4 for some integer m.
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 5. Let a be any positive odd integer.
  If  a = 8m + 1
  ⇒  a2 = (8m + 1)2

    = 64m2 + 16m + 1  
  = 8(8m2 + 2m) + 1

    = 8q + 1,  
where q = 8m2 + 2m is an integer

   a = 8m + 3
  ⇒ a2 = (8m + 3)2

    = 64m2 + 48m + 9
    = 64m2 + 48m + 8 + 1
    = 8(8m2 + 6m + 1) + 1 
    = 8q + 1,  

where q = 8m2 + 6m + 1 is an integer
   a = 8m + 5 
  ⇒ a2 = (8m + 5)2

    = 64m2 + 80m + 25  
  = 64m2 + 80m + 24 + 1  
  = 8(8m2 + 10m + 3) + 1

    = 8q + 1,  
where q = 8m2 + 10m + 3 is an integer

   a = 8m + 7 
  ⇒ a2 = (8m + 7)2

    = 64m2 + 112m + 49
    = 64m2 + 112m + 48 + 1
    = 8(8m2 + 14m + 6) + 1
    = 8q + 1,  

where q = 8m2 + 14m + 6 is an integer
  Hence, square of any positive odd integer is of the 

form 8q + 1 for some integer q.

 6. On dividing n by 5, let m be the quotient and r be the 
remainder where m ≥ 0 and 0 ≤ r < 5. 

  Then by Euclid’s division lamma, we have n = 5m + r 
for some integer m ≥ 0 and 0 ≤ r < 5.

  Case 1. Let r = 0. Then n = 5m

  ∴ n + 4 = 5m + 4,  
 n + 8 = 5(m + 1) + 3 = 5q + 3  
where q = m + 1 is an integer.

   n + 12 = 5(m + 2) + 2 = 5q + 2,

  where q = m + 2 is an integer

   n + 16 = 5(m + 3) + 1 = 5q + 1,

  where q = m + 3 is an integer

  Case 2. Let r = 1. Then n = 5m + 1

  ∴ n + 4 = 5(m + 1) = 5q

  where q = m + 1 is an integer

   n + 8 = 5(m + 1) + 4

    = 5q + 4,

  where q = m + 1 is an integer

   n + 12 = 5(m + 2) + 3 = 5q + 3,

  where q = m + 2 is an integer

   n + 16 = 5(m + 3) + 2 = 5q + 2,

  where q = m + 3 is an integer

  Case 3. Let r = 2. The n = 5m + 2

  ∴  n + 4 = 5(m + 1) + 1 = 5q + 1,

  where q = m + 1 is an integer

   n + 8 = 5(m + 2) = 5q,

  where q = m + 2 is an integer

   n + 12 = 5(m + 2) + 4 = 5q + 4,

  where q = m + 2 is an integer 

   n + 16 = 5(m + 3) + 3 = 5q + 3,

  where q = m + 3 is an integer

  Case 4. Let r = 3. Then n = 5m + 3

  ∴ n + 4 = 5(m + 1) + 2 = 5q + 2,

  where q = m + 1 is an integer

   n + 8 = 5(m + 2) + 1 = 5q + 1,

  where q = m + 2 is an integer.

   n + 12 = 5(m + 3) = 5q,

  where q = m + 3 is an integer

   n + 16 = 5(m + 3) + 4 = 5q + 4,

  where q = m + 4 is an integer.

  Case 5. Let r = 4. Then n = 5m + 4

  ∴ n + 4 = 5(m + 1) + 3 = 5q + 3,

  where q = m + 1 is an integer

   n + 8 = 5(m + 2) + 2 = 5q + 2,

  where q = m + 2 is an integer

   n + 12 = 5(m + 3) + 1 = 5q + 1,

  where q = m + 3 is an integer

   n + 16 = 5(m + 4) = 5q,  
where q = m + 4 is an integer

  Hence, it follows that one and only one out of n,  
n + 4, n + 8, n + 12 and n + 16 is divisible by 5 where 
n is any positive integer.

 7. Let n and n + 1 be the two consecutive positive integers.
  We know n is of the form 2q or 2q + 1, where q is some 

integer.
  Case 1.  When n = 2q then n + 1 = (2q + 1) and their 

product = 2q(2q + 1) = 2(2q2 + q) which is 
divisible by 2.

  Case 2.  When n = (2q + 1) then n + 1 = 2q + 1 + 1  
= 2q + 2 and their product = (2q + 1) (2q + 2)  
= 2(2q + 1) (q + 1) which is divisible by 2.

  Hence, the product of two consecutive positive integers 
is divisible by 2.

 8. Let n, n + 1 and n + 2 be the three consecutive positive 
integers.

  We know that n is of the form 6q, 6q + 1 or 6q + 2 or 
6q + 3 or 6q + 4 or 6q + 5, q is some integer (refer to 
example 3).

  Case 1. When  n = 6q,

  then  n + 1 = 6q + 1

  and  n + 2 = 6q + 2

  and their product  = 6q(6q + 1)(6q + 2)

    = 6[q(6q + 1)(6q + 2)]

  which is divisible by 6.
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  Case 2. When  n = 6q + 1,

  then n + 1 = 6q + 2
  and n + 2 = 6q + 3
  and their product = (6q + 1) (6q + 2) (6q + 3)
    = (6q + 1) 2(3q + 1) 3(2q + 1)
    = 6(6q + 1) (3q + 1) (2q + 1)  

 which is divisible by 6.
  Case 3. When  n = 6q + 2
  then n + 1 = 6q + 3 

and n + 2 = 6q + 4
  and their product = (6q + 2)(6q + 3)(6q + 4)
    = 2(3q + 1) 3(2q + 1) 2(3q + 2)
    = 12(3q + 1) (2q + 1) (3q + 2)
  which is divisible by 6.
  Case 4. When  n = 6q + 3,
  then  n + 1 = 6q + 4
  and n + 2 = 6q + 5 
  and their product  = (6q + 3) (6q + 4) (6q + 5)  

  = 3(2q + 1) 2(3q + 2) (6q + 5)
    = 6(2q + 1) (3q + 2) (6q + 5)
  which is divisible by 6.
  Case 5. When  n = 6q + 4,
  then n + 1 = 6q + 5
  and n + 2 = 6q + 6
  and their product  = (6q + 4) (6q + 5) (6q + 6)
    = 2(3q + 2) (6q + 5) 6(q + 1)
    = 12 (3q + 2) (6q + 5) (q + 1)  

which is divisible by 6.
  Case 6. When  n = 6q + 5,
  then n + 1 = 6q + 6
  and n + 2 = 6q + 7  

and their product   = (6q + 5) (6q + 6) (6q + 7)  
  = 6(6q + 5) (q + 1) (6q + 7)  
which is divisible by 6.

  Hence, the product of three consecutive positive 
integers is divisible by 6.

 9.  n3 – n = n(n2 – 1)
    = n(n – 1) (n + 1)
  We know that any positive integer is of the form 6q or 

6q + 1 or 6q + 2 or 6q + 3 or 6q + 4 or 6q + 5
  Case 1. When n = 6q,
  then n(n – 1)(n + 1) = 6q (6q – 1) (6q + 1)  

which is divisible by 6.
  Case 2. When n =  6q + 1
  then n(n – 1) (n + 1) = (6q + 1) (6q + 1 – 1) (6q + 1 + 1)  

  = (6q + 1) (6q) (6q + 2)  
  = (6q + 1) (6q) 2(3q + 1)  
  = 12q (6q + 1) (3q + 1)  
which is divisible by 6.

  Case 3. When n = 6q + 2,
  then n(n – 1) (n + 1) = (6q + 2) (6q + 2 – 1) (6q + 2 + 1)  

  = 2(3q + 1) (6q + 1) 3(2q + 1)  
  = 6(3q + 1) (6q + 1) (2q + 1)  
which is divisible by 6.

  Case 4. When n =  6q + 3,  
then n (n – 1) (n + 1) = (6q + 3) (6q + 3 – 1) (6q + 3 + 1)  
  = (6q + 3) (6q + 2) (6q + 4)

    = 3(2q + 1) 2(3q + 1) 2(3q + 2)
    = 12(2q + 1) (3q + 1) (3q + 2)
  which is divisible by 6.
  Case 5. When n = 6q + 4,  

then n (n – 1) (n + 1)  = (6q + 4) (6q + 4 – 1) (6q + 4 + 1)  
  = (6q + 4) (6q + 3) (6q + 5)  
  = 2(3q + 2) 3(2q + 1) (6q + 5)  
  = 6(3q + 2) (2q + 1) (6q + 5)  
which is divisible by 6.

  Case 6. When  n = 6q + 5,  
then n (n – 1) (n + 1) = (6q + 5) (6q + 5 – 1) (6q + 5 + 1)  
  = (6q + 5) (6q + 4) (6q + 6)  
  = (6q + 5) 2(3q + 2) 6(q + 1)  
  = 12(6q + 5) (3q + 2) (q + 1)  
which is divisible by 6.

  Hence, for any positive integer n, n3 – n is divisible  
by 6.

For Standard Level
 10. Let ‘a’ be any positive integer. On dividing ‘a’ by 6, let 

m be the quotient and r be the remainder, where m ≥ 0 
and 0 ≤ r < 6.

  Then, by Euclid’s division lemma, we have a = 6m + r 
for some integer m ≥ 0 and 0 ≤ r < 6. We now consider 
the following cases:

  Case 1. Let r = 0.
  Then,  a = 6m
  ⇒ a2 = 36m2 = 6(6m2)
    = 6q
  where q = 6m2 is an integer
  Case 2. Let r = 1.
  Then, a = 6m + 1
  ∴  a2 = (6m + 1)2

    = 36m2 + 12 + 1
    = 6(6m2 + 2m) + 1
    = 6q + 1
  where q = 6m2 + 2m is an integer.
  Case 3. Let r = 2.
  Then a = 6m + 2
  ∴  a2 = (6m + 2)2

    = 36m2 + 24m + 4
    = 6(6m2 + 4m) + 4
    = 6q + 4
  where q = 6m2 + 4m is an integer.
  Case 4. Let r = 3.
  Then a = 6m + 3
  ∴  a2 = (6m + 3)2
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    = 36m2 + 36m + 9
    = 6(6m2 + 6m + 1) + 3
    = 6q + 3

  Where q = 6m2 + 6m + 1 is an integer.

