EXERCISE 8A

1. Let the measure of the fourth angle of the quadrilateral be x° . Then, 65 + 120 + 75 + x = 360 [Sum of angles of a quadrilateral is 360°]

$$\Rightarrow 260 + x = 360$$

$$\Rightarrow$$
 $x = 100$

Hence, the measure of the fourth angle is 100°.

2. Let one of the angles of the quadrilateral be $(3x)^{\circ}$, the remaining angles will be $(4x)^{\circ}$, $(5x)^{\circ}$ and $(6x)^{\circ}$.

Then,
$$3x + 4x + 5x + 6x = 360$$

[Sum of angles of quadrilateral is 360°]

$$\Rightarrow$$
 18 $x = 360^{\circ}$

$$\Rightarrow$$
 $x = 20^{\circ}$

Hence, the four angles of the quadrilateral are $(3 \times 20)^\circ$, $(4 \times 20)^{\circ}$, $(5 \times 20)^{\circ}$, $(6 \times 20)^{\circ}$ i.e. 60°, 80°, 100°, 120°.

3. Let the angles of the quadrilateral be $(2x)^{\circ}$, $(3x)^{\circ}$, $(5x)^{\circ}$ and $(2x^{o}).$

Then,
$$2x + 3x + 5x + 2x = 360$$

$$\Rightarrow$$
 12 $x = 360$

$$\Rightarrow$$
 $x = 30$

Hence, the four angles of the quadrilateral are $(2 \times 30)^\circ$, $(3 \times 30)^{\circ}$, $(5 \times 30)^{\circ}$, $(2 \times 30^{\circ})$ i.e. 60° , 90° , 150° , 60° .

The given quadrilateral has one right angle.

4. In quadrilateral PQRS, we have

$$\angle P + \angle Q + \angle R + \angle S = 360^{\circ}$$

[Sum of angles of a quadrilateral is 360°]

$$\Rightarrow \frac{1}{2} \angle P + \frac{1}{2} \angle Q + \frac{1}{2} \angle R + \frac{1}{2} \angle S = 180^{\circ}$$

$$\Rightarrow \left(\frac{1}{2}\angle P + \frac{1}{2}\angle Q\right) + \frac{1}{2}(\angle R + \angle S) = 180^{\circ}$$

$$\Rightarrow$$
 $(180^{\circ} - \angle POQ) + \frac{1}{2} (\angle R + \angle S) = 180^{\circ}$

$$\left[\because \text{In } \triangle POQ, \frac{1}{2} \angle P + \frac{1}{2} \angle Q + \angle POQ = 180^{\circ} \right]$$

$$\Rightarrow \qquad \angle POQ = \frac{1}{2}(\angle R + \angle S)$$

EXERCISE 8B

1.
$$\angle A + \angle B = 180^{\circ}$$

[Coint. angles, AD || BC]

$$\Rightarrow$$
 74° + \angle B = 180°

Since, the opposite angles of a parallelogram are equal

$$\therefore$$
 $\angle C = \angle A = 74^{\circ}$

and
$$\angle D = \angle B = 106^{\circ}$$

Hence,
$$\angle B = 106^{\circ}$$
, $\angle C = 74^{\circ}$ and $\angle D = 106^{\circ}$.

700

2.
$$\angle C = \angle A = 70^{\circ}$$

[Opp. angles of a \parallel gm] ...(1)

In ∆CDB, we have

 \angle CDB +DBC + \angle BCD = 180° [Sum of angles of a \triangle]

$$\Rightarrow$$
 $\angle CDB + 50^{\circ} + 70^{\circ} = 180^{\circ}$ [Using (1)]

$$\Rightarrow$$
 $\angle CDB = 180^{\circ} - 50^{\circ} - 70^{\circ} = 60^{\circ} \dots (2)$

$$\angle D + \angle A = 180^{\circ}$$
 [Coint. angles DC || AB]

$$\Rightarrow$$
 $\angle CDA + \angle DAB = 180^{\circ}$

$$\Rightarrow$$
 (\angle ADB + \angle CDB) + \angle DAB

$$= 180^{\circ}$$

$$\Rightarrow \qquad \angle ADB + 60^{\circ} + 70^{\circ} = 180^{\circ} \qquad [Using (2)]$$

$$\Rightarrow$$
 $\angle ADB = 180^{\circ} - 60^{\circ} - 70^{\circ} = 50^{\circ}$

Hence, \angle CDB = 60° and \angle ADB = 50°.

3.
$$\angle APD = \angle PAB$$

$$\Rightarrow$$
 $\angle APD = 40^{\circ}$

$$\angle BPC = \angle ABP$$
[Alt. angles, DPC || AB]

$$\Rightarrow$$
 $\angle BPC = 80^{\circ}$

Hence, $\angle APD = 40^{\circ}$ and $\angle BPC = 80^{\circ}$.

$$4. AB = AP + PB$$

$$\Rightarrow$$
 AB = AP + AP [:: P is the mid-point of AB]

$$\Rightarrow$$
 AB = 2AP ...(1)

Also
$$AB = 2AD$$
 [given] ...(2)

$$\therefore \qquad AP = AD \qquad [Using (1) and (2)]$$

$$\angle 3 = \angle 1$$
 [Angles opposite equal to sides of $\triangle ADP$] ...(3)

Similarly, it can be proved that

$$\angle 6 = \angle 4$$
 ...(4)

[Alt. angles, DC || AB] ...(6)

From (3), (4), (5) and (6), we get

$$\angle 1 = \angle 2 = \angle 3 = x \text{ (say)}$$
 ...(7)

and

$$\angle 4 = \angle 5 = \angle 6 = y$$
 (say)

Now $\angle CDA + \angle DCB = 180^{\circ}$ [Coint. angles, AD || BC]

$$\Rightarrow \qquad (\angle 2 + \angle 3) + (\angle 5 + \angle 6) = 180^{\circ}$$

[Using (7)]

$$\Rightarrow \qquad 2x + 2y = 180^{\circ}$$

$$x + 2y = 180$$
$$x + y = 90^{\circ} \qquad \dots$$

$$x + y = 90^{\circ}$$
 ...(8)
 $\angle 1 + \angle CPD + \angle 4 = 180^{\circ}$ (straight angle)

$$\Rightarrow$$
 $x + \angle CPD + y = 180^{\circ}$

 $= 90^{\circ}$

Hence,

 \Rightarrow

$$\angle$$
CPD = 90°.

5. Let x° and y° be two adjacent angles of a parallelogram,

such that
$$x^{\circ} = \left(\frac{2}{3}y\right)^{\circ}$$
.

 $x + y = 180^{\circ}$ [Coint. angles of a parallelogram]

$$\Rightarrow \frac{2}{3}y + y = 180^{\circ}$$

$$\Rightarrow \frac{5y}{3} = 180^{\circ}$$

$$\Rightarrow \qquad y = 180^{\circ} \times \frac{3}{5} = 108^{\circ}$$

$$\therefore \qquad x = \left(\frac{2}{3}y\right) = 72$$

- :. Two adjacent angles of the parallelogram are 72° and 108°. Since the opposite angles of a parallelogram are equal.
- :. The other two angles are 72° and 108°.

Hence, the angles of the parallelogram are

6. Let one of the consecutive angles of the parallelogram be x° . Then, the other consecutive angle is $(5x)^{\circ}$.

Now, $x^{\circ} + 5x^{\circ} = 180^{\circ}$ [Coint. angles of a parallelogram]

$$\Rightarrow \qquad 6x = 180 \quad \Rightarrow \quad x = 30^{\circ}$$

.. So, the two consecutive angles of the parallelogram are 30° and $(5 \times 30)^{\circ}$ i.e. 30° and 150° . Since, the opposite angles of a parallelogram are equal. Therefore, the other two angles of the parallelogram are 30° and 150°.

Hence, the angles of the parallelogram are

7. Let ABCD be a parallelogram in which measure of ∠A is smallest. Let $m(\angle A) = x^{\circ}$

Then,
$$m(\angle B) = m(\angle D)$$

$$= (2x - 30)^{\circ}.$$

$$x + (2x - 30) = 180$$

 $\angle A + \angle B = 180^{\circ}$

$$\Rightarrow 3x - 30 = 180$$

$$\Rightarrow$$
 3 $x = 210$

$$\Rightarrow$$
 $x = 70$

$$\Rightarrow$$
 $\angle A = 70^{\circ}$

$$\angle B = \angle D = (2 \times 70^{\circ} - 30)^{\circ} = 110^{\circ}$$

$$\angle C = \angle A = 70^{\circ}$$
 [Opposite angles of

a parallelogram]

Hence, the angles of the parallelogram are

8. AD = BC = 2x[Opposite sides of parallelogram]

Perimeter (
$$\parallel$$
gm ABCD) = 40 cm [given]

$$\Rightarrow$$
 AB + BC + CD + DA = 40 cm

$$\Rightarrow 2y + 2 + 2x + 3y + 2x = 40$$

$$\Rightarrow 7x + 2y = 38 \qquad \dots (1)$$

Also
$$AB = DC$$
 [Opposite sides of a $\|gm$]

$$\Rightarrow$$
 2y + 2 = 3x

$$\Rightarrow 3x - 2y = 2 \qquad \dots (2)$$

Adding eq. (1) and eq. (2), we get

$$10x = 40 \Rightarrow x = 4$$

Substituting x = 4 in Eq. (2), we

- (i) We know the diagonals of a rectangle are equal, and they bisect each other.
 - : Diagonals AC and BD of rectangle ABCD are equal and they bisect each other at O.

$$\Rightarrow$$
 OA = OB

Rectangle ABCD

$$\Rightarrow$$
 $\angle OAB = \angle OBA = 50^{\circ}$

[Angles opposite to equal sides]

In $\triangle OAB$, we have,

= 180° [Sum of angles of a Δ]

$$\Rightarrow x + 50^{\circ} + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $x = 80^{\circ}$

(ii)
$$\angle DCA = \angle CAB = y$$
 [Alt. angles, DC || AB]

$$\angle DCA + \angle DCE = 180^{\circ}$$

[Linear pair]

$$\Rightarrow y + 146^{\circ} = 180^{\circ}$$

$$y = 34^{\circ}$$

Since the diagonals of a rectangle are equal and they bisect each other.

$$\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$$

[Sum of angles of a Δ]

$$\Rightarrow \qquad x + y + y = 180^{\circ}$$

$$\Rightarrow \qquad \qquad x = 180^{\circ} - 2y$$

$$= 180^{\circ} - 2 \times 34^{\circ} = 112^{\circ}$$

(iii)
$$\angle ECD = \angle ECB + \angle DCB = 60^{\circ} + 90^{\circ} = 150^{\circ}$$
 ...(1)

[: Each angle of an equilateral Δ is 60° and each angle of a square in 90°]

In $\triangle ECD$, we have

$$\angle CED = \angle CDE = y$$
 (say)

[Angles opposite equal sides] ...(2)

In $\triangle ECD$, we have

= 180° [Sum of angles of a Δ]

$$\Rightarrow$$
 $y + y + 150^{\circ} = 180^{\circ}$ [Using (1) and (2)]

 $x = 45^{\circ}$.

$$\Rightarrow$$
 2y = 30°

$$\Rightarrow$$
 $y = 15^{\circ}$

$$\angle BED = \angle BEC - \angle CED$$

= $60^{\circ} - y = 60^{\circ} - 15^{\circ} = 45^{\circ}$

Hence.

(iv)

$$\angle 1 = \angle DCB - \angle ECB = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

 $\angle y = \angle 2$ [\angle s opposite equal sides of \triangle CDE]

In ΔCDE, we have,

$$\angle 1 + \angle 2 + y = 180^{\circ}$$

$$\Rightarrow$$
 30° + y + y = 180°

$$\Rightarrow$$
 2y = 150°

$$\Rightarrow$$
 $y = 75^{\circ}$

$$x = \angle CDA - \angle 2$$

= 90° - y = 90° - 75° = 15°

$$y + z + 60^{\circ} = 360^{\circ}$$
 [Angles about a point]

$$y + z + 60^{\circ} = 360^{\circ}$$
 [Angles about a point]

$$\Rightarrow 75^{\circ} + z + 60^{\circ} = 360^{\circ}$$

$$\Rightarrow$$
 $z = 360^{\circ} - 60^{\circ} - 75^{\circ} = 225^{\circ}$

Hence,
$$x = 15^{\circ}$$
, $y = 75^{\circ}$ and $z = 225^{\circ}$.

(v)
$$\angle$$
SRO + \angle SRT = 180°

[Linear pair]

$$\Rightarrow$$
 \angle SRO + 152° = 180°

$$\Rightarrow$$
 \angle SRO = 28°

 $z = \angle SRO$ [Angles opposite to equal sides of Δ SPR]

$$\Rightarrow$$
 $z = 28^{\circ}$

 $y = 90^{\circ}$ [Diagonals of a rhombus bisect each other at right, angles.

Also
$$\angle RPQ = \angle SRP = 28^{\circ}$$
 [Alt. angles]

In ΔOPQ, we have

$$\angle OPQ + \angle POQ + x = 180^{\circ}$$
 [Sum of angles of a \triangle]

$$\Rightarrow$$
 28° + 90° + $x = 180°$

$$\Rightarrow$$
 $x = 62^{\circ}$

Hence, $x = 62^{\circ}$, $y = 90^{\circ}$ and $z = 28^{\circ}$.

(vi)
$$\angle ECB = \angle ECD + \angle DCB$$

$$\angle ECB = 60^{\circ} + 78^{\circ} = 138^{\circ}$$
 ...(1)

$$\angle$$
CEB = x [Angles opposite to equal sides of \triangle CEB] ...(2)

In $\triangle CEB$, we have

=
$$180^{\circ}$$
 [Sum of angles of a Δ]

$$\Rightarrow 138^{\circ} + x + x = 180^{\circ}$$
 [Using (1) and (2]

$$\Rightarrow$$
 $2x = 180^{\circ} - 138^{\circ} = 42^{\circ}$

$$\Rightarrow$$
 $x = 21^{\circ}$

$$z = \angle DEC - \angle CEB$$

$$=60^{\circ} - x = 60^{\circ} - 21^{\circ} = 39^{\circ}$$

$$\angle$$
CDB = \angle CBD [Angles opposite to equal

sides of Δ CBD]

$$\Rightarrow$$
 $\angle CDB = (x + y)$...(3)

In \triangle CDB, we have

$$\angle DCB + \angle CDB + \angle DBC = 180^{\circ}$$

$$\Rightarrow$$
 78° + x + y + x + y = 180° [Using (3)]

$$\Rightarrow 78^{\circ} + 2y + 2x = 180^{\circ}$$

$$2y = 60^{\circ}$$

 \Rightarrow

$$y = 30^{\circ}$$

Hence, $x = 21^{\circ}$, $y = 30^{\circ}$ and $z = 39^{\circ}$.

(vii) $92^{\circ} + y = 180^{\circ}$ [Coint. angles formed by transversal cutting parallel sides of a trapezium]

$$\Rightarrow \qquad y = 180^{\circ} - 92^{\circ} = 88^{\circ}$$

Also $2x + 10^{\circ} + x + 20^{\circ} = 180^{\circ}$ [Coint. angles formed by a transversal cutting parallel sides of a trapezium]

$$\Rightarrow 3x + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow 3x = 150^{\circ}$$

$$\Rightarrow x = 50^{\circ}$$

Hence, $x = 50^{\circ}$, $y = 88^{\circ}$.

(viii) $3x + 2x = 180^{\circ}$ [Coint. \angle s formed by a transversal cutting parallel sides of a trapezium]

Isosceles Trapezium PQRS

$$\Rightarrow$$
 $5x = 180^{\circ} \Rightarrow x = 36^{\circ}$

y = 2x

[Base angles of an isosceles trapezium are equal]

$$\Rightarrow$$
 $y = 2 \times 36^{\circ} = 72^{\circ}$

(ix) AB = AD

[Equal sides of a kite]

 $\angle ADB = \angle ABD = y$ [$\angle s$ opp. equal sides to AD and AB of $\triangle ADB$] ...(1)

Kite ABCD (ix)

In \triangle ADB, we have

[Sum of angles of a Δ]

$$\Rightarrow y + y + 112^{\circ} = 180^{\circ}$$

[Using (1)]

$$\Rightarrow$$
 2y = 180° - 112° = 68°

$$\Rightarrow$$
 $y = 34^{\circ}$

Also C

CD = CB [Equal sides of a bite]

$$\angle DBC = \angle BDC = x$$

In ΔCBD, we have

= 180° [Sum of angles of a Δ]

$$\Rightarrow x + x + 64^{\circ} = 180^{\circ}$$

[Using (2)]

...(2)

$$\Rightarrow \qquad 2x = 180^{\circ}$$

 $2x = 180^{\circ} - 64^{\circ} = 116^{\circ} \Rightarrow x = 58^{\circ}$

 $x = 58^{\circ}, y = 34^{\circ}.$

BC || AD [Opposite sides of a parallelogram]

10.
$$\Rightarrow$$
 PC || AQ

BC = AD [Opposite sides of parallelogram]

$$\Rightarrow \frac{1}{2}BC = \frac{1}{2}AD$$

 \Rightarrow PC = AQ [: P and Q are the mid-points of BC and AD respectively] ...(2)

In quadrilateral APCQ, we have one pair of opposite sides i.e. PC and AQ parallel and equal to each other.

[From (1) and 2)]

Hence, APCQ is a parallelogram.

11.
$$PD = AD - AP = AD - \frac{AD}{4} = \frac{3}{4}AD$$
 ...(1)

$$BQ = BC - QC = BC - \frac{BC}{4} = \frac{3}{4}BC$$
 ...(2)

AD = BC [Opp. of a parallelogram] ...(3)

From (1), (2) and (3), we have

Also

12.

[: APD || BQC, opp. sides of a ||gm] ...(5)

:. In quadrilateral BPDQ, we have one pair of opposite sides i.e. PD and BQ parallel and equal to each other [From (4) and (5)]

Hence, BPDQ is a parallelogram.

$$\angle B = \angle D$$
 [Opp. angles of a parallelogram]

$$\Rightarrow \frac{1}{2} \angle B = \frac{1}{2} \angle D$$

$$\Rightarrow$$
 $\angle 2 = \angle 3$

...(1)

But
$$\angle 3 = \angle 5$$

[Using (1) and (2)]

BM || ND ∴. ...(3)

[∵ AMD || BNC, opposite sides Also MD || BN of parallelogram] ...(4)

In quadrilateral BNDM, we have pairs of opposite sides (BM, ND) and (MD, BN) parallel to each other.

[From (3) and (4)]

Hence, quadrilateral BNDM is a parallelogram and BM = DN. [Opp. sides of a parallelogram are equal] 13. In $\triangle OPB$ and $\triangle OQD$, we have

 $\angle 1 = \angle 2$ [Vertically opposite angles] OB = OD[Diagonal BD is bisected at O] $\angle 3 = \angle 4$ [Alt. angles, CB || DA] and $\triangle OPB \cong \triangle OQD$ [By ASA congruence] OP = OQ[CPCT] ...(1) \Rightarrow PB = QD[CPCT] ...(2) and CB | DA [Opposite sides of a parallelogram] Also [: P lies on AB and Q lies PB | QD on DA] ...(3)

In quadrilateral BPDQ, we have one pair of opposite sides PB and QD parallel and equal to each other.

[From (2) and (3)]

Hence, BPDQ is a parallelogram

OP = OOand ...[From (1)]

14. In $\triangle PBC$ and $\triangle PAM$, we have

 $\angle 1 = \angle 2$ [Vert. opp. angles] PB = PA[P is the mid-point of AB] $\angle 3 = \angle 4$ [Alt. angles, CB || DAM] $\Delta PBC \cong \Delta PAM$ [By ASA congruence] *:* . BC = AM \Rightarrow [CPCT] ...(1) CB || DA Also (produced) CB || AM ...(2)

In quadrilateral ACBM, are pair of opposite sides i.e. CB and AM parallel and equal to each other.

[From (1) and (2)]

Hence, ACBM is a parallelogram.