  Case 5. Let r = 4.

  Then  a = 6m + 4

  ∴  a2 = (6m + 4)

    = 36m2 + 48m + 16

    = 6(6m2 + 8m + 2) + 4

    = 6q + 4

  where q = 6m2 + 8m + 2 is an integer

  Case 6. Let r = 5.

  Then a = 6m + 5

  ∴ a2 = (6m + 5)2 = 36m2 + 60m + 25

    = 6(6m2 + 10m + 4) + 1

    = 6q + 1,

  Where q = 6m2 + 10m + 4 is an integer.

  Since a2 is of the form 6q, 6q + 1, 6q + 4, 6q + 3

  Hence, the square of any integer cannot be of the form 
6q + 2, 6q + 5 for any integer q.

 11. Let a be any positive integer.
  On dividing a by 4, let q be the quotient and r be the 

remainder.
  Then, by Euclid’s division lemma, we have
   a = 4q + r,
  where 0 ≤ r < 4
  ⇒ a = 4q (when r = 0),  

 a = 4q + 1 (when r = 1),  
 a = 4q + 2 (when r = 2),  
and a = 4q + 3 (when r = 3)

   a = 4q
  ⇒  a3 = (4q)3

    = 64q3

    = 4(16q3)
    = 4m,
  where m = 16q3 is an integer.
   a = 4q + 1  
  ⇒  a3 = (4q +1)3

    = 64q3 + 48q2 + 12q +1
    = 4(16q3 + 12q2 + 3q) + 1
    = 4m + 1,  

where m = (16q3 + 12q2 + 3q) is an integer
   a = 4q + 2
  ⇒  a3 = (4q +2)3

    = 64q3 + 96q2 + 48q + 8
    = 4(16q3 + 24q2 + 12q + 2) 
    = 4m,  

where m = (16q3 + 24q2 + 12q + 2) is an integer
   a = 4q + 3

  ⇒  a3 = (4q + 3)3

    = 64q3 + 144q2 + 108q + 27 
    = 64q3 + 144q2 + 108q + 24 + 3
    = 4(16q3 + 36q2 + 27q + 6) + 3  

  = 4m + 3, 
  where m = (16q3 + 36q2 + 27q + 6) is an integer
  Hence, the cube of any positive integer is of the form 

4m, 4m + 1 or 4m + 3 for some integer m.
 12. Given positive integer is of the form 6q + r, where q is 

an integer and r = 0, 1, 2, 3, 4, 5.
  Thus, the given positive integer may be 6q + 0, 6q + 1, 

6q + 2, 6q + 3, 6q + 4 or 6q + 5.
   (6q + 0)3 = 216q3

    = 6(36q3)
    = 6m + 0
    = 6m + r,
  where m = 36q3 is an integer and r = 0
   (6q + 1)3 = 216q3 + 108q2 + 18q + 1 
    = 6(36q3 + 18q2 + 3q) + 1
    = 6m + 1 
    = 6m + r,  

where m = 36q3 + 18q2 + 3q is an integer and r = 1
   (6q + 2)3 = 216q3 + 216q2 + 72q + 8 
    = 216q3 + 216q2 + 72q + 6 + 2
    = 6(36q3 + 36q2 + 12q + 1) + 2 
    = 6m + 2 = 6m + r, 
  where m = (36q3 + 36q2 + 12q + 1) is an integer and r = 2
   (6q + 3)3 = 216q3 + 324q2 + 162q + 27  

  = 216q3 + 324q2 + 162q + 24 + 3  
  = 6(36q3 + 54q2 + 27q + 4) + 3  
  = 6m + 3 = 6m + r, 

  where m = (36q3 + 54q2 + 27q + 4) is an integer and r = 3
   (6q + 4)3 = 216q3 + 432q2 + 288q + 64 
    = 216q3 + 432q2 + 288q + 60 + 4 
    = 6(36q3 + 72q2 + 48q + 10) + 4 = 6m + 4 
    = 6m + r, 
  where m = (36q3 + 72q2 + 48q + 10) is an integer and r = 4
   (6q + 5)3 = 216q3 + 540q2 + 450q + 125 
    = 216q3 + 540q2 + 450q + 120 + 5 
    = 6(36q3 + 90q2 + 75q + 20) + 5 
    = 6m + 5 = 6m + r, 
  where m = (36q3 + 90q2 + 75q + 20) is an integer and r = 5
  Hence, the cube of a positive integer of the form 6q + r 

is also of the form 6m + r.

 EXERCISE 1B

For Basic and Standard Levels
 1. The smallest prime number is 2 and the smallest 

composite number is 4. Now, since 4 = 2 × 2 + 0, 
hence, the HCF of these two numbers is 2.
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 2. (i)  Applying Euclid’s division 
lemma to 650 and 1170, we 
get 

    1170 = 650 × 1 + 520
  Since the remainder  

520 ≠ 0, so we apply the 
division lemma to the divisor 
650 and the remainder 520, 
to get

    650 = 520 × 1 + 130
  As the remainder 130 ≠ 0, we apply the division 

lemma to the new divisor 520 and the new 
remainder 130, to get 

    520 = 130 × 4 + 0
	 	 We	observe	that	the	final	remainder	is	0.	So,	the	last	

divisor 130 is the required HCF of 650 and 1170.
 (ii) Applying Euclid’s division lemma to the given 

numbers 1260 and 7344, we get
    7344 = 1260 × 5 + 1044
  Since the remainder 1044 ≠ 0, so we apply the 

division lemma to the divisor 1260 and the 
remainder 1044, to get

    1260 = 1044 × 1 + 216

  As the remainder 216 ≠ 0, we apply the division 
lemma to the new divisor 1044 and the new 
remainder 216, to get

    1044  = 216 × 4 + 180
  As the remainder 180 ≠ 0, we apply the division 

lemma to the new divisor 216 and the new 
remainder 180, to get 

    216 = 180 × 1 + 36
  As this remainder 36 ≠ 0, we apply the division 

lemma to the new divisor 180 and the new 
remainder 36, and get 

    180 = 36 × 5 + 0
	 	 We	observe	that	the	final	remainder	is	0.
  ∴  The divisor 36 is the required HCF of 1260 and 

7344.
  (iii)

  HCF = 4914

  (iv)

  HCF = 89

  (v)

  HCF = 13
  (vi)

62  7161  115

– 62

96

– 62

341

310

31  62  2

– 62

x

  HCF = 31
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 3. Maximum number of gift hampers = HCF of 40, 24 and 
16.

  

  ∴  HCF of 40, 24 and 16 is 8.
  She can make 8 hampers.

  [Note: Each hamper will contain 40
8

 = 5 bananas,  
24
8

 = 3 oranges and 16
8

= 2 pineapples.]

 4. Maximum number of columns consisting of same 
number of boys and girls = HCF of 60 and 72.

  

  HCF of 60 and 72 = 12
  ∴ Maximum number of required columns = 12. .

 5. Maximum number of columns (consisting of equal no. 
of members) in which the contingent of 1000 members 
and army band of 56 members can walk in a parade = 
HCF of 56 and 1000 = 8.

  

  ∴ They can march in 8 columns.

  [Note: Each column will consists of 1000
8

= 125 members 

of contingent and 56
8

 = 7 members of the army band.]

 6. The maximum number of identical flower arrangement 
with 45 roses, 65 carnations and 50 tulips will be the 
HCF of 45, 65 and 50.

  By Euclid’s division lemma to 65 and 
45, we have

   65 = 45 × 1 + 20

  Since the remainder 20 ≠ 0, applying 
division lemma to 45 and 20, we get 

   45 = 20 × 2 + 5

  Since the remainder 5 ≠ 0, applying 
division lemma to 20 and 5, we get

   20 = 5 × 4 + 0

  Since the remainder is 0, the HCF of 45 and 65 is 5.

45  65  1

– 45

20  45  2

– 40

5  20  4

– 20

x

  Now, applying the division lemma to 50 
and 5, we get

   50 = 5 × 10 + 0

  Since the final remainder is 0, hence, the HCF of 45, 65 
and 50 is 5.

  Hence, the required maximum number of arrangements 
is 5.

For Standard Level

 7. 153 = 85 × 1 + 68  … (1) 

  85 =  68 × 1 + 17   … (2) 

  68 = 17 × 4 + 0    

  ∴ HCF of 85 and 153 is 17.
  From (2), 17 = 85 – 68 × 1  

  = 85 – (153 – 85 × 1) [Using (1)]
  ⇒  17 = 85 – 153 + 85  

  = 85 × 2 + 153 × (–1)  
⇒ 17 = 85x + 153y,

   where x = 2, y = –1.

 8. 1155 = 506 × 2 + 143  … (1) 

 

  506 = 143 × 3 + 77  … (2) 

  143 = 77 × 1 + 66  … (3) 

  77 = 66 × 1 + 11  … (4) 

  66 = 11 × 6 + 0   … (5) 

  ∴ HCF of 506 and 1155 is 11.
  Given, HCF = 506x + 1155 × (–7)
  ⇒  11 = 506x – 8085  

⇒  506x = 8096  
⇒  x = 16

 9. 81 = 63 × 1 + 18  … (1) 

  63 = 18 × 3 + 9   … (2) 

  18 = 9 × 2 + 0     

5  50  10

– 50

x

© Ratna Sagar



9

Real N
um

bers

  ∴ HCF of 63 and 81 = 9.

  From (2), 9 = 63 – 18 × 3  
  = 63 – (81 – 63) × 3  [Using (2)]

    = 63 – 81 × 3 + 63 × 3  
  = 63 × 4 + 81 × (– 3),

  where  x = 4 and y = – 3 
Now,  9 = 63 × 4 + 81 × (– 3)  
  = 63 × 4 + 81 × (–3) – 63 × 81 + 63 × 81

    = 63(4 – 81) + 81(63 – 3)  
  = 63(–77) + 81(60), 
where  x = – 77 and y = 60 

  Hence, x and y are not unique.