15. In \triangle QDA and \triangle PCB, we have

QD = PC[given] [Corr. angles, AD || BC] $\angle 1 = \angle 2$

DA = CB [Opposite sides of a parallelogram]

 $\Delta QDA \cong \Delta PCB$ [By SAS congruency]

 $\angle 3 = \angle 4$ [CPCT] \Rightarrow

But $\angle 3$ and $\angle 4$ are corresponding angles formed when BP and AQ are cut by transversal CQ at P and Q respectively.

$$\Rightarrow$$
 RS || AQ ...(1)

Also QS
$$\parallel$$
 AR [given] ...(2)

Hence ARSQ is a parallelogram.

16. DC
$$\parallel$$
 AB [Opposite sides of a parallelogram] \Rightarrow DC \parallel AEF (or AB produced)

$$\Rightarrow DC \parallel EF \qquad \qquad (of The productor)$$

Also DC = AB [Opposite sides of a
$$\|gm\|$$
 ...(2)

$$AB = EF [Given] ...(3)$$

$$\therefore$$
 DC = EF [Using (2) and (3)] ...(4)

In quadrilateral DEFC, we have

DC
$$\parallel$$
 EF and DC = EF [From (1) and (4)]

:. DEFC is a parallelogram.

and
$$DA = PQ$$
 [Opp. sides of ||gm PQAD] ...(1)

and
$$CB = PQ$$
 [Opp. sides of $\|gm PQBC\|$...(2)

From (1) and (2), we get

$$DA \parallel CB$$
 and $DA = CB$

In quadrilateral ABCD, we have DA || CB and DA = CB :. ABCD is a parallelogram.

18.
$$\angle 1 = \angle 2$$
 [: BF, the bisector of $\angle CBX$] ...(1)

$$\angle 1 = \angle 4$$
 [Corr. angles, CB || DAE] ...(2)

$$\angle 2 = \angle 3$$
 [Alt. angles, DF || ABX] ...(3)

From (1), (2) and (3), we have

$$\angle 3 = \angle 4$$

DE = DF \Rightarrow [Sides opposite to equal angles of ΔDEF] ...(4)

and $\angle 3 = \angle 1$

BC = CF[Sides opposite to equal angles of ΔBCF] ...(5)

Now DE = DF[From (4)]

DE = DC + CF

DE = AB + BC[DC = AB opposite sides of a ||gm and using (5)] ...(6)

Hence, DE = AB + BC = DF[From (4) and (6)]

 $\angle 1 = \angle 2$ [Angles opposite to equal sides 19. of Δ MSR] ...(1)

> [Corr. angles, PSM \parallel QR] ...(2) $\angle 1 = \angle 3$

> $\angle 2 = \angle 4$ [Corr. angles, SR || PQN] ...(3)

From (1), (2) and (3), we get

$$\angle 3 = \angle 4$$

QN = QR [Sides opp. equal angles of Δ QRN]

 $\angle 1 = \angle 2$ [Angles opp. to equal sides AE 20. and AD of ∆ADE] ...(1)

> $\angle 2 = \angle 3$ [Alt. angles, AEB || DC] ...(2)

DE bisects ∠ADC

$$\angle 4 = \angle 5$$
 [: PD bisects $\angle APC$] ...(3)

$$\angle 4 = \angle 6$$
 [Alt. angles, AP || DC] ...(4)

$$\therefore \quad \angle 5 = \angle 6 \qquad \qquad [Using (3) and (4)]$$

DC = PC[Sides opp. to equal angles of ΔDCP] \Rightarrow

AB = PC[: DC = AB, opposite sides of a parallelogram]

 $\angle 1 = \angle 2 = x \text{ (say)}$ [Angles opp. to equal sides of ΔADF] ...(1)

 $\angle 3 = \angle 4 = y$ (say) [Angles opp. to equal sides of $\triangle BCE$] ...(2)

Considering $\triangle ADF$, whose side FA is produced to B, we

Exterior $\angle DAB = \angle 1 + \angle 2 = 2x$ [Using (1)] ...(3) Considering $\triangle BCE$, whose side EB is produced to A, we

Exterior $\angle CBA = \angle 3 + \angle 4 = 2y$ [Using (2)] ...(4) Now, $\angle DAB + \angle CBA = 180^{\circ}$ [Coint. angles, AD || BC] $2x + 2y = 180^{\circ}$ [Using (3) and (4)] \Rightarrow $x + y = 90^{\circ}$...(5)

In \triangle GFE, we have $\angle 1 + \angle 3 + \angle$ FGE = 180° [Sum of angles of a Δ]

$$\Rightarrow$$
 $x + y + \angle FGE = 180^{\circ}$

$$\Rightarrow 90^{\circ} + \angle FGE = 180^{\circ}$$
 [Using (5)]

$$\Rightarrow$$
 $\angle FGE = 90^{\circ}$

Hence, EC and FD produced meet at right angles.

22. In $\triangle BEF$ and $\triangle BAC$, we have

 $\angle 1 = \angle 2$ [V. opposite angles] BE = BA[given]

 $\angle 3 = \angle 4$ [Alt. $\angle s$, EF \parallel AC]

 $\Delta BEF \cong DBAC$ [By ASA congruency]

EF = AC

In quadrilateral ACEF, we have

$$EF \parallel AC$$
 and $EF = AC$

ACEF is a parallelogram

AF = EC [Opposite sides of a parallelogram]

23. MB = AB[Sides of a square] CD = AB[Opposite sides of a ||gm]

MB = CD...(1)

Also BC = AD[Opposite sides of a parallelogram]

DX = AD[Sides of a square] BC = DX...(2)

 \angle MBC = \angle MBA + \angle ABC = 90° + \angle ABC Now.

21.

$$\Rightarrow$$
 \angle MBC = \angle CDX

...(3)

In \triangle MBC and \angle CDX, we have

$$MB = CD$$

[From (1)]

$$\angle$$
MBC = \angle CDX

[From (3)]

and
$$BC = DX$$

[From (2)]

$$\therefore \qquad \Delta MBC \cong \Delta CDX$$

[By SAS congruency]

MC = CX

 Δ CXM is an isosceles triangle.

24. Let AP and DQ intersect at R.

In \triangle ABP and \triangle DAQ, we have

$$AB = DA$$

[Sides of a square]

$$\angle ABP = \angle DAQ$$

[Each is 90°]

$$AP = DQ$$

[Given]

$$\therefore$$
 $\triangle ABP \cong DDAQ$

$$\Rightarrow$$
 $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$

[CPCT] ...(1)

In ΔDAQ , we have

$$\angle 2 + 90^{\circ} + \angle 4 = 180^{\circ}$$

[Sum of angles of a Δ]

$$\Rightarrow$$
 $\angle 1 + 90^{\circ} + \angle 4 = 180^{\circ}$

[Using (1)]

$$\Rightarrow$$
 $\angle 1 + \angle 4 = 90^{\circ}$

...(2)

Considering $\triangle AQR$ whose side AR is produced to P, we get

Exterior
$$\angle QRP = \angle 1 + \angle 4 = 90^{\circ}$$

[Using (2)]

- ⇒ AP and DQ are perpendicular to each other.
- 25. ABCD is a parallelogram in which one angle say

$$\angle A = 90^{\circ}$$

26. In \triangle MAP and \triangle MBQ, we have

$$\angle 1 = \angle 2$$

[V. opposite angles]

$$AM = BM$$

[:: M is the mid-point of AB]

$$\angle 3 = \angle 4$$

[Each is 90°]

$$\therefore \qquad \Delta MAP \cong \Delta MBQ$$

[By ASA congruency]

$$\Rightarrow$$
 MP = MQ

[CPCT] ...(1)

In right Δ CMP and right Δ CMQ, we have

$$MP = MQ$$

[From (1)]

$$CM = CM$$

 $\Delta CMP \cong \Delta CMQ$

[Common]

[By RHS congruency] [CPCT]

and

[∵ AN bisects ∠A]

[Alt. angles, BNC | AMD]

$$AB = BN$$

[Sides opp. to equal angles

of
$$\triangle ABN$$
] ...(1)

[∵ BM bisects ∠B]

$$\angle 4 = \angle 5$$

$$\angle 6 = \angle 5$$

[Alt. angles, AMD || BNC]

 \Rightarrow

AB = AM

[Sides opp. to equal angles

of $\triangle ABM$] ...(2) [Using (1) and (2)]

[∵ AMD || BNC]

In quadrilateral ABNM, we have

...(3)

: ABNM is a parallelogram in which adjacent sides AB (= AM) and BN are equal [Using (2) and (3)]

Hence, ABNM is a rhombus.

28. Let ABCD be an isosceles trapezium in which AB || DC and AD = BC.

Draw AM \perp DC and BN \perp DC

In right \triangle AMD and right \triangle BNC, we have

$$AM = BN$$

[Distance between parallel line segments]

and
$$AD = BC$$

[Given]

$$\therefore$$
 $\triangle AMD \cong \triangle BNC$

[By RHS congruency]

[By CPCT] ...(1) [Coint. angles, AB || DC]

$$\Rightarrow$$
 $\angle 3 + \angle 2 = 180^{\circ}$

[Using (1)]

$$\angle A + \angle C = 180^{\circ}$$

 $\angle 3 + \angle 1 = 180^{\circ}$

 $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ [Sum of angles of a quadrilateral]

$$\Rightarrow$$
 $(\angle A + \angle C) + \angle B + \angle D = 360^{\circ}$

$$180^{\circ} + \angle B + \angle D = 360^{\circ}$$

[Using (2)]

$$\angle B + \angle D = 180^{\circ}$$

Hence, the opposite angles of an isosceles trapezium are supplementary.

Quadrilaterals

$$AB = CD$$
 and $\angle B = \angle C$

Draw AP \perp BC and DQ \perp BC

In ΔAPB and ΔDQC

$$\angle APB = \angle DQC$$

$$[Each = 90^{\circ}]$$

$$\angle B = \angle C$$

[Given]

$$\therefore$$
 $\triangle APB \cong \triangle DQC$

[By AAS congruency]

$$\Rightarrow$$
 AP = DQ

[CPCT]

i.e. perpendicular distance between AD and BC at two distinct points is the same.

$$AD \parallel BC$$
.