 10. The number of students in each bus must be HCF of 
156, 208 and 260.

  

  ∴ HCF of 156, 208 and 260 = 52.
  ∴ In each bus maximum 52 students can be seated. 

Total number of students 
                     = 156 + 208 + 260 = 624 

  ∴ Minimum number of buses required = 624
52

 = 12

 11. Length of longest rod in cm which can measure the given 
dimensions exactly = HCF of 810, 630 and 540 (in cm).

  

   HCF = 90
  ∴ Required length of rod = 90 cm

 12. Largest number that divides 382, 446 and 674 leaves 
remainder 5, 11 and 7 respectively.

  ∴  382 – 5 = 377, 446 – 11 = 435 and 674 – 7 = 667 are 
completely divisible by the required number.

  ∴ The required number is the HCF of 377, 435 and 667.

  HCF of 377, 435 and 667 is 29.

  ∴ The required number is 29.

 13. Since 1251, 9377 and 15628 divided by the required 
largest number leave the remainders 1, 2 and 3 
respectively, 

  ∴ 1251 – 1 = 1250, 9377 – 2 = 9375 and 15628 – 3 = 
15625 are completely divisible by the required number. 
Clearly, the required largest number is the HCF of 
1250, 9375 and 15625.

  Applying Euclid’s division lemma to 1250 and 9375, we 
get

   9375 = 1250 × 7 + 625

  Since the remainder 625 ≠ 0, therefore, applying 
division lemma to 625 and 1250, we get

   1250 = 625 × 2 + 0

  Since the remainder is 0, the divisor 625 is the HCF of 
1250 and 9375.

1250  9375  7

– 8750

625  1250  2

– 1250

x

  Now, applying divisor lemma to 15625 and 625, we get

   15625 = 625 × 25 + 0

625  15625  25

– 1250

3125

– 3125

x

  Since the remainder is 0, so the divisor 625 is the HCF 
of 625 and 15625.

  ∴ The HCF of 1250, 9375 and 15625 is 625.

  ∴ The required number is 625.

EXERCISE 1C

For Basic and Standard Levels
 1. (i)  (ii)

   

2 156
2 78
3 39

13 13
1

  

2 336
2 168
2 84
2 42
3 21

7

  156 = 22 × 3 × 13 336 = 24 × 3 × 7

 (iii)   (iv)

   

2 1296
2 648
2 324
2 162
3 81
3 27
3 9
3 3

1

  

2 8232
2 4116
2 2058
3 1029
7 343
7 49
7 7

1

  1296 = 24 × 34 8232 = 23 × 3 × 73
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 (v)    (vi)

   

2 26676
2 13338
3 6669
3 2223
3 741

13 247
19 19

1

  

2 58500
2 29250
3 14625
3 4875
5 1625
5 325
5 65

13 13
1

  26676 = 22 × 33 × 13 × 19 58500 = 22 × 32 × 53 × 13

  2. 

 3.  (i) The only prime factors of 7n are 1 and 7.
  According to the fundamental theorem of 

arithmetic, the prime factorization of each number 
is unique.

  ∴ 7n cannot have 2 and 5 as a factor.
    For 7n to have unit digit 0 for any n ∈ N, it must 

have 2 and 5 also as factors.
  ∴ 7n cannot have unit digit 0 for any n ∈ N.
 (ii) 8n = (23)n = 23n

  ⇒   The only prime in the factorization of 8n is 2. 
By the uniqueness of fundamental theorem 
of arithmetic, there is no other prime in the 
factorization of 8n = 23n

  ∴  5 does not occur in the prime factorization of 8n 
for any n ∈ N. 

  For 8n to end with digit 0 for any natural number n, 
it must have 5 also as a factor.

  ∴ 8n cannot end with digit 0 for any n ∈ N.
 (iii) 15n = (3 × 5)n = 3n × 5n

 

  ⇒  The only prime factors of 15n are 3 and 5. 
According to the fundamental theorem of 
arithmetic, the prime factorization of each 
number is unique.

  ∴ 15n cannot have 2 as a factor.
    For 15n to end with digit 0 for any n ∈ N, it 

must have 2 also as a factor.
  ∴ (15)n cannot end with digit 0 for any n ∈ N.
 (iv) (26)n = (2 × 13)n = 2n × 13n

  ⇒  The only prime factors of 26n are 2 and 13.
    According to the fundamental theorem of 

arithmetic, the prime factorization of each 
number is unique.

  ∴ (26)n cannot have 5 as a factor.

    For (26)n to end with digit 5 for any n ∈ N, it 
must have 5 also as a factor.

  ∴ (26)n cannot end with digit 5 for any n ∈ N.
 (v) (28)n = (2 × 2 × 7)n = (22 × 7)n = 22n × 7n

  ⇒  The only prime factors of (28)n are 2 and 7.
    According to the fundamental theorem of 

arithmetic, the prime factorization of each 
number is unique.

  ∴ (28)n cannot have 5 as a factor.
    For (28)n to end with digit 0 for any n ∈ N, it 

must have 5 also as a factor.
  ∴ (28)n cannot end with digit 0 for any n ∈ N.
 (vi) 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 ends with 2, 26 ends 

with digit 4, 27 ends with digit 8, 28 ends with digit 
6 and the cycle goes on.

  ∴  2n can end with digit 6 for any n ∈ N when  
n = 4, 8, 12…. and so on.

 4. (i)

   
2 6
3 3

1
  

2 20
2 10
5 5

1
  6 = 2 × 3  20 = 22 × 5
  LCM = 22 × 3 × 5 = 60
  HCF = 2

 (ii)

   

2 144
2 72
2 36
2 18
3 9
3 3

1

  

2 98
7 49
7 7

1

  144 = 24 × 32  98 = 2 × 72

  LCM = 24 × 32 × 72 = 7056
  HCF = 2

 (iii)

   

2 570
3 285
5 95

19 19
1

  

3 1425
5 475
5 95

19 19
1

  570 = 2 × 3 × 5 × 19 1425 = 3 × 52 × 19
  LCM = 2 × 3 × 52 × 19 = 2850
   HCF = 3 × 5 × 19 = 285

 (iv)

   
19 19

1   
13 13

1   
7 7

1

  19 = 19 × 1 13 = 13 × 1 7 = 7 × 1
  LCM = 19 × 13 × 7 = 1729
   HCF = 1

 (v)

   

5 275
5 55

11 11
1

  

3 225
3 75
5 25
5 5

1

  

5 175
5 35
7 7

1

  275 = 52 × 11  225 = 32 × 52 175 = 52 × 7
  LCM = 32 × 52 × 7 × 11= 17325
   HCF = 52 = 25
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  (vi) 

   

3 765
3 255
5 85

17 17
1

  

2 510
3 255
5 85

17 17
1

   

2 408
2 204
2 102
3 51

17 17
1

  765 = 32 × 5 × 17, 510 = 2 × 3 × 5 × 17, 408 = 23 × 3 × 17
  LCM = 23 × 32 × 5 × 17 = 6120
  HCF = 3 × 17 = 51

 5. (i) 

   

2 12
2 6
3 3

1

 
3 15
5 5

1

12 = 22 × 3  15 = 3 × 5

   

2 20
2 10
5 5

1

 

2 54
3 27
3 9
3 3

1

  20 = 22 × 5  54 = 2 × 33

  LCM = 22 × 33 × 5 = 540
 (ii) 

   
2 14
7 7

1
  

2 28
2 14
7 7

1

   14 = 2 × 7  28 = 22 × 7

   

2 36
2 18
3 9
3 3

1

  

3 45
3 15
5 5

1

   36 = 22 × 32  45 = 32 × 5
  LCM = 22 × 32 × 5 × 7 = 1260

 6. Prime factors of a and b are x and y with greatest 
exponents 3 and 3 respectively. Hence, required LCM is 
x3y3.

 7. (i)

   

2 72
2 36
2 18
3 9
3 3

1

  

2 80
2 40
2 20
2 10
5 5

1

  

2 120
2 60
2 30
3 15
5 5

1

   72 = 23 × 32  80 = 24 × 5 120 = 23 × 3 × 5
  LCM = 24 × 32 × 5 = 720

  (ii) (a) 

   

2 26260
2 13130
5 6565

13 1313
101

  

2 1482
3 741

13 247
19 19

1

26260 = 22 × 5 × 13 × 101  1428 = 2 × 3 × 13 × 19
  LCM = 22 × 3 × 5 × 13 × 101 = 1496820
   HCF = 2 × 13 = 26

 (b) 

   

3 43263
3 14421
11 4807
19 437
23 23

1

  

5 15295
7 3059
19 437
23 23

1

  43263 = 32 × 11 × 19 × 23 15295 = 5 × 7 × 19 × 23
  LCM = 32 × 5 × 7 × 11 × 19 × 23 = 1514205
  HCF = 19 × 23 = 437

 (c) 

   
41 41

1   
2 14
7 7

1

   41 = 41 × 1  14 = 2 × 7
  LCM = 2 × 7 × 41 = 574
  HCF = 1

 8. We first find the prime factors of 404 and 96 as follows:
2 404
2 202

101
       

2 96
2 48
2 24
2 12
2 6

3

  ∴  404 = 22 × 101

  and 96 = 25 × 3

  ∴ LCM = 25 × 101 × 3 = 9696

  and HCF = 22 = 4

  ∴ HCF × LCM = 9696 × 4 = 38784 …(1)

  Also, product of two given numbers

    = 404 × 96 = 38784 …(2)

  ∴ From (1) and (2), we see that

   HCF × LCM = Product of the two given numbers.