30. Draw AP \perp DC and BQ \perp DC

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$
 [Sum of angles of a

$$\Rightarrow$$
 2 \angle A + 2 \angle D = 360°

$$2\angle A + 2\angle D = 360$$

[::
$$\angle A = \angle B$$
 and $\angle C = \angle D$]

$$\Rightarrow$$

$$\angle A + \angle D = 180^{\circ}$$

But ∠A and ∠D are cointerior angles formed when transversal AD cuts AB and DC at A and D respectively.

$$\Rightarrow$$
 AP = BQ

[Distance between parallel line segments]

In \triangle APD and \triangle BQC, we have

$$AP = BQ$$

[From (1)]

$$\angle APD = \angle BQC$$

[Each is equal to 90°]

$$\angle ADP = \angle BCQ$$

 $[\angle D = \angle C, given]$

$$\therefore$$
 $\triangle APD \cong \triangle BQC$

[By SAA congruency]

$$\Rightarrow$$
 AD = BC

[CPCT]

- EXERCISE 8C -

1. In $\triangle ABC$, D is the mid-point of AB and E is the mid-point of AC.

$$\Rightarrow$$

$$DE = 3.3 \text{ cm}$$

and DE
$$\parallel$$
 BC \Rightarrow \angle ADE = \angle ABC

$$= 62^{\circ}$$

[Corr. angles, DE || BC]

2. Draw LP $\perp l$

BM, CN and LP are perpendiculars to the same line l

[Intercept theorem] ...(1)

In
$$\Delta$$
MPL and Δ NPL, we have

MP = NP[From (1)]

$$\angle$$
MPL = \angle NPL

[Each is equal to 90°]

$$PL = PL [Common]$$

 Δ MPL $\cong \Delta$ NPL

[By SAS congruency]

$$\Rightarrow$$
 ML = NL

[CPCT]

3. In $\triangle CPA$, B is the mid-point of AC and BX \parallel AP

:. X is the mid-point of CP

By the converse of Mid-point theorem].

In $\triangle PCR$, X is the mid-point of PC and XQ || AP.

Q is the mid-point of PR

[By the converse of Mid-point theorem].

Now, in \triangle CPA, B and X are the mid-points of AC and PC respectively.

$$\therefore BX = \frac{1}{2}AP \Rightarrow AP = 2BX \qquad \dots (1)$$

In $\triangle PCR$, X and Q are the mid-points of PC and PR respectively

$$\therefore \qquad QX = \frac{1}{2}CR \implies CR = 2QX \qquad \dots (2)$$

Adding (1) and (2), we get

$$AP + CR = 2(BX + QX) \Rightarrow AP + CR = 2BQ$$

- 4. In $\triangle ADC$, D is the mid-point of BC [: AD is a median] and DE || BA [Given]
 - :. E is the mid-point of AC [By the converse of Mid-point theorem]

- \Rightarrow BE is a median.
- 5. Let point D, E and F be the mid-points of sides BC, AC and AB of \triangle ABC.

DE, EF and FD are joined. Since the line segments joining the mid-points of two sides of a triangle is half of the third side

[By Mid-point theorem]

$$\Rightarrow$$
 DE = AF ...(1)

$$DF = \frac{1}{2}AC$$

$$\Rightarrow$$
 DF = AE ...(2)

In $\triangle DEF$ and $\triangle AFE$, we have

$$DE = AF$$
 [From (1)]

$$DF = AE$$
 [From (2)]

$$\triangle$$
 \triangle DEF \cong \triangle AFE [By SSS congruence]

Similarly it can be proved that

$$\Delta DEF \cong \Delta FBP$$
 and $\Delta DEF \cong \Delta EDC$

$$\Rightarrow$$
 $\Delta DEF \cong \Delta AFE \cong \Delta FBD \cong \Delta EDC$

Hence, the straight lines joining the mid-points of the sides of a triangle divide it into four congruent triangles.

6. BC || AQ

[∵ PAQ || BC]

and

 $AB \parallel QC$

[∵ QCR || AB]

: Quadrilateral AQCB is a parallelogram.

$$\Rightarrow$$
 AQ = BC [Opp. sides of a ||gm] ...(1)

Similarly, it can be proved that quadrilateral PACB is a parallelogram.

$$\Rightarrow$$
 PA = BC [Opp. sides of a ||gm] ...(2)

$$\therefore PA = AQ [Using (1) and (2)]$$

 \Rightarrow A is the mid-point of PQ

Similarly, it can be proved that B and C are the mid-points of PR and QR respectively.

Now in Δ PQR, A is the mid-point of PQ and B is the mid-point of PR and C is the mid-point of QR.

$$\therefore \qquad AB = \frac{1}{2}QR \qquad \dots (1)$$

$$BC = \frac{1}{2}PQ \qquad ...(2)$$

and

$$CA = \frac{1}{2}RP \qquad ...(3)$$

Adding (1), (2) and (3), we get

$$AB + BC + CA = \frac{1}{2} (QR + PQ + RP)$$

$$\Rightarrow$$
 Perimeter of ΔABC = $\frac{1}{2}$ Perimeter of ΔPQR

 \Rightarrow 2 perimeter of $\triangle ABC$ = Perimeter of $\triangle PQR$

Hence, the perimeter of ΔPQR is double the perimeter of ΔABC .

7. In \triangle APB, L and M are the mid-points of AP and BP respectively.

∴ LM
$$\parallel$$
 AB [By Mid- μ

[By Mid-point theorem]

$$\Rightarrow$$
 $\angle 1 = \angle 2$

[Corr. angles] ...(1)

In \triangle APC, L and N are the mid-points of AP and CP respectively.

$$\Rightarrow$$
 $\angle 5 = \angle 6$ [Corr. angles] ...(3)

and
$$\angle 7 = \angle 8$$
 [Corr. angles] ...(4)

In Δ BPC, M and N are the mid-points of BP and CP respectively.

$$\Rightarrow$$
 $\angle 9 = \angle 10$ [Corr. angles] ...(5)

and
$$\angle 11 = \angle 12$$
 [Corr. angles] ...(6)

Adding the corresponding sides of (1) and (2), we get

$$\angle 1 + \angle 5 = \angle 2 + \angle 6$$

$$\Rightarrow$$
 $\angle A = \angle L$

Adding the corresponding sides of (2) and (5), we get

$$\angle 3 + \angle 9 = \angle 4 + \angle 10$$

$$\Rightarrow$$
 $\angle B = \angle M$

Adding the corresponding sides of (4) and (6), we get

$$\angle 7 + \angle 11 = \angle 8 + \angle 12$$

$$\Rightarrow$$
 $\angle C = \angle N$

Since
$$\angle A = \angle L$$
, $\angle B = \angle M$ and $\angle C = \angle N$

- .: ΔABC and ΔLMN are equiangular.
- 8. (i) In $\triangle ABC$, M is the mid-point of BC and MP \parallel CA

P is the mid-point of AB [By the converse of Mid-point theorem]

$$\Rightarrow$$
 AP = $\frac{1}{2}$ AB

 \Rightarrow AB = 2AP

(ii) In $\triangle ABM$, P is the mid-point of AB and PR \parallel BM

 \therefore R is the mid-point of AM [By the converse of Mid-point theorem]

$$\Rightarrow$$
 AR = $\frac{1}{2}$ AM

$$\Rightarrow$$
 2AR = AM

(iii) In $\triangle ABM$, P and R are the mid-points of AB and AM

$$\therefore PR = \frac{1}{2}BM$$
 [By Mid-point theorem]

$$\Rightarrow$$
 BM = 2PR

- 9. Since, E and F are the mid-points of AB and AC respectively
 ∴ EF || BC [By Mid-point theorem]
 ⇒ EQ || BP [∵ Q lies on EF and P lies
 on BC] ...(1)

In \triangle ABP, E is the mid-point of AB and EQ || BP [From (1)]

:. Q is the mid-point of AP

[By the converse of Mid-point theorem]

⇒ EF bisects AP.

10. Join AC.

In $\triangle ABC$, P and Q are the mid-points of AB and BC respectively.

∴ PQ || AC

and $PQ = \frac{1}{2}AC$...(1) [By Mid-point theorem]

In ΔADC , S and R are the mid-points of AD and CD respectively

and $SR = \frac{1}{2}AC$ [By Mid-point theorem] ...(2)

From (1) and (2), we get

$$PQ \parallel SR$$
 and $PQ = SR$

Hence, PQRS is a parallelogram.

11. In \triangle ABC, E and F are the mid-points of AB and AC respectively.

and $EF = \frac{1}{2}BC$ [By Mid-point theorem] ...(1)

In $\triangle DBC$, H and G are the mid-points of DB and DC respectively.

and $HG = \frac{1}{2}BC$ [By Mid-point theorem] ...(2)

From (1) and (2), we get

EF || HG and EF = HG

Hence, EFGH is a parallelogram.

 Let P and Q be the mid-points of AB and AC of ΔABC. Join PQ.

Then, $PQ = \frac{1}{2}BC$ [By Mid-point theorem] ...(1)

Since P is the mid-point of AB

$$\therefore \qquad AP = \frac{1}{2}AB \implies AB = 2AP \qquad \dots (2)$$

$$AD = \frac{1}{4}AB$$
 [Given]

$$\Rightarrow AD = \frac{1}{4}(2AP)$$
 [Using (2)]

$$\Rightarrow$$
 AD = $\frac{1}{2}$ AP

 \Rightarrow D is the mid-point of AP. ...(3)

Similarly, it can be proved that E is the mid-point of AQ. In Δ APQ, D and E are the mid-points of AP and AQ

DE = $\frac{1}{2}$ PQ [By Mid-point theorem]

$$\Rightarrow DE = \frac{1}{2} \left(\frac{1}{2} BC \right)$$
 [Using (1)]

$$\Rightarrow$$
 DE = $\frac{1}{4}$ BC

13. In $\triangle RST$, Z and X are the mid-points of SR and ST respectively.

$$\therefore ZX = \frac{1}{2}RT$$

and $ZX \parallel RT$ [By Mid-point theorem] ...(1) \Rightarrow $ZX \parallel RY$ [: Y lies in RT] ...(2)

In Δ PZX, R is the mid-point of PZ and RY || ZX [From (2)]

∴ Y is the mid-point of PX [By the converse of Mid-point theorem]

Now, in Δ PZX, R and Y are the mid-points of PZ and PX respectively.

$$\therefore RY = \frac{1}{2}ZX$$
 [By Mid-point theorem]

$$\Rightarrow RY = \frac{1}{2} \left(\frac{1}{2} RT \right)$$
 [Using (1)]

$$\Rightarrow$$
 RY = $\frac{1}{4}$ RT

- 14. In $\triangle ABP$, D is the mid-point of AB and DE \parallel BP.
 - E is the mid-point of AP.

By the converse of Mid-point theorem

$$\Rightarrow$$
 AE = EP ...(1)

$$AP = AE + EP = EP + EP$$
 [Using (1)]
= 2EP

$$\Rightarrow \qquad \text{EP} = \frac{1}{2}\text{AP} \qquad \dots (2)$$

Now
$$AP - EP = AP - \frac{1}{2}AP$$
 [Using (2)]

$$=\frac{1}{2}AP = PC$$
 $\left[\because \frac{1}{2}AP = PC, given\right]$

Hence, AP - EP = PC.

- 15. BE and CF are medians of ΔABC .
 - \Rightarrow E and F are the mid-points of AC and AB respectively.
 - In \triangle ABC, F is the mid-point of AB and E is the mid-point of AC.

$$\therefore \qquad \text{FE } \parallel \text{BC and FE} = \frac{1}{2} \text{BC} \qquad \dots (1)$$

In ΔGBC, H is the mid-point of GB and K is the mid-point

$$\therefore \qquad \text{HK} \parallel \text{BC and HK} = \frac{1}{2} \text{BC} \qquad \dots (2)$$

From (1) and (2), we get

$$FE \parallel HK$$
 and $FE = HK$

⇒ HKEF is a parallelogram.

Since the diagonals of a parallelogram bisect each other

$$\therefore \qquad \text{EG} = \text{GH}$$
and
$$\text{FG} = \text{GK}$$

and
$$KC = GK$$
 [: H and K are the mid-points of GB and GC respectively]

$$\therefore$$
 EG = GH = HB

and
$$FG = GK = KC$$

$$\Rightarrow$$
 EG = $\frac{1}{3}$ BE

and
$$FG = \frac{1}{3}CF$$

Hence, G is a point of trisection of BE and CF.

16. Join EF

In ΔCXA E and F are the mid-points of CX and CA respectively

In ΔBAY, E and F are the mid-points of BA and BY respectively

$$\therefore$$
 EF || AY [By Mid-point theorem] ...(2)

Also, XA and AY pass through the same point A.

: XA and AY lie along the same straight line and are parallel to the same line segment EF.

Thus, X, A and Y are collinear.

Hence, XAY is a straight line.

17. Since the diagonals of a parallelogram bisect each other.

 \Rightarrow O is the mid-point of AC.

In ΔADC, P and O are the mid-points of AD and AC respectively.

and (ii)
$$PO = \frac{1}{2}DC$$

[By Mid-point theorem]

[∵ AB || DC, opposite sides of a parallelogram]

and (ii)
$$PO = \frac{1}{2}CD$$

18. (i) Join diagonal BD.

Diagonal BD will pass through Q, the mid-point of diagonal AC.

[: Diagonals of a rectangle bisect each other]

$$\angle 1 = \angle 2$$

[Each is 90°]

⇒ OP and OD are both perpendicular to the same lines segment DC.

Now, in ΔDCA, Q is the mid-point of CA and $QP \parallel AD$.

.. P is the mid-point of DC [By the converse of Mid-point theorem]

$$\Rightarrow$$
 DP = PC

[Each is 90°]

QR and AB are both perpendicular to the same line segment CB.

Now in ΔCAB, Q is the mid-point of AC and QR || AB

R is the mid-point of CB [By the converse of Mid-point theorem]

In ΔCDB, P and R are the mid-points of CD and CB

$$\therefore PR = \frac{1}{2}BD$$

[By Mid-point theorem]

$$\Rightarrow$$
 PR = $\frac{1}{2}$ AC

 $PR = \frac{1}{2}AC$ [: BD = AC, diagonals of a rectangle]

Since, the diagonals of a parallelogram bisect each other.

:. O is the mid-point of AC.

$$\Rightarrow$$
 CO = $\frac{1}{2}$ AC

$$\Rightarrow$$
 AC = 2CO ...(1)

Now,
$$CQ = AC = \frac{1}{4} (2CO)$$
 [Using (1)]

$$\Rightarrow$$
 $CQ = \frac{1}{2}CO$

 \Rightarrow Q is the mid-point of CO.

In Δ CDO, P and Q are the mid-points of CD and CO.

$$\Rightarrow$$
 PQR || DOB

$$\Rightarrow$$
 QR || OB

In ΔCOB , Q is the mid-point of CO and QR \parallel OB

$$\therefore$$
 R is the mid-point of BC.

[By the converse of Mid-point theorem]

Let diagonal BD intersect PQ at S and let diagonal AC intersect QR at T.

In $\triangle BAC$, P and Q are mid-points of AB and BC respectively.

[By Mid-point theorem]

$$\Rightarrow$$
 SQ || OT

[:: S lies on PQ and O, T lies on AC] ...(1).

In ΔCBD , Q and R are the mid-points of BC and CD respectively.

$$\Rightarrow$$
 QT || SO

[: T lies on QR and S and O lie on BD] ...(2)

In quadrilateral SQTO, we have

$$SQ \parallel OT$$
 and $QT \parallel SO$ [From (1) and (2)]

: SQTO is a parallelogram.

[Opposite angles of a parallelogram] ...(3)

But $\angle 1 = 90^{\circ}$

[Diagonals of a rhombus are perpendicular to each other]

$$\Rightarrow$$
 $\angle 2 = 90^{\circ}$

[Using (3) and (4)]

$$\Rightarrow \qquad \angle Z = 90$$

 \Rightarrow PQ \perp QR 21. Let diagonal BD intersect

EF at G. In $\triangle DAB$, E is the mid-point of DA and EG \parallel AB.

[: EF \parallel AB and G lies on EF]

∴ G is the mid-point of BD

Now in $\triangle BDC$, G is the mid-point of BD and

GF
$$\parallel$$
 DC [: EF \parallel AB \parallel DC and G lies on EF]

∴ F is the mid-point of BC

[By the converse of Mid-point theorem]

22. ABCD is an isosceles trapezium in which AD = BC.

P, Q, R and S are the midpoints of AB, BC, CD and DA respectively.

Join any one diagonal (say) AC of the trapezium ABCD. In Δ BAC, P and Q are the mid-points of BA and BC respectively.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC \qquad \dots (1)$$

In ΔDAC , S and R are the mid-points of DA and DC.

$$\therefore SR \parallel AC \text{ and } SR = \frac{1}{2}AC \qquad ...(2)$$

From (1) and (2), we get

In Δs SDR and QCR, we have

$$SD = QC \left[\because SD = \frac{1}{2} AD, QC = \frac{1}{2} BC \text{ and } AD = BC \right]$$

 \angle SDR = \angle QCR [Base \angle s of isosceles trapezium]

$$DR = CR$$
 [R is the n

$$\therefore \qquad \Delta SDR \cong \Delta QCR \text{ [By SAS congruence]}$$

PQRS is a parallelogram in which two adjacent sides SR and QR are equal. [Using (3) and (4)]

 \Rightarrow PQRS is a rhombus.

Hence, the straight lines joining the mid-points of the sides of an isosceles trapezium in order form a rhombus.

CHECK YOUR UNDERSTANDING

MULTIPLE-CHOICE QUESTIONS

1. (a) 104°

Let *x* be the 4th angle of the quadrilateral. Then $x + 60^{\circ} + 86^{\circ} + 110^{\circ} = 360^{\circ}$ (\angle s of a quadrilateral)

$$\Rightarrow$$
 $x = 360^{\circ} - 256^{\circ} = 104^{\circ}$

2. (b) 20°

$$7x + 5x + 3x + 3x = 18x = 360^{\circ}$$

[Sum of ∠s of a quadrilateral]

$$\Rightarrow$$
 $x = 20^{\circ}$

3. (b) 120°, 120°, 40°

Let the three angles of a quadrilateral in the ratio 3:3:1 be 3x, 3x and x.

Then, $3x + 3x + x + 80^{\circ} = 360^{\circ}$ [Sum of angles of a quadrilateral]

$$\Rightarrow$$
 $7x = 280^{\circ} \Rightarrow x = 40^{\circ}$

The other angles are $3 \times 40^{\circ}$, $3 \times 40^{\circ}$, 40° i.e. 120° , 120° , 40° .

4. (c) 80°, 100°, 100°

isosceles trapezium.

$$\angle C = \angle D = 80^{\circ}$$

$$\angle A + \angle D = 180^{\circ} \qquad \text{[Coint. angles, AB || DC]}$$

$$\Rightarrow \angle A + 80^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle A = 100^{\circ}$$

$$\angle B + \angle C = 180^{\circ} \qquad \text{[Coint angles, AB || DC]}$$

$$\Rightarrow \angle B + 80^{\circ} = 180^{\circ}$$

 $\Rightarrow \qquad \angle B + 80^{\circ} = 180^{\circ}$ $\Rightarrow \qquad \angle B = 100^{\circ}$

Hence, the other angles are 80°, 100°, 100°.

5. (a) 360°

$$\angle 1 + \angle 2 + \angle 3 + \angle 4$$

= $(180^{\circ} - \angle A) + (180^{\circ} - \angle B) + (180^{\circ} - \angle C) + (180^{\circ} - \angle D)$
= $720^{\circ} - (\angle A + \angle B + \angle C + \angle D)$
= $720^{\circ} - 360^{\circ} = 360^{\circ}$

6. (c) Opposite angles are always bisected by the diagonals.