 9. Taking the greatest exponents of each prime factor of p 
and q, we get LCM (p, q) = a3b3.

  Again, taking the least exponent of each common prime 
factor of p and q, we get

   HCF(p, q) = a2b

  ∴ pq = a3b3 × a2b = a5b4 …(1)

  Also, LCM (p, q) × HCF (p, q) = a3b3 × a2b = a5b4 …(2)

  From (1) and (2), we get

  LCM(p, q) × HCF(p, q) = pq

 10.  LCM of two numbers = 
Productof the numbers

theirHCF

   ∴ LCM (435, 725) = 435 725
145

× = 2175

 11.  HCF of two numbers = 
Productof the numbers

theirLCM

   ∴ HCF (396, 576) = 396 576
6336

× = 36
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 12. Let the other number be x.
  Product of two numbers = Product of their LCM and HCF
   1071x = 11781 × 119

   x = 11781 119
1071

× = 1309

 13. We have

   HCF × LCM = Product of two required numbers

  ⇒  9 × 360 = 45 × x

  where x is the other required number.

  ⇒  x = 9 360
45

×  = 72

  ∴ Required other number is 72.

 14.  The first person’s steps will cover distances 90 cm,  
180 cm, 270 cm, … and so on.

  The second person’s steps will cover distances 80 cm, 
160 cm, 240 cm, … and so on.

  The third person’s steps will cover distances 85 cm,  
170 cm, 255 cm, … and so on.

  Minimum distance each of them will cover before they 
meet again = LCM of 90, 80, 85.

   

2 90
3 45
3 15
5 5

1

  

2 80
2 40
2 20
2 10
5 5

1

  
5 85

17 17
1

 

 90 = 2 × 32 × 5  80 = 24 × 5  85 = 5 × 17
  ∴ LCM of 90, 80, and 85 = 24 × 32 × 5 × 17 = 12240.
  Hence, the minimum distance each of them will cover 

before they meet again = 12240 cm = 122 m 40 cm.

 15.  First student beats the drums after 10, 20, 30, 40 
(seconds), … and so on.

  Second student beats the drums after 12, 24, 36, 48 
(seconds), … and so on.

  ∴  Minimum time after which they beat the drums at 
the same instant = LCM of 10 and 12

   
2 10
5 5

1
  

2 12
2 6
3 3

1

   10 = 2 × 5  12 = 22 × 3
  LCM of 10 and 12 = 22 × 3 × 5 = 60.
  They will beat the drum at the same instant after 60 

seconds, i.e. 1 minute.

 16.  1st bell ring after 4, 8, 12, 16 (minutes), … and so on.
  2nd bell rings after 7, 14, 21, 28 (minutes), … and so on.
  3rd bell rings after 14, 28, 42, 56 (minutes), … and so on.
  Minutes after which the three bells will ring together 

again = LCM of 4, 7 and 14 (in minutes).

   
2 4
2 2

1
  

7 7
1   

2 14
7 7

1

   4 = 22  7 = 7 × 1  14 = 2 × 7
  LCM = 22 × 7 = 28 (minutes)
  The three bells will ring together after 28 minutes, i.e at 

6.28 a.m.

 17.  Planes from the 1st runway take off after 3, 6, 9, 12, 15 
(minutes), … and so on.

  Planes from the 2nd runway take off after 4, 8, 12, 16 
(minutes), … and so on.

  Planes from the 3rd runway take off after 8, 16, 24, 32 
(minutes), … and so on.

  Planes from the 4th runway take off after 12, 24, 36, 48 
(minutes), … and so on.

  Planes from the 5th runway take off after 15, 30, 45, 60 
(minutes), … and so on.

   Minutes after which the planes from five runways 
take off simultaneously = LCM of 3, 4, 8, 12 and 15 (in 
minutes).

  

2 3 4 8 12 15
2 3 2 4 6 15
3 3 1 2 3 15

1 1 2 1 5

, , , ,
, , , ,
, , , ,
, , , ,

  LCM = 2 × 2 × 3 × 2 × 5 = 120 (in minutes) = 2 hours
  So, the five planes take off together at 7.30 a.m. + 2 hours 

= 9.30 a.m.
 18. Green colour lights come on after 10, 20, 30, 40 

(seconds), … and so on.
  Yellow colour light come on after 15, 30, 45, 60 

(seconds), … and so on.
  Seconds after which the two lights come on together 

after being turned on at the same time = LCM of 10 
and 15 (in seconds).  
 10 = 2 × 5

   15 = 3 × 5  
∴ LCM of 10 and 15 = 2 × 3 × 5 = 30 (in seconds).

  So, that two colour lights having turned on at the same 
time will come on together after 30 seconds.

For Standard Level
 19. Let the two numbers be a and b where a = 280.
  Let their LCM be x and HCF be y.   

Then, LCM = x = 14y … (1)
  and  x + y = 600  … (2)
  ∴  14y + y = 600 [From (1) and (2)] 

⇒  15y = 600  
⇒  y = 40  
⇒  HCF = 40

  ∴ LCM = x = 14y = 14 × 40 = 560
  Now, product of two numbers = product of their LCM 

and HCF
  ∴  280 × b = 560 × 40

  ⇒  b = 560 40
280

×  = 80

 20.  Greatest number of 5 digits is 99999.
  Required number must be divisible by LCM of 24, 15, 

36.
  Hence, required number = 99999 – remainder when 

99999 is divisible by LCM of 24, 15, 36.

  

2 24 15 36
2 12 15 18
3 6 15 9

2 5 3

, ,
, ,
, ,
, ,
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  ∴ LCM of 24, 15, 36 = 2 × 2 × 3 × 2 × 5 × 3 = 360

  

  Here, remainder = 279
  ∴ Required number = 99999 – 279 = 99720

EXERCISE 1D

For Basic and Standard Levels

 1. Let us assume on the contrary that 5  is a rational number 

and its simplest form is a
b

, where a and b are integers 

having no common factor other than 1 and b ≠ 0.

  Now,  5  = a
b

 

⇒  5 = a
b

2

2  

⇒  5b2 = a2 … (1)
  ⇒ a2 is divisible by 5 [ 5b2 is divisible by 5]
  ⇒ a is divisible by 5
  [ 5 is prime and divides a2 ⇒ 5 divides a]
  Let a = 5c for some integer c.
  Substituting a = 5c in (1), we get
   5b2 = (5c)2  

⇒  5b2 = 25c2  
⇒  b2 = 5c2

  ⇒ b2 is divisible by 5 [ 5c2 is divisible by 5]
  ⇒ b is divisible by 5 
  [ 5 is prime and divides b2 ⇒ 5 divides b]
  Since a and b are both divisible by 5, 
  ∴  5 is a common factor of a and b.  

But this contradicts the fact that a and b have no 
common factor other than 1.

  The contradiction has arisen because of incorrect 
assumption that 5  is rational.

  Hence, 5  is irrational.

 2. Let us assume on the contrary that 7  is a rational 

number and its simplest form is a
b

, where a and b are 

integers having no common factor other than 1 and  
b ≠ 0.

  Now,  7  = a
b

  

⇒  7 = a
b

2

2  = 7b2 = a2 … (1)

  ⇒ a2
 is divisible by 7  [ 7b2 is divisible by 7]

  ⇒ a is divisible by 7
  [7 is prime and divides a2 ⇒ 7 divides a]
  Let a = 7c for some integer c.

  Substituting a = 7c in (1), we get
   7b2 = (7c)2  

⇒  7b2 = 49c2  
⇒  b2 = 7c2

  ⇒ b2 is divisible by 7  [ 7c2 is divisible by 7]
  ⇒ b is divisible by 7 
   [ 7 is prime and divides a2 ⇒ 7 divides a]
  Since a and b are both divisible by 7,
  ∴  7 is a common factor of a and b.
  But this contradicts the fact that a and b have no 

common factor other than 1.
  The contradiction has arisen because of incorrect 

assumption that 7  is rational.

  Hence, 7  is irrational.

 3.  Let us assume on the contrary that 11  is a rational 

number and its simplest form is a
b

, where a and b are 

integers having no common factor other than 1 and  
b ≠ 0.

  Now,  11  = a
b

  

⇒  11 = a
b

2

2

  ⇒ 11b2 = a2  … (1)
  ⇒ a2

 is divisible by 11  [ 11b2 is divisible by 11]
  ⇒ a is divisible by 11
  [ 11 is a prime and divides a2 ⇒ 11 divides a]
  Let a = 11c for some integer c
  Substituting a = 11c in (1), we get  

 11b2 = (11c)2  
⇒  11b2 = 121c2  
⇒  b2 = 11c2

  ⇒ b2 is divisible by 11  [ 11c2 is divisible by 11]
  ⇒ b is divisible by 11
  [ 11 is prime and divides b2 ⇒ 11 divides b]
  Since a and b are both divisible by 11,
  ∴  11 is a common factor of a and b.
  But this contradicts the fact that a and b have no 

common factor other than 1.
  The contradiction has arisen because of incorrect 

assumption that 11  is rational.

  Hence, 11  is irrational.

 4.  (i)  Let us assume on the contrary that 3 7  is a 

rational number.
  Then, there exist coprime a and b (b ≠ 0) such that

   3 7  = a
b

  ⇒ 7  = a
b3

  ⇒ 7  is rational

  [ 3, a and b are integers ∴ a
b3

 is a rational number]

  This contradicts the fact that 7  is irrational.
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  The contradiction has arisen because of our 
incorrect assumption that 3 7  is rational.

  Hence, 3 7  is irrational.

 (ii) Let us assume on the contrary that 2 3
5

 is a 
rational number.

  Then, there exist coprime a and b (b ≠ 0) such that

   2 3
5

 = a
b

  ⇒  3  = 5
2
a
b

  ⇒ 3  is rational

[ 2, 5, a and b are integers ∴ 5
2
a
b

 is a rational number.]

  This contradicts the fact that 3  is irrational.

  The contradiction has arisen because of our 

incorrect assumption that 2 3
5

 is rational.

  Hence, 2 3
5

 is irrational.

 (iii) Let us assume on the contrary that 3 + 5 2  is 

rational.
  Then, there exist coprime a and b (b ≠ 0) such that

   3 + 5 2  = a
b

  

⇒  5 2  = a
b

– 3 = a b
b

− 3   

⇒  2  = a b
b

− 3
5

  ⇒ 2  is rational [ 3, 5, a and b are integers  

 a b
b

− 3
5

 is a rational number]

  This contradicts the fact that 2  is irrational.