7. (c) kite

8. (d) square

9. (d) parallelogram

In $\triangle ABC$, P and Q are the mid-points of AB and AC respectively.

∴
$$PQ \parallel BC$$
 [By Mid-point theorem]
⇒ $PQ \parallel SR$ (∵ S and R be on BC) ...(1)

and
$$PQ = \frac{1}{2}BC$$
 [By Mid-point theorem]

$$\Rightarrow PQ = \frac{1}{2}(BO + OC)$$

$$= \frac{1}{2}(2SO + 2OR) \text{ [} :: S \text{ and } R \text{ are mid-}$$

=
$$\frac{1}{2}$$
(2 SO + 2 OR) [: S and R are mid-
points of BO and OC
respectively]

$$\Rightarrow PQ = \frac{1}{2} \times 2 \times (SO + OR)$$

$$= (SO + OR)$$

$$\Rightarrow PQ = SR \qquad ...(2)$$

∴ PQRS is a parallelogram [Using (1) and (2)]

10. (d) Quadrilateral whose opposite angles are supplementary.

In \triangle APQ, we have

$$\angle A + \angle APQ + \angle AQP$$

= 180° [Sum of \angle s of a \triangle]
 $\Rightarrow \angle A + \frac{1}{2} \angle P + \frac{1}{2} \angle Q = 180^{\circ}$

$$\Rightarrow \qquad \angle A = 180^{\circ} - \frac{1}{2} (\angle P + \angle Q)$$

Similarly,
$$\angle C = 180^{\circ} - \frac{1}{2} (\angle R + \angle S)$$

$$\angle A + \angle C = 180^{\circ} + 180^{\circ} - \frac{1}{2} (\angle P + \angle Q + \angle R + \angle S)$$

$$= 360^{\circ} - \frac{1}{2} \times 360^{\circ} = 360^{\circ} - 180^{\circ} = 180^{\circ}$$

 \Rightarrow \angle A and \angle C are supplementary.

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ} [\angle s \text{ of a quadrilateral}]$$

 $\Rightarrow \angle B + \angle D = 360^{\circ} - (\angle A + \angle C)$
 $= 360^{\circ} - 180^{\circ} = 180^{\circ}$

 \Rightarrow $\angle B$ and $\angle D$ are supplementary.

11. (c) 80°

$$\angle B + \angle C = 180^{\circ}$$
 [Coint. angles, AB || DC]

$$\Rightarrow x + y + 100^{\circ} = 180^{\circ}$$

$$\Rightarrow x + y = 80^{\circ}$$

12. (a) 30

 $\angle A = \angle C$ [Opposite angles of a parallelogram]

$$\Rightarrow (3x - 20)^{\circ} = (x + 40)^{\circ}$$

$$\Rightarrow 3x - x = 40 + 20$$

$$\Rightarrow 2x = 60$$

$$\Rightarrow x = 30$$

13. (c) DE = EF

In ΔADE and ΔCFE

But $\angle 3$ and $\angle 4$ are alternate angles from when transversal cuts DA at A and CF at C.

14. (b) 90°

15. (b) 10 cm, 8 cm

Diagonals of a parallelogram bisect each other.

$$\therefore$$
 AO = OC = 5 cm and DO = OB = 4 cm

= 4 cm + 4 cm

= 8 cm

Let ABCD be a parallelogram in which $\angle A$ and $\angle C$ are obtuse angles. Altitude AP and altitude CQ through A and C intersect each other at O making an angle of 60° between them i.e. $\angle COP = 60^{\circ}$

Exterior
$$\angle OPD = \angle COP + \angle OCP$$
[Exterior angle = sum of interior opposite angles]

$$\Rightarrow 90^{\circ} = 60^{\circ} + \angle 1$$

$$\Rightarrow \angle 1 = 30^{\circ}$$

Now in Δ CQD, we have

$$\angle 1 + 90^{\circ} + \angle D = 180^{\circ}$$
 [Sum of angles of a \triangle]
 $\Rightarrow 30^{\circ} + 90^{\circ} + \angle D = 180^{\circ}$

⇒
$$\angle D = 60^{\circ}$$

 $\angle B = \angle D = 60^{\circ}$ [Opposite angles of

$$\angle$$
A + \angle D = 180° [Coint. angle, AB || BC]
 \angle A + 60° = 180°

$$\angle C = \angle A = 120^{\circ}$$
 [Opposite angles of a parallelogram]

17. (c) 120°

 \Rightarrow

 \Rightarrow

$$\angle$$
A + \angle D = 180° [Coint. angles, AB || DC]
 60° + \angle D = 180°
 \angle D = 180° - 60° = 120°

18. (a) 82°

$$x + x + x + 114^{\circ} = 360^{\circ}$$

 $\Rightarrow 3x = 360^{\circ} - 114^{\circ} = 246^{\circ}$

a parallelogram]

19. (b) 50°

20. (d) 8 cm

Since, the diagonals of a \parallel gm bisect each other.

and
$$OB = \frac{1}{2}BD = \frac{4.2 \text{ cm}}{2} = 2.1 \text{ cm}$$

Perimeter of
$$\triangle AOB = AO + OB + AB$$

= $(2.9 + 2.1 + 3)$ cm = 8 cm

21. (b) 80°, 100°, 80°, 100°

Let one angle of parallelogram ABCD, (say) $\angle B = x^{\circ}$.

Then, adjacent
$$\angle A = \left(\frac{4}{5}x\right)^3$$

$$\angle A + \angle B = 180^{\circ}$$
 [Coint. angles, AD || BC]
 $\Rightarrow \left(\frac{4}{5}x\right)^{\circ} + x^{\circ} = 180^{\circ}$

$$\Rightarrow \qquad \left(\frac{9x}{5}\right)^{\circ} = 180^{\circ}$$

$$\Rightarrow \qquad x = 180 \times \frac{5}{9} = 100^{\circ}$$

$$\Rightarrow \qquad \angle A = \left(\frac{4}{3} \times 100\right)^{\circ} = 80^{\circ} \text{ and } \angle B = 100^{\circ}$$

$$\angle C = \angle A = 80^{\circ}$$

and
$$\angle D = \angle B = 100^{\circ}$$

[Opposite angles of a parallelogram]

22. (b) 45

$$(2x + 20)^{\circ} + (3x - 30)^{\circ} + (x + 10)^{\circ} + (2x)^{\circ}$$
= 360° [Sum of ∠s of a quadrilateral]
$$\Rightarrow 2x + 20 + 3x - 30 + x + 10 + 2x$$
= 360°
$$\Rightarrow 8x = 360 \Rightarrow x = 45$$

23. (a) 11 cm

AD = BC [Opposite sides of a rectangle]

$$\Rightarrow$$
 $2x + 3 = 4x - 5$

$$8 = 2x \Rightarrow x = 4$$

$$BC = (4x - 5) \text{ cm}$$

$$= (4 \times 4 - 5) \text{ cm}$$

$$= (16 - 5) \text{ cm} = 11 \text{ cm}$$

24. (c) 18 cm

$$PQ = QR$$

[Sides of a rhombus]

$$\Rightarrow$$
 $3x = 2(x + 3)$

$$\Rightarrow$$
 $3x = 2x + 6$

$$\Rightarrow x = 6$$

$$PQ = (3 \times 6) \text{ cm}$$

$$= 18 \text{ cm}.$$

25. (c) 120°, 60°, 120°, 60°

Join BD.

In $\triangle DPA$ and $\triangle DPB$, we have

$$PA = PB$$
 [: Altit

[:: Altitude DP bisects AB]

$$\angle DPA = \angle DPB$$

[Each is 90°]

$$DP = DP$$

[Common] [By SAS congruence]

[CPCT]

[CPCT]

BD = AD [Sides opp. to equal
$$\angle$$
s of \triangle DAB]

$$AB = AD$$

[Sides of a rhombus]

$$\therefore$$
 AB = AD = BD

[\therefore \triangle ADB is an equilateral \triangle]

$$\angle A + \angle D = 180^{\circ}$$

[Coint. angles, AB || DC]

$$\Rightarrow$$
 60° + \angle D = 180°

$$\Rightarrow$$
 $\angle D = 120^{\circ}$

$$\angle C = \angle A = 60^{\circ}$$

BC = AD = 10 cm

and $\angle B = \angle D = 120^{\circ}$ [Opposite angles of a ||gm]

26. (b) 5 cm

P is the mid-point of BC.

PA bisects $\angle A$.

$$\Rightarrow$$
 $\angle 1 = \angle 2$

Also
$$\angle 1 = \angle 3$$
 [Alt. angles, AD || BC] ...(2)

From (1) and (2), we get

$$\angle 2 = \angle 3$$

$$\Rightarrow$$
 PB = AB [Sides opp. to equal \angle s of \triangle BAP]

$$\Rightarrow$$
 5 cm = AB

$$CD = AB = 5 \text{ cm}$$

[Opposite sides of a parallelogram]

27. (c) 6 cm

In \triangle APM and \triangle QMC, we have

$$AP = CQ$$

$$\left[\frac{1}{2}AB = \frac{1}{2}CD\right]$$

$$\angle 1 = \angle 2$$
 $\angle 3 = \angle 4$

[Alt. angles] [Vert. opp. angles]

$$\Rightarrow \Delta APM \cong \Delta QMC \Rightarrow AM = MC = 3 \text{ cm}$$

Now
$$AC = AM + MC = 3 \text{ cm} + 3 \text{ cm} = 6 \text{ cm}$$

28. (b) 43°

In parallelogram ABCD, AD || BC and AC is a transversal.

[Alt. angles]

$$\Rightarrow$$
 $\angle 1 = 25^{\circ}$

...(1)

$$\angle 1 + \angle 2 = \text{Ext. } 68^{\circ} \text{ or } 25^{\circ} + \angle 2 = 68^{\circ}$$

$$\Rightarrow$$
 $\angle 2 = 68^{\circ} - 25^{\circ} = 43^{\circ}$

29. (b) 4 cm

PQRS is a parallelogram, PA is bisector of $\angle P$.