  The contradiction has arisen because of our 
incorrect assumption that 3 + 5 2  is rational.

  Hence, 3 + 5 2  is irrational.

 (iv) Let us assume on the contrary that 2 3 1−  is 

rational.
  Then, there exist coprime a and b (b ≠ 0) such that

   2 3 1−  = a
b

  

⇒  2 3  = a
b

 + 1 = a b
b
+  

⇒ 3  = a b
b

+
2

 

⇒ 3   is rational

[ 2, a and b are integers ∴ a b
b

+
2

 is a rational number.]

   This contradicts the fact that 3  is irrational.

  The contradiction has arisen because of our 
incorrect assumption that 2 3 1−  is rational.

  Hence, 2 3 1−  is irrational.

 (v)  Refer to part (iii)
 (vi) Refer to part (iv)

 (vii) Let us assume on the contrary 3 5−  is rational.

  Then, there exist coprime a and b (b ≠ 0) such that

   3 5−  = a
b

  

⇒ 5  = 3 – a
b

 = 3b a
b
−

  ⇒  5   is rational

[ 3, a and b integers ∴ 3b a
b
−  is a rational number.]

  This contradicts the fact that 5  is irrational.

  The contradiction has arisen because of our 
incorrect assumption that 3 5−  is rational.

  Hence, 3 5−  is irrational.

 (viii) Let us assume on the contrary 12 3 41−  is rational.

  Then, there exist coprime a and b (b ≠ 0) such that

    12 3 41−  = a
b

  

  ⇒ 12 3  = a
b

 + 41 = a b
b

+ 41   

  ⇒ 3  = a b
b

+ 41
12

   ⇒  3   is rational

  [ 12, 41, a and b are integers  

∴ a b
b

+ 41  is a rational number]

   This contradicts the fact that 3  is irrational.

    The contradiction has arisen because of our 
incorrect assumption that 12 3 41−  is rational.

   Hence, 12 3 41−  is irrational.

 (ix) Refer to (iii)
 (x) If possible, let us assume that 7 – 5  is a rational 

number. Then there exist coprime a and b where  
b ≠ 0, such that 

   7 – 5  = a
b

  ⇒ 7 – a
b

 = 5

  ⇒  7b a
b
−  = 5

  But LHS is a rational number, since a and b are 
integers and b ≠ 0. This is absurd, since we know 
that 5  is an irrational number.

  Hence, there is a contradiction in our assumption. 
  Hence, 7 5−  is an irrational number.
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 (xi) If possible, let us assume that 2 3
5

+  is a rational 

number. Then there exist coprime a and b, where  
b ≠ 0, such that   

  2 3
5

+  = a
b

  ⇒  (2 + 3 )b = 5a

  ⇒  2 + 3  = 5a
b

  ⇒  3  = 5 2a
b

−  = 5 2a b
b
−

  Now, RHS is a rational number, since a and b are 
integers and b ≠ 0. This is absurd, since we know 
that 3  is an irrational number. Hence, there is a 

contradiction in our assumption.

  Hence, 2 + 3
5

 is an irrational number.

 (xii) If possible, let us assume that 3 5+  is a rational 

number. Then there exist coprime a and b, where  
b ≠ 0, such that

    3 5+  = a
b

  ⇒  3  = a
b

− 5

  ⇒  3 = a
b

−





5
2

[Squaring both sides] 

     = a
b

a
b

2

2 5 2 5+ −

     = a b ab
b

2 2

2
5 2 5+ +

  ⇒  a2 + 5b2 + 2 5ab  = 3b2

  ⇒  a2 + 5b2 – 3b2 = −2 5ab

  ⇒  a b
ab

2 22
2
+

−
 = 5

  Since a and b are integers and b ≠ 0, LHS is a 
rational number. But we know that 5  is an 

irrational number. Hence, there is a contradiction in 
our assumption.  
Hence, 3 + 5  is an irrational number.

 5.  (i) 1
3

 = 1
3

 × 3
3

 = 1
3

3

  Let us assume on the contrary that 1
3

 is rational.

  Then, 1
3

3  is rational.

  Let 1
3

3  = a
b

 where a and b are non-zero integers 

having no common factor other than 1.

  Now,  1
3

3  = a
b

  

⇒  3  = 3a
b

  ⇒  3  is rational

[ 3, a and b are integers ∴ 3a
b

 is a rational number]

  This contradicts the fact that 3  is irrational.

  So, our assumption is wrong.

  Hence, 1
3

 is irrational.

 (ii) 2
7

 = 2
7

 × 7
7

 = 2
7

7

  Let us assume on the contrary that 2
7

 is rational.

  Then, 2
7

7  is rational.

  Let 2
7

7  = a
b

 where a and b are non-zero integers 

having no common factor other than 1.

  Now, 2
7

7  = a
b

  

   7  = 7
2
a
b

  

⇒ 7  is rational 

  [ 2, 7, a and b are integers ∴ 7
2
a
b

 is a rational number]

  This contradicts the fact that 7  is irrational.

  So, our assumption is wrong.

  Hence, 2
7

 is irrational.

 6.  2 45 3 20
2 5

+  = 2 9 5 3 4 5
2 5

× + × = 6 5 6 5
2 5

+   

= 12 5
2 5

 = 6, which is a rational number.

For Standard Level

 7. If possible, let us assume that p q+  is a rational 

number. Then there exist coprime a and b where b ≠ 0, 

such that p q+  = a
b

  ⇒  p  = a
b

q−

  ⇒  p = a
b

q
a q
b

2

2

2
+ −  [Squaring both sides]

  ⇒  
2a q

b
 = a

b
q p

2

2 + −  = 
a b q b p

b

2 2 2

2
+ −

  ⇒  q  = 
a b q p

ab

2 2

2
+ −( )
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  Now, since, a, b, p, q are all integers, p, q are primes 
and b ≠ 0.

  ∴ RHS is a rational number but q  is irrational since 

q is prime.

  So, our assumption is contradictory and hence it is 
wrong. Thus, p q+  is irrational.

EXERCISE 1E

For Basic and Standard Levels

 1. (i) 125
144

 = 5
2 3

3

4 2

  Clearly, 125 and 144 are coprime. 

  ∴ 125
144

 is in its simplest form.

  Denominator = 144 = 24 × 32 is not of the form 2n 5m

  Hence, 125
144

 has a non-terminating repeating 

decimal expansion.

 (ii) 33
50

 = 3 11
2 52

×
×

  Clearly, 13 and 50 are coprime. 

  ∴ 13
50

 is in its simplest form.  

Denominator = 50 = 2 × 52 is of the form 2n 5m 

  Hence, 13
50

 has a terminating decimal expansion.

 (iii)  41
2 5 72 × ×

  Since 2, 5 and 7 are not factor of 41,

  ∴ 41
2 5 72 × ×

 is in its simplest form.  

Denominator = 22 × 5 × 7 is not of the form 2n 5m

  Hence, 41
2 5 72 × ×

 has a non-terminating repeating 

decimal expansion.

 (iv) 341
15000

 = 11 31
2 3 53 4

×
× ×

  

Clearly, 341 and 15000 are coprime.

  ∴ 341
15000

 is in its simplest form.  

Denominator = 15000 = 23 × 3 × 54 is not of the 
form 2n 5m.

  Hence, 341
15000

 has a non-terminating repeating 

decimal expansion.

 (v) 17
320

 = 17
2 56 ×

  

Clearly, 17 and 320 are coprime.

  ∴ 17
320

 is in its simplest form.  

Denominator = 320 = 26 × 5 is of the form 2n 5m.

  Hence, 17
320

 has a terminating decimal expansion.

 (vi)  3647
2 52 4×

 = 7 521
2 52 4

×
×

  Since 2 and 5 are not factors of 3647,

  ∴ 3647
2 52 4×

 is in its simplest form.  

Denominator = 22 × 54 is of the form 2n 5m

  Hence, 3647
2 52 4×

 has a terminating decimal 

expansion.

( vii) 33453
2 54×

 = 3 7 59
2 5

4

4
× ×

×
  Since 2 and 5 are not factors of 33453,

  ∴  33453
2 54×

 is in its simplest form. 

  Denominator = 2 × 54 is of the form 2n 5m.

  Hence, 33453
2 54×

 has a terminating decimal 

expansion.

 (viii) 441
2 5 7

3 7
2 5 72 7 2

2 2

2 7 2= ×
× ×

 = 3
2 5

2

2 7×
  Since 2 and 5 are not factors of 32,

  ∴  3
2 5

2

2 7×
 is in its simplest form

  Denominator = 22 × 57 is of the form 2n 5m

  Hence, 441
2 5 72 7 2  has a terminating decimal expansion.

 (ix) We have 7
75

 = 7
5 5 3× ×

 = 7
5 32 ×

  ∴ 7 and 75 are coprimes.

  ∴ 7
75

 is in its simplest form.

  Now, the denominator 75 = 52 × 3 which is not 
of the form 2n × 5m, where m and n are natural 
numbers.

  Hence, the given rational number has non-
terminating repeating decimal expansion.

 (x) We have 987
10500

 = 3 7 47
2 5 3 72 3

× ×
× × ×

 = 47
2 52 3×

3 987
7 329

47
    

2 10500
2 5250
3 2625
5 875
5 175
5 35

7

  Since the denominator of the given rational 
number is of the form 2n5m where m and n are 
natural numbers, hence, this rational number has 
terminating decimal expansion.

 2. (i) 43
2 5

43 5
2 5

215
2 5

215
104 3 4 4 4 4×

= ×
×

=
×( )

=
( )

  = 215
10000

 

= 0.0215
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  So, it will terminate after 4 places of decimals.

 (ii) We have 23
2 54 3  = 23

2 5 23×( ) ×

     = 11 5
1000

.  = 0.0115

  ∴ The decimal expansion will terminate after  
4 places.