SR || PQ

and PA is a transversal

$$\Rightarrow$$
 $\angle 2 = \angle 3$

In
$$\triangle DSA$$
, $PS = SA$

$$\Rightarrow$$
 SA = 5 cm [:: PS = 5 cm]

D

3.5 cm

$$PQ = 9 \text{ cm} = SR$$

$$\Rightarrow$$
 AR = 9 cm - 5 cm

$$= 4 \text{ cm}$$

In
$$\triangle ABR$$
, $\angle 4 = \angle 3$

[Alt. angles]

C

[Alt. angles]

$$\angle 2 = \angle 5$$

$$\angle 5 = \angle 4$$

$$AR = RB = 4 cm$$

30. (c) 7 cm

M is mid-point of CD and

 \Rightarrow A is mid-point of DR

$$\therefore$$
 AR = AD

But AD = 3.5 cm

$$\therefore$$
 AR = 3.5 cm

Now,
$$DR = DA + AR$$

$$= 7 \text{ cm}$$

Thus, DR = 7 cm.

31. (a) 16 cm

M is mid-point of AD

N is mid-point of BC

$$\Rightarrow$$
 MN || AB or MN || CD

[∵ AB || CD]

In $\triangle ABC$, NO \parallel AB and N is mid-point of BC

O is mid-point of AC

:. NO =
$$\frac{1}{2}$$
AB = $\frac{1}{2}$ (12) = 6 cm

$$\therefore$$
 MO = MN - NO

$$= 14 \text{ cm} - 6 \text{ cm} = 8 \text{ cm}$$

In AADC, M and O are mid-points of AD and AC

$$\therefore MO = \frac{1}{2}DC \Rightarrow 8 = \frac{1}{2}CD$$

or
$$CD = 8 \times 2 = 16 \text{ cm}.$$

32. (c) 4 cm

The diagonal PR is trisected by AS and BQ.

:.
$$CD = \frac{1}{3}PR = \frac{1}{3} \times 12 \text{ cm} = 4 \text{ cm}$$

33. (b) 10 cm

BF is bisector of ∠CBX

[Alt. angles, DF \parallel AX]

$$\Rightarrow$$
 $\angle 1 = \angle 3$

Also
$$\angle 4 = \angle 1$$

[Corr. angles for DE \parallel CB]

$$\Rightarrow$$
 $\angle 4 = \angle 3$

Now in $\triangle EDF$, $\angle 4 = \angle 3 \Rightarrow DE = DF = 10$ cm

34. (b) 15 cm

ABCD is a rhombus.

- :. Its diagonals bisect at right angles.
- :. In right $\triangle COD$, OC = 12 cm and OD = 9 cm
- :. Using Pythagoras theorem

$$DC = \sqrt{12^2 + 9^2} = 15 \text{ cm}$$

35. (c) 30°, 40°, 110

PQ is a line segment joining the mid-points of AB and BC respectively.

$$\therefore$$
 PQ || RC and PQ = RC $\left(=\frac{1}{2}AC\right)$

- ⇒ PQRC is a parallelogram
- : Opposite angles of a parallelogram are equal

$$\therefore \qquad \angle P = \angle C = 110^{\circ}$$

Similarly, APQR is a parallelogram

$$\Rightarrow$$
 $\angle Q = \angle A = 30^{\circ}$

And BQRD is a parallelogram

$$\Rightarrow$$
 $\angle R = \angle B = 40^{\circ}$

Thus, the angles of $\triangle PQR$ are 30°, 40°, 110°.

- SHORT ANSWER QUESTIONS -

1. We have:

Join BC.

In $\triangle ABC$, Q is mid-point of AC and QP \parallel AB

- \Rightarrow O is mid-point of BC.
- .. By Mid-point theorem,

$$\Rightarrow$$
 OQ = 2 cm ...(1)

In ΔBCD,

O is the mid-point of O and PQ || CD

- :. P is mid-point of BD
- :. By Mid-point theorem,

$$OP = \frac{1}{2}CD = \frac{1}{2} \times 6 \text{ cm}$$

$$OP = 3 \text{ cm} \qquad ...(2)$$

Adding (1) and (2), we get

$$OQ + OP = 2 cm + 3 cm = 5 cm$$

$$\Rightarrow$$
 PQ = 5 cm

2. : ABC is an equilateral triangle.

$$\therefore$$
 $\angle A = \angle B = \angle C = 60^{\circ}$

In ΔAOC, P and R are mid-points of AO and CO respectively.

$$\Rightarrow y = \angle 1$$
 [Corr. angles]
\Rightarrow y = 60° - 35° = 25° ...(1)

Similarly,
$$\angle z = \angle 2$$

$$\Rightarrow \qquad \angle z = 60^{\circ} - 40^{\circ} = 20^{\circ} \qquad \dots (2)$$

In $\triangle BOC$, Q and R are mid-points of OB and OC respectively.

and OB is a transversal

$$\therefore$$
 $\angle x = \angle 3$ [Corr. angles]

$$x = 20^{\circ}, y = 25^{\circ}, z = 20^{\circ}$$

3. In \triangle ABC, D and E are mid-points of AB and AC respectively.

[By Mid-point theorem]

In ΔABO,

$$\Rightarrow$$
 DP || BQ

D is mid-point of AB [Given]

.. P is also mid-point of AP

[By converse of Mid-point theorem]

$$\Rightarrow$$
 AP = PQ = 3 cm

Now
$$AQ = AP + PQ$$

$$= 3 \text{ cm} + 3 \text{ cm} = 6 \text{ cm}$$

Thus AQ = 6 cm.

4. We have: $l \parallel m \parallel n$

and G is mid-point of CD.

(i) In $\triangle ACD$, $m \parallel n \Rightarrow BG \parallel AD$

: G is mid-point of CD.

B is mid-point of AC.

[By converse of Mid-point theorem]

By Mid-point theorem

$$BG = \frac{1}{2}AD$$

$$\Rightarrow$$
 BG = $\frac{1}{2}$ (7 cm)

$$\Rightarrow$$
 BG = 3.5 cm

(ii) In $\triangle CDF$, $l \parallel m$

$$\Rightarrow$$
 CF || GE

G and F are mid-points of CD and AD

$$\Rightarrow$$
 GE = $\frac{1}{2}$ CF

$$\Rightarrow$$
 2.5 = $\frac{1}{2}$ CF

$$\Rightarrow$$
 CF = 2 × 2.5 cm

[:: GE = 2.5 cm]

$$\Rightarrow$$
 CF = 5 cm

(iii) : B is mid-point of AC and AC = 9 cm

:. BC =
$$\frac{1}{2}$$
(AC) = $\frac{1}{2}$ (9 cm) = 4.5 cm

$$\Rightarrow$$
 AB = AC - BC = 9.00 cm - 4.5 cm

$$\Rightarrow$$
 AB = 4.5 cm

(iv) : E is mid-point of FD

$$\therefore$$
 EF = ED = 4 cm

$$\Rightarrow$$
 ED = 4 cm.

5. In ΔABC, P and Q are mid-points of AB and BC respectively.

(i)
$$\therefore$$
 PQ = $\frac{1}{2}$ AC

[By Mid-point theorem]

$$\Rightarrow PQ = \frac{1}{2} \times 6 \text{ cm} = 3 \text{ cm} \quad [\because AC = 6 \text{ cm}]$$

$$\Rightarrow$$
 PQ = 3 cm

(ii) In ΔBCD , Q and R are mid-points of BC and CD respectively.

$$\therefore \qquad QR = \frac{1}{2}BD$$

[By Mid-point theorem]

$$\Rightarrow$$
 QR = $\frac{1}{2}$ (8.6 cm) = 4.3 cm

$$\Rightarrow$$
 QR = 4.3 cm

In ΔACD.

R and S are mid-points of DC and AD respectively

$$\therefore RS = \frac{1}{2}AC$$

[By Mid-point theorem]

$$\Rightarrow$$
 RS = $\frac{1}{2} \times 6$ cm = 3 cm

In ΔABD,

S and P are mid-points of AD and AB respectively.

:. SP =
$$\frac{1}{2}$$
 (BD) = $\frac{1}{2}$ × 8.6 cm = 4.3 cm

Thus, PQ = 3 cm, QR = 4.3 cm,

$$SR = 3 \text{ cm} \text{ and } SP = 4.3 \text{ cm}$$

or
$$PQ = SR = 3$$
 cm and $QR = PS = 4.3$ cm

6. : The diagonals of the quadrilateral BD and AC intersect at O.

and OA : OC = 2 : 3

Let
$$OA = 2x$$
 and $OC = 3x$

$$\therefore$$
 OA : OC = $2x : 3x \Rightarrow$ OA \neq OC

because the diagonals of a parallelogram bisect each other.

i.e. O must be mid-point of AC.

: ABCD is not a parallelogram.

7. In a parallelogram, opposite angles are equal.

In parallelogram ABCD

$$\therefore \qquad \angle A = \angle C = 58^{\circ} \qquad [\because \angle C = 58^{\circ}]$$

$$\Rightarrow \qquad \angle A = 58^{\circ} \qquad \dots (1)$$

In parallelogram AEFG,

$$\angle A = \angle F$$

 $\angle D = 58^{\circ}$ But [from (1)]

And let $\angle A = 3x$, $\angle B = 4x$, $\angle C = 4x$ and $\angle D = 7x$

$$\therefore \qquad \angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow \qquad 3x + 4x + 4x + 7x = 360^{\circ}$$

$$\Rightarrow$$
 18 $x = 360^{\circ}$

$$\Rightarrow \qquad x = \frac{360^{\circ}}{18} = 20^{\circ}$$

$$\angle B = 4 \times 20^{\circ} = 80^{\circ}$$

$$\angle C = 4 \times 20 = 80^{\circ}$$

and

$$\angle D = 7 \times 20^{\circ} = 140^{\circ}$$

Thus, the angles of the quadrilateral are:

9. ABCD is a parallelogram.

:. Its opposite angles are equal.

$$\angle DCB = 80^{\circ}$$

$$\Rightarrow$$
 $\angle DAB = 80^{\circ}$

$$\frac{1}{2}$$
 \angle DAB = 40° = \angle DAX [: AX is bisector of \angle A.]

Thus, $\angle DAX = 40^{\circ}$

10. BC || PR and AC is a transversal.

AB || QR and AC is a transversal.