 3. (i)   7
8

7
2

7 5
2 5

875
10

875
10003

3

3 3 3= = ×
×

= = = 0.875

 (ii) 179
125

179
5

179 2
5 2

1432
10

1432
10003

3

3 3 3= = ×
×

= = = 1.432

 (iii) 39
500

39
2 5

39 2
2 5

78
10

78
10002 3 3 3 3=

×
= ×

×
= = = 0.078

 (iv) 2477
1250

  = 2477
2 5

2477 2
2 5

19816
10

19816
100004

3

4 4 4×
= ×

×
= =   

= 1.9816

 (v) 49
2500

49
2 5

49 2
2 5

196
10

196
100002 4

2

4 4 4=
×

= ×
×

= = = 0.0196

 (vi) 17
1600

  = 17
2 5

17 5
2 5

10625
10

10625
10000006 2

4

6 6 6×
= ×

×
= =   

= 0.010625

 4.   4000 = 2m 5n

  ⇒ 25 × 53 = 2m 5n

  By comparing LHS and RHS,  
we get m = 5, n = 3

  Now,  241
4000

  = 241
2 5

241 5
2 55 3

2

5 5×
= ×

×
  

= 6025
105  = 6025

100000
 = 0.06025

For Standard Level
 5. (i)   Since 37.12367985 has a terminating decimal 

expansion,
  ∴ it is a rational number.

  When expressed in the form 
p
q

, the denominator q 

will be of the form 2n 5m, where n and m are 
non-negative integers.

  Hence, the prime factors of q will be either 2 or 5 
or both.

 (ii) Since 29. 1234567 has a non-terminating recurring 

decimal expansion,
  ∴  it is a rational number when expressed in the 

form 
p
q

, the denominator will not be of the form 

2n 5m where n and m are non-negative integers.
  Hence, the prime factors of q will have a factor 

other than 2 or 5.
 (iii) Since 0.110110011000110000 …… has a  

non-terminating, non-recurring decimal expansion,  
∴ it is not a rational number.

2 4000
2 2000
2 1000
2 500
2 250
5 125
5 25
5 5

1

 6.  Let x = 0 3178.   … (1)

  ⇒  10000x = 3178. 3178  … (2)

  Subtracting (1) from (2), we get
   9999x = 3178

  ⇒  x = 3178
9999

 7. Since 327.7081 is a terminating decimal number, so q 
must be of the form 2m 5n, where m and n are natural 
numbers.

CHECK YOUR UNDERSTANDING

 MULTIPLE-CHOICE QUESTIONS 

For Basic and Standard Levels
 1. (b) 80

  Number = 19 × 4 + 4 = 80

 2. (c) 2q

  Even integer is a multiple of 2.

  ∴ For some integer q, even integer is of form 2q .

 3. (d) 2m + 1

  Odd integer is not a multiple of 2.  
∴ For some integer m, odd integer = 2m + 1.

 4. (b) 3

  Give different values to a say 1, 2, 3, 4 … the numbers 
will be

  1, 3, 5

  2, 4, 6

  3, 5, 7

  4, 6, 8

  5, 7, 9

  ∴ Anyone of the numbers a, (a + 2) and (a + 4) is a 

multiple of 3. 

 5. (c) 0 ≤ r < b

  As per Euclid’s division lemma, remainder can be zero 
or greater than zero but less than the dividend.

  ∴ 0 ≤ r < b

 6.  (a) 0 ≤ r < 3

  According to Euclid’s division lemma for any positive 
integer a and 3, there exist unique integers q and r such 
that 0 ≤ r < 3.

 7.  (b) x = 21, y = 84

3

7

84

4

21

  ∴ x = 21 and y = 84
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 8. (b) 2

  According to definition of a prime number, it is a 
natural number greater than 1 and divisible by 1 and 
itself. 

  ∴  Maximum number of factors of a prime number is 2.

 9. (b) 2 and 5

  80 = 24 × 5. So, the prime factor of denominator are  
2 and 5.

 10. (a) 5

  Giving different values to n, the number obtained are 

10 × 1 + 1 = 11 , 10 × 2 + 1 = 21, 10 × 3 + 1 = 31 , 

10 × 4 + 1 = 41 , 10 × 5 + 1 = 51, 10 × 6 + 1 = 61 , 

10 × 7 + 1 = 71 , 10 × 8 + 1 = 81 and 10 × 9 + 1 = 91.

  Encircled numbers are prime numbers.

  Hence, there are 5 prime numbers of the form  
10n + 1 where n ∈ N such that 1 ≤ n < 10.

 11. (d) coprime 

  Consider a = 2 and b = 3, then a2 = 4, b2 = 9.

  Note: 4 and 9 are coprime.
  Trial with other sets of coprime result in coprime. 
  ∴ a2 and b2 are coprime.

 12. (b) 2

  Since 3 is the least prime factor of p, so the other prime 
factor of p ≥ 3 but not 2, 

  ∴ p must be an odd number. 
Similarly, q is an odd number. 
∴ (p + q) is an even number.

  ∴ Least prime factor of (p + q) is 2.

 13. (a) composite

  Let a = 5 and b = 3. 

  Then, 52 – 32 = (5 – 3) (5 + 2) = 2(7) = 14 composite.
  Let a = 11 and b = 5. 
  Then,  112 – 52 = (11 – 5) (11 + 5) = 6(16) composite.
  Since the difference of two odd prime numbers a and b 

i.e a – b is even,
  ∴ one of the factors of a2 – b2 is even. So, the number 

obtained when a2 – b2 is simplified is a composite 
number.

 14. (b) composite number

  1192 – 1112 = (119 – 111) (119 + 111) = 8(230) which is 
composite.

 15. (b) 5

  243 = 3 × 3 × 3× 3 × 3 = 35. So, exponent of 3 is 5.

 16.  (d) 1

  Since a prime number has only two factors , the 
number itself and 1,

  ∴ HCF of two prime number is 1.

 17. (a) 2

  Smallest composite number = 4,  
Smallest prime number = 2  
 HCF (4, 2) = 2

 18. (b) 1

  Two consecutive integers are of the form x and x + 1. 
e.g 2, 3 or 3, 4 or 4, 5.

  Their HCF is 1.

 19. (c) r = 0

   m = dn + r  
⇒ if r = 0 then m = dn  
⇒ n is the HCF of m,n

 20. (c) 12

  HCF = 
product of two numbers

their LCM
 = 60 72

360
×  = 12

 21. (c) 340

  LCM = 
product of two numbers

their HCF
 = 5780

17
 = 340

 22. (c) 38784

  Product of two numbers = Product of their HCF and 
LCM = 4 × 9696 = 38784

 23. (c) 12
   4 × 24 = a × 8  

⇒  a = 4 24
8

×  = 12

 24. (c) a3b2

  A = ab2, B = a3b.  
LCM (A, B) = ahighest power × bhighest power = a3b2

 25. (b) ab2

  A = ab3, B = a3b2.  
HCF (A, B) = alowest power × blowest power = ab2

 26.  (c) 23 × 33

  LCM of 23 × 32 and 22 × 33 is 23 × 33. (taking highest 
power of all factors)

 27.  (b) an irrational number

  Since 22
7

 is of the form 
p
q

where q ≠ 0, but it has  

non-terminating and non-repeating decimals.

  ∴ 22
7

 is an irrational number.

 28. (b) a rational number
  Sum of two rational numbers is a rational number.
  ∴ x + y is a rational number.

 29. (b) irrational numbers

  Since the sum, difference and product of a rational 
number and an irrational is irrational. 

  ∴ x + y, x – y, xy are all irrational numbers.

 30. (d) an irrational number

  5  – 3 – 2 = 5  – 5 is an irrational number because 

difference of an irrational and a rational number is 
irrational.

 31. (d) an irrational number

  2 + 3  is irrational because sum of a rational and 

irrational number is irrational.
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  2 + 3  + 5  is an irrational number because sum of 

two irrational numbers is irrational.

 32. (b) an irrational number

  3 + 5  is a sum of a rational number and an irrational 

number. 

  ∴ It is an irrational number.

 33. (d) 5

  Since 4 – 5  + 5  = 4 (a rational),

  ∴  the smallest rational number which should be added 

to 4 – 5  to get a rational number is 5 .

 34. (c) 2

  18  = 9 2×  = 3 2 .

  ∴ The smallest irrational number by which 18  should 

be multiplied. So, as to get a rational number is 2 .

 35. (c) 3 27

  3 27  = 81  = 9 which is rational.

  Note: 16 4  = 64  = 8 is also rational but 16  

and 4  do not form a pair of irrational numbers. So, 

this pair is excluded.

 36. (b) 7 + 4

  Since 7 + 4  = 7 ± 2 = 9 or 5 (both are rationals),

  ∴ 7 4+  is not irrational.

 37. (b) k

  If p is a prime number and p divides k2, then p divides 
k. [Ref to theorem 1.3]

 38. (b) 2m × 5n

  2m × 5n [Ref to theorem 1.5]

 39. (c) 15
1600

  15
1600

 

   Denominator 1600 = 26 × 52 is of the form 2m 5n 
where m, n are non-negative integers.

  Note: The denominator of other three rational numbers 
have factors other than 2 or 5.

 40. (a) terminating

  63
72 175×

  = 7 9
8 9 7 25

×
× × ×

  

= 1
8 25×

 (simplest form)  

= 1
2 53 2

  Denominator of given expansion in simplest form is of 
the form 2m 5n where m and n are non-negative integers. 

  ∴ Its decimal expansion is terminating.

 41. (b) non-terminating non-repeating
  Since p is an irrational number, its decimal expansion is 

non-terminating non-repeating.

 42. (b) two decimal places

  31
2 52  = 31 5

2 5 52
×
×

 = 155
2 52 2×

 = 155
102  = 155

100
 = 1.55

  Hence, the decimal expansion of 31
2 52 will terminate 

after two decimal places.

 43.  (c) 3 

  17
8

 = 17 5
2 5

3

3 3
×
×

 = 17 125
103
×  = 2125

1000
 = 2.125

  ∴  Decimal expansion of 17
8

will terminate after 3 places 

of decimals.

 44.  (d) four decimal places 

  14587
1250

 = 29 503
2 54

×
×

  ∴ 14587
1250

 is in its simplest form.

  Now, 14587
1250

 = 14587
2 54×

 

  = 14587 2
2 5

3

4 4
×

×
 = 116672

104  

  = 116672
10000

 = 11.6672

  Thus, decimal expansion of 14587
1250

 will terminate after 
four decimal places.

 45.  (b) non-terminating but repeating

  Since the denominator of the given rational number has 
factor other than 2 and 5, 

  ∴ It is not of the form 2m 5n.
  Hence, its decimal expansion will be non-terminating 

but repeating.

For Standard Level

 46. (a) 1650

  Product of HCF and LCM = Product of two numbers

  ⇒  40 × 252 × k = 2520 × 6600  

⇒  k = 2520 6600
40 252

×
×

 = 1650

 47. (b) 2400, 5

  a = 3 × 5, b = 3 × 52, c = 25 × 5,
  LCM = all the factors of a, b, and c raised to their 

respective highest powers and HCF = only the common 
factors of a, b and c raised to their respective lowest 
powers.

  ∴  LCM = 25 × 3 × 52 = 2400
  and HCF = 5

 48. (b) 3

   a = 22 × 3x,  
 b = 22 × 3 × 5,  
 c = 22 × 3 × 5, 
LCM  (a, b, c) = 3780
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  ⇒  22 × 3x × 5 × 7 = 3780  

⇒  3x = 3780
5 7 4× ×

 = 27  

⇒  3x = 33  
⇒  x = 3

 49. (b) 2
   153 = 85 × 1 + 68 …(1)
   85 = 68 × 1 + 17  …(2)
   68 = 17 × 4 + 0  

  ∴ HCF = 17 = 85 – 68 × 1 [Using (2)]
    = 85 – (153 – 85) [Using (1)]
  ⇒  HCF = 85 – 153 + 85 = 85(2) – 53  

⇒  n = 2

 50. (d) 2

   1032 = 408 × 2 + 216  … (1)
   408 = 216 × 1 + 192  … (2)
   216 = 192 × 1 + 24  … (3)
   192 = 24 × 8 + 0  … (4)

  ∴  HCF = 24 = 216 – 192 × 1  [Using (3)]
    = 216 – (408 – 216 × 1)
  [Using (2)]
    = 216 – 408 + 216 
    = 216(2) – 408
    = [1032 – 408(2)] × 2 – 408  

  = 1032(2) – 408(4) – 408  
  = 1032(2) – 405 × 5

    = 1032 (m) – 405 × 5
  ∴  m = 2

 51. (d) 999720

  Greatest number of 6 digits = 999999.
  LCM of 15, 24 and 36 = 2 × 2 × 3 × 5 × 2 × 3 = 360

  

2 15 24 36
2 15 12 18
3 15 6 9

5 2 3

, ,
, ,
, ,
, ,

  Required number = 999999 – remainder when 999999 is
  divided by 360

     = 999999 – 279 = 999720

 52. (d) 2520

  The least number that is divisible by all the numbers 
from 1 to 10 (both inclusive in LCM of 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10 

2 1 2 3 4 5 6 7 8 9 10
2 1 1 3 2 5 3 7 4 9 5
3 1 1 3 1 5 3 7 2

, , , , , , , , ,
, , , , , , , , ,
, , , , , , , , 99 5

5 1 1 1 1 5 1 7 2 3 5
1 1 1 1 1 1 7 2 3 1

,
, , , , , , , , ,
, , , , , , , , ,

  ∴ LCM = 2 × 2 × 3 × 5 × 7 × 2 × 3 = 2520

 53. (c) 138

  The largest number which divides 281 and 1249 leaving 
remainder 5 and 7 respectively is the HCF of (281 – 5) 
= 276 and (1249 – 7) = 1242 

  HCF = 138
  ∴ Required number = 138

 54. (b) 11350

  The smallest number which when divided by 17, 23, 29 
leaving a remainder 11 in each case = LCM of 17, 23, 
29 + 11 = (17 × 23 × 29) + 11 = 11339 + 11 = 11350

 55. (b) a rational number

  Since 1. 29  has a non–terminating recurring decimal 

expansion, 

  ∴ it is a rational number.

 56. (c) is of the form 2m × 5n where m, n are non-negative 
integers

  Since rational number 26.1234 has a terminating 
decimal expansion,

  ∴ the prime factorization of its denominator is of the 

form 2m 5n where m, n are non-negative integers.

 57. (d) not of the form 2m × 5n where m, n are non-
negative integers

  Since rational number 52. 9678  has a non-terminating 

recurring decimal expansion, the prime factorization of 
its denominator is not of the form 2m × 5n where m and 
n are non-negative integers.

 58. (a) 3
10

  1
3

3
10

1
10

× =  = 0.1 

  ∴ Smallest rational number by which 1
3

should be 

multiplied so that its decimal expansion terminates 

after one place of decimal is 3
10

.
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  SHORT ANSWER QUESTIONS 

For Basic and Standard Levels
 1. (i)    For any two given positive integers a and b, there 

exist unique integers q and r satisfying a = bq + r,  
0 ≤ r < b.

 (ii) No, it does not satisfy Euclid’s division lemma. The 
value of the remainder can be 2 also as 2 < 3.

 2.  No, every positive integer can be of the form 4q + 2 
where q is an integer because an integer can be written 
in the form of 4q, 4q + 1, 4q + 2, 4q + 3.

 3.  The product of two consecutive positive integers is 
divisible by 2 because one of them will always be even. 
∴ n(n + 1) will be even 
∴ one out of n or n + 1 must be even 

  So, the given statement is true.

 4.  When three consecutive positive integers are taken, 
at least one of them is divisible by 2 and at least one 
them is divisible by 3. Therefore, the product of three 
consecutive positive integers is divisible by 2 × 3 i.e 6.

  ∴  Out of n, (n + 1) and (n + 2) at least one will be divisible 
by 2 and at least one will be divisible by 3. 

  ∴ Product n(n + 1) (n + 2) will be divisible by 6.
  Hence, the given statement is true.

 5.  According to Euclid’s division lemma, when a positive 
integer a is divided by 4 then a = 4q + r where 0 ≤ r < 4. 
Therefore, the values of r can be 0, 1, 2 or 3 only.

 6.  (i)

  ∴ HCF of 255 and 867 is 51
  Hence, they are not coprime.
  (ii)

  ∴ HCF of 615 and 154 is 1
  Hence, they are coprime.
  (iii)

  ∴ HCF of 847 and 2160 is 1
  Hence, they are coprime.
 7.  

    

2 98
7 49
7 7

1
    98 = 2 × 72

 8. 

   

2 120
2 60
2 30
3 15

5

  

2 144
2 72
2 36
2 18
3 9

3

   120 = 23 × 3 × 5  144 = 24 × 32

  ∴ LCM of 120 and 144 = 24+ × 32 × 5 = 720 and  
HCF of 120 and 144 = 23 × 3 = 24.

 9.  1 < 
p
q

< 2 (q ≠ 0).

  One rational number between 1 and 2 can be 1 2
2
+ = 3

2
.

  Another rational number between 1 and 2 can be 1
2

1 3
2

+



 = 5

4
.

  These are sample answers. There can be infinitely more 
rational numbers between 1 and 2.

 10. q should be of the form 2n 5m where n and m are non-
negative integers.

 11. Denominator 22 × 57 × 72 is not of the form 2n 5m

  ∴  441
2 5 72 7 2× ×

 has a non-terminating (but repeating) 

decimal expansion.

 12. Let us assume on the contrary that 3 7 is a rational 

number.
  Then, there exist coprime a and b (b ≠ 0) such that

   3 7  = a
b

  

⇒  7  = a
b3

  ⇒  7   is rational 

  [∵ 3, a, b are integers ∴ a
b3

 is a rational number.]

  This contradicts the fact that 7  is irrational.

  The contradiction has arisen because of our incorrect 
assumption.

  Hence, 3 7 is irrational.

For Standard Level

 13. 2 = 1.414… 3 = 1.732  

∴ One of the rational numbers between 2 and 3

can be 1.5.

 14.   Let a = 2k + 1  
and  b = 2n + 1

  Then,  a – b = 2k + 1 – 2n – 1 = 2(k – n)  
and  a + b = 2k + 1 + 2n + 1 = 2(k + n + 1)

   a2 – b2 = (a + b) (a – b)  
  = 2(k + n + 1) (2) (k – n)  
  = 4(k + n + 1) (k – n)  
which is composite.
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 15.   Let a = 2m + 1  
and  b = 2n + 1

  (Any odd positive integer is of the form 2q + 1)

  ∴  a2 + b2 = (2m + 1)2 + (2n + 1)2  
  = 4m2 + 1 + 4m +4n2 + 1 + 4n

    = 4m2 + 4n2 + 4m +4n + 2  
  = 4(m2 + n2 + m +n) + 2  
  = 4q + 2 = 2(2q + 1)

  where  q = (m2 + n2 + m + n)

  ∴  a2 + b2 is even but not divisible by 4.

 VALUE-BASED QUESTION 

For Basic and Standard Levels
 1. (i) HCF of 96 and 8 = 16.

  ∴  She can cut 16 cm long pieces from the two 
ribbons. 

	 	 From	the	first	ribbon,	she	will	get	 96
16

 = 6 pieces 

and from the second ribbon, she will get 80
16

 = 5 
pieces.

  So, she will get a total of 6 + 5 = 11 identical pieces 
of ribbon each of length 16 cm.

  She gifts one pair each to two daughters of her 
domestic help. 

  She gives away 2 × 2 = 4 pieces.

  ∴ Number of pieces left with her = 11 – 4 = 7

 (ii) Values shown by Radhika are problem-solving and 
empathy.

UNIT TEST 1
For Basic Level

 1. (c) (12, 25) 

 
3 21
7 7

1
  

3 27
3 9
3 3

1

  HCF (21, 27) = 3 ≠ 1

   
2 14
7 7

1
  

2 64
2 32
2 16
2 8
2 4

2

  HCF (14, 64) = 2 ≠ 1

   

2 12
2 6
3 3

1

  
5 25
5 5

1

  HCF (12, 25) = 1

   
41 41

1   
41 123

3

  HCF = 41 ≠ 1
  ∴ (12, 25) are a pair of coprimes.