In $\triangle ABC$ and $\triangle CRA$,

$$AC = AC$$
 [Common]

$$\angle 1 = \angle 2$$
 [Proved above]

$$\angle 2 = \angle 3$$
 [Proved above]

$$\triangle$$
 ABC \cong DCRA

$$\Rightarrow$$
 CB = AR [CPCT] ...(1)

Similarly,
$$CB = AP$$
 ...(2)

Adding (1) and (2), we get

$$CB + CB = AR + AP$$

$$\Rightarrow$$
 2CB = PR

$$\Rightarrow \qquad CB = \frac{1}{2}PR \qquad ...(3)$$

Similarly,

$$AC = \frac{1}{2}PQ \qquad ...(4)$$

and

$$AB = \frac{1}{2}RQ \qquad ...(5)$$

Adding (3), (4) and (5)

$$CB + BA + AC = \frac{1}{2}PR + \frac{1}{2}RQ + \frac{1}{2}QP$$

$$\Rightarrow$$
 AB + BC + CA = $\frac{1}{2}$ [PR + RQ + QP]

$$\Rightarrow$$
 [Perimeter of ΔABC] = $\frac{1}{2}$ [Perimeter of ΔPQR]

$$\Rightarrow$$
 [Perimeter of ΔABC] = $\frac{1}{2}$ [48 cm] = 24 cm

perimeter of ABC = 24 cm. Thus,

VALUE-BASED QUESTIONS ———

1. Yes.

The suggestion of students was correct.

By joining the mid-points of an equilateral triangle, we get an equilateral triangle.

 \therefore PQR is an equilateral Δ .

Since, in equilateral \triangle ABC, we have:

$$AB = BC = CA$$

$$\therefore \frac{1}{2}AP = \frac{1}{2}BC = \frac{1}{2}CA \qquad \dots (1)$$

or P, Q, R and mid-points of AB, AC and BC respectively:

.. By Mid-point theorem,

$$PQ = \frac{1}{2}BC, QR = \frac{1}{2}AB$$

and

$$RP = \frac{1}{2}AC \qquad ...(2)$$

From (1) and (2)

$$PQ = QR = RP \Rightarrow PQR$$
 is an equilateral Δ .

Values: Creativity, resourcefulness and co-operation.

2. ABCD is a rhombus.

The diagonal of a rhombus bisect at right angles.

$$\therefore$$
 AO \perp OB

$$\Rightarrow$$
 $\angle AOB = 90^{\circ}$

In
$$\triangle AOB$$
, $\frac{1}{2} \angle A + \frac{1}{2} \angle B + 90^{\circ} = 180^{\circ}$

[: AC bisects \angle A and BC bisects \angle B]

$$\Rightarrow \frac{1}{2} \angle A + \frac{1}{2} (110^{\circ}) + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\frac{1}{2} \angle A = 180^{\circ} - 90^{\circ} - 55^{\circ} = 35^{\circ}$

$$\Rightarrow$$
 ($\angle OAB = 35^{\circ}$) < ($\angle OBA = 55^{\circ}$)

OB < OA [Side opposite to smaller angle is smaller] i.e. Anil has to cover shorter distance than Ram.

Values: Caring and concern for senior citizens, helpfulness, empathy and responsibility.

UNIT TEST

1. (d) :: 230°

Opposite angles of a parallelogram are equal.

$$\therefore \qquad \angle A = \angle C = 65^{\circ}$$

$$\Rightarrow$$
 $\angle A + \angle C = 65^{\circ} + 65^{\circ} = 130^{\circ}$

$$\therefore$$
 $\angle B + \angle D = 360^{\circ} - 130^{\circ} = 230^{\circ}$

2. (c) Rhombus

Diagonals of a rhombus are not equal.

: If the diagonals of a parallelogram ABCD are equal, then it cannot be a rhombus.

3. (a) 40°

$$\angle BDC = \angle 1$$

[Alt. angles for AB || CD]

3 cm

4 cm

<Ό

$$\Rightarrow$$
 $\angle 1 = 50^{\circ}$

$$\therefore$$
 $\angle 3 = 180^{\circ} - (90^{\circ} + 50^{\circ}) = 40^{\circ}$

4. (d) Rectangle

$$\angle XAB = \angle ABY$$

[Alt. angles]

$$\therefore \frac{1}{2} \angle XAB = \frac{1}{2} \angle ABY$$

$$\Rightarrow$$
 $\angle 1 = \angle 2$

But they are alternate angles,

$$\angle 2 + \angle 3 = \frac{1}{2} (180^{\circ}) = 90^{\circ}$$

 \Rightarrow ABCD is a parallelogram with $\angle B = 90^{\circ}$

 \Rightarrow ABCD is a rectangle.

5. (b) 20 cm

Diagonals of a rhombus bisect each other at right angles.

$$\therefore$$
 AO \perp DO

In right \triangle AOD, using Pythagoras theorem.

$$AD = \sqrt{4^2 + 3^2} = 5$$

cm

:. Perimeter of the rhombus

$$= 4 \times side = 4 \times 5 = 20 cm$$

6. In a parallelogram, adjacent angles are supplementary.

$$\therefore$$
 $\angle D + \angle C = 180^{\circ}$

7.
$$\angle 1 = \frac{1}{2} \angle D$$

$$\angle 2 = \frac{1}{2} \angle A$$

In parallelogram ABCD, adjacent angles are supplementary.

$$\therefore \angle A + \angle D = 180^{\circ} \text{ or } \frac{1}{2} \angle A + \frac{1}{2} \angle D = 90^{\circ}$$

$$\Rightarrow$$
 $\angle 1 + \angle 2 = 90^{\circ}$

In
$$\triangle AOD$$
, $\angle DOA = 180^{\circ} - (\angle 1 + \angle 2) = 180^{\circ} - 90^{\circ} = 90^{\circ}$

8. Let P and Q are mid-points of DC and AB respectively. Joint DQ.

$$\angle 1 = \angle 2$$
 ...(1) [Alt. $\angle s$, AB \parallel CD]

In \triangle ADQ and \triangle PQD, we have:

[Proved above]

[CPCT]

$$AQ = DP$$

[Q and P are mid-points

opposite sides AB and CD]
$$DQ = QD \qquad [Common]$$

$$\Rightarrow \Delta ADQ \cong \Delta PQD \qquad ...(2)$$

$$\therefore \qquad \angle 3 = 4$$
Adding (1) and (2)

$$\angle 1 + \angle 3 = \angle 2 + \angle 4$$

Now AQPD is a quad. having one pair of opposite sides parallel DP \parallel AQ and opposite angles \angle D = \angle Q.

∴ AQPD is a ||gm

i.e. $PQ \parallel AD$ and $PQ \parallel CB$.

9. D is mid-point of AB.

: BD =
$$\frac{1}{2}$$
AB = $\frac{1}{2}$ (6) cm = 3 cm

DE is parallel to BC and DE= $\frac{1}{2}$ BC = $\frac{1}{2}$ (8 cm) = 4 cm

$$EF = \frac{1}{2} BA = 3 cm$$

$$BF = \frac{1}{2} BC = 4 cm$$

$$\therefore BD + DE + EF + BF = Perimeter of BDEF$$

$$= (3 + 4 + 3 + 4) cm$$

$$= 14 cm$$

10. The line segment joining mid-points of any two sides of a Δ is parallel and half of the third side.

∴
$$HG = \frac{1}{2} BC \text{ and } HG \parallel BC$$

 $EF = \frac{1}{2} BC \text{ and } EF \parallel BC$

- ⇒ EFGH is a parallelogram
- ∴ $y = 30^{\circ}$ [Opposite angles of ||gm are equal] $x = 40^{\circ}$ [EF || BC, Corr. angles]

Thus, $x = 40^{\circ}$ and $y = 30^{\circ}$.

- 11. AE = EG
 - ⇒ E is mid-point of AG

$$AG = 2 \text{ cm} + 2 \text{ cm} = 4 \text{ cm} = \frac{1}{2} (8 \text{ cm}) = \frac{1}{2} AC$$

Similarly, F is mid-point of AB.

:. By Mid-point theorem,

$$FG = \frac{1}{2}BC = \frac{1}{2} \times 10 = 5 \text{ cm}$$

Similarly, DE = $\frac{1}{2}$ FG = $\frac{1}{2}$ × 5 cm = 2.5 cm

Thus, FG = 5 cm and DE = 2.5 cm.

- 12. DE || BP and D is mid-point of AB.[:: AD = 4 cm = BD]
 - ... In ΔABP, E is mid-point of AP.

$$\Rightarrow \qquad \text{EP} = \frac{1}{2} \text{AP} = 3 \text{ cm}$$

Also
$$AE = \frac{1}{2}AP = 3 \text{ cm}$$

$$PC = 3 \text{ cm}$$
 [Given]

$$AC = AE + EP + PC$$

$$= 3 cm + 3 cm + 3 m = 9 cm$$

Thus AC = 9 cm.

13. Draw DB such that it intersects EG at H.

In ΔABD,

E is mid-point of AD and EH || AB

$$\therefore \qquad \qquad EH = \frac{1}{2} AB \qquad \qquad \dots (1)$$

Similarly, in ΔCBD,

$$HG = \frac{1}{2}DC$$
 ...(2)

Adding (1) and (2), we get

EH + HG =
$$\frac{1}{2}$$
 (AB + DC)
EG = $\frac{1}{2}$ (6 + 10) cm = 8 cm

Thus EG = 8 cm

14. In ΔDCG,

E is mid-point of DC

.: Using the converse of Midpoint theorem, we have B as mid-point of CG

$$\Rightarrow$$
 EB = $\frac{1}{2}$ DG

$$\Rightarrow$$
 DG = 2 × EB = 2 × 5 cm = **10 cm**

$$\Rightarrow$$
 DG = 10 cm

15. : ABCD and PBRQ are rectangles.

$$\begin{array}{cc} \therefore & & QR \parallel PB \\ \Rightarrow & & QR \parallel DC \end{array}$$

In ΔBCD,

∵ Q is mid-point BD [Given]

$$QR = \frac{1}{2}DC