 2. (a) 500

  HCF of two numbers has to be a factor of LCM of the 
given two numbers.

  ∴ 500 cannot be the HCF of two numbers where LCM 
= 1600

 3. (d) 2850

  LCM = 
product of two numbers

HCF
= 570 1425

285
2850× =

 4. (d) an irrational number

  Since product of a rational number and an irrational 
number is irrational,

  ∴ 2 3 is an irrational number.

 5. (d) (i) and (iv)

  (i)  625 = 54,
 (ii) 270 = 2 × 33 × 5,
(iii) 35 = 5 × 7,
 (iv) 400 = 24 × 52

  (i) and (iv) have the prime factorization of the 
denominators in the form 2n 5m.  
∴ They have terminating decimal.

 6. (b) 3

  147
120

3 7
2 3 5

7
2 5

2

3

2

3= ×
× ×

=
×

 (simplest form)

     = 7 5
2 5

2 2

3 3
×
×

= 1225
10

1225
1000

1 2253 = = .

  ∴  It will terminate after 3 places of decimals.

 7. (d) equal

  Only equal numbers have the same HCF and LCM.
  If they are prime (but different), their HCF will be 1 

but LCM will be their product.
  If they are coprime, then their HCF will be 1 but LCM 

will be different.
  If they are composite, then their HCF and LCM will be 

different.

 8. Refer to theorem 1.2

 9. HCF of two numbers has to be a factor of their LCM.
  Since 12 is not a factor of 350,
  ∴  two numbers cannot have 12 as their HCF and 350 

as their LCM.

 10. HCF (625, 2000) = 125  
∴ among the common factors 125 is the greatest.

 11. 

  (d) = 2 × 75 = 150
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  (c) = 2 × 150 = 300
  (b) = 2 × 300 = 600
  (a) = 600 × 5 = 3000

 12.  Let us assume that 2 + 5  is a rational number. 

Let 2 + 5  = a
b

 (where a and b are coprimes and b ≠ 0) 

  Then,  5  = a
b

− 2  = a b
b

− 2  which is rational 

  [ 7, a and b are integers]
  This contradicts the fact that 5  is an irrational.

  ∴ Our assumption is wrong . Hence, 2 + 5  is irrational.

 13.  (i) 3 × 5 × 7 × 11 + 11  = 11(3 × 5× 7+1)  
= 11(105+1) = 11(106)

  which has more than two factors and is therefore a 
composite number.

 (ii)  x = 2 × 7 × 11 × 17 × 23 + 23 = 23(2 × 7 × 11 × 
17+1) = 23 × 2619 which shows that 23 is a prime 
factor of x.

 14.  17
80

17
2 5

17 5
2 5

17 125
10

2125
100004

3

4 4 4=
×

= ×
×

= × = = 0.2125

 15.  

   

2 336
2 168
2 84
2 42
3 21
7 7

1

  

2 54
3 27
3 9
3 3

1

   336 = 24 × 3 × 7   54 = 2 × 33

  HCF = 2 × 3 = 6
  LCM = 24 × 33 × 7 = 3024

 16.  Let x be the other number.
  Product of two numbers = Product of their HCF and LCM
  ⇒ 18x = 9 × 90

  ⇒ x = 9 90
18
× = 45

  Hence, the other number is 45.

UNIT TEST 2
For Standard Level

 1. (b) 2  
 117 = 65 × 1 + 52  … (1)

   65 = 52 × 1 + 13 … (2)
   52 = 13 × 4 + 0

  ∴  HCF = 13
   HCF = 13 = 65 – 52 × 1 [From (2)]
    = 65 – (117 – 65 × 1)  [Using (1)]
    = 65 – 117 + 65 = 65(2) – 117  

  = 65m – 117
  ⇒  m = 2

 2. (d) 57
99

 

 Let x = 0 57.   … (1)  

⇒  100x = 57 57.   … (2)

  Subtracting (1) from (2), we get

   99x = 57  

⇒  x = 57
99

 3. (c) 5  
6n = (2 × 3)n = 2n × 3n, where n = 1, 2, 3 …

  For 6n to end with digit zero, the smallest positive 
number that it should be multiplied is 5.

  When n = 1, then 6n = 61 = 6 = 2 × 3. For it to end with 
digit zero, 5 has to be a factor too (6 × 5 = 30).

 4.  0.131313… because it has a non–terminating recurring 
decimal expansion. The remaining three are not rational 
numbers because their decimal expansion is non–
terminating, non–repeating.

 5.  Rational ∴ its decimal expansion is terminating. Prime 
factors of q will be of the form 2n5m where n, m are 
non-negative integers, i.e prime factors of q will either 
have 2 or 5 or both.

 6. If possible, let us assume that 2 3  – 1 is a rational 

number. Then there exist coprime a and b where b ≠ 0, 
such that

   2 3  – 1 = a
b

  ⇒  2 3  = 1 + a
b

  ⇒ 3  = a b
b

+
2

  Now, a b
b

+
2

 is a rational, number, since a and b are 

integers and b ≠ 0. But 3  is an irrational number.

  Hence, there is a contradiction in our assumption.

  So, our assumption is wrong. Hence, 2 3 1−  is an 

irrational number.

 7.  (3q + 1)2 = 9q2+ 6q + 1 = 3(3q2 + 2q) + 1 = 3m + 1  
where m = (3q2+ 2q) is an integer.

  Hence, the square of positive integer of the form 3q + 1, 
  q being a natural number cannot be expressed in any form 

other than 3m + 1 for some integer m.

 8.   y2 = 7  
⇒  y = 7 (irrational),  

 x2 = 25  
⇒  x = ±5 (rational),

   z2 = 0.09 = 9
100

 

⇒   z = ± 3
10

 (rational)

   u3 = 125

  ⇒ u = +5 (rational)
  ∴  y  represents irrational number.
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 9.   45 = 27 × 1 + 18  … (1)
   27 = 18 × 1 + 9  … (2)

   18 = 9 × 2 + 0  
∴ HCF of 45 and 27 is 9

   9 = 27 – 18 × 1  [From (2)]
    = 27 – (45 – 27 × 1)  [Using (1)]
    = 27 – 45 + 27  

  = 27 × 2 + 45 × (–1) = 27x + 45y
  Hence,  x = 2 and y = –1.

 10. (i)  Since the highest common factor of 525 and 3000 is 
75, hence by definition, the required HCF of these 
two numbers is 75.

 (ii) 

        

2 380
2 190
5 95

19     

3 18
2 6

3

   380 = 22 × 5 × 19 

   18 = 2 × 32

  Since the LCM 380 is not exactly divisible by the 
HCF 18, hence no two numbers have 18 as their 
HCF and 380 as their LCM.

 11.  Any positive number a can be expressed in the form  
6q + r, where r = 0 or 1 or 2 or 3 or 4 or 5.

  When  r = 0
   a = 6q 

⇒  a2 = (6q)2 = 36q2 = 6(6q2) = 6m  
where  m = 6q2 is an integer

  When  r = 1
   a = 6q + 1  

⇒  a2 = (6q + 1)2 = 36q2 + 12q + 1  
  = 6(6q2 + 2q) + 1 = 6m + 1

  where  m = (6q2 + 2q) is an integer.
  When  r = 2
   a = 6q + 2 
  ⇒  a2 = (6q + 2)2 = 36q2 + 24q + 4 
    = 6(6q2 + 4q) + 4 = 6m + 4
  where  m = (6q2 + 4q) is an integer.
  When  r = 3
   a = 6q + 3 
  ⇒  a2 = (6q + 3)2 = 36q2 + 36q + 9 
    = (36q2 + 36q + 6) + 3
    = 6(6q2 + 6q + 1) + 3 = 6m + 3
  where  m = (6q2 + 6q + 1) is an integer.
  When  r = 4
   a = 6q + 4  

⇒  a2 = (6q + 4)2 = 36q2 + 48q + 16  
  = (36q2 + 48q + 12) + 4  

    = 6(6q2 + 8q + 2) + 4 = 6m + 4
  where  m = (6q2 + 8q + 2) is an integer.
  When  r = 5
   a = 6q + 5  

⇒  a2 = (6q + 5)2 = 36q2 + 60q + 25 
    = (36q2 + 60q + 24) + 1   
    = 6(6q2 + 10q + 4) + 1 = 6m + 1
  where  m = (6q2 + 10q + 4) is an integer.
  ∴  Square of any positive integer can only be of form 

6m, 6m + 1, 6m + 3 or 6m + 4
  Hence, the square of any positive integer cannot be of 

the form 6m + 2 or 6m + 5 for any integer m.

 Or

  Let ‘a’ be any positive integer. On dividing ‘a’ by 4, let 
m be the quotient and r be the remainder.

  Then, by Euclid’s division lemma, we have
   a = 4m + r where  0 ≤ r < 4
  ⇒  a = 4m + r where r = 0, 1, 2, 3 or 4
  ⇒  a = 4m (when r = 0), a = 4m + l (when r = 1)
   a = 4m + 2 (when r = 2), a = 4m + 3 (when r = 3)
  ∴ An odd positive integer can be of the form 4m + 1 or 

4m + 3. 
  Thus, we have
   (4m + 1)2 = 16m2 + 8m + 1
    = 4(4m2 + 2m) + 1
    = 4q + 1
  where q = (4m2 + 2m) is an integer
   (4m + 3)2 = 16m2 + 24m + 9
    = 16m2 + 24m + 8 + 1
    = 4(4m2 + 6m + 2) + 1
    = 4q + 1
  where q = (4m2 + 6m + 2) is an integer.

  Thus, the square of any odd integer is of the form  
4q + 1, for some integer q.  

 12. Clearly, the required minimum distance will be the 
LCM of 40, 42 and 45 in cm.

    

2 40
2 20
2 10

5

  
2 42
3 21

7
  

3 45
3 15

5

  Now,  40 = 23 × 5
   42 = 2 × 3 × 7
   45 = 32 × 5
  ∴  LCM = 23 × 32 × 5 × 7 cm
    = 360 × 7 cm = 2520 cm
    = 25 m 20 cm
  Hence, the required distance = 25 m 20 cm
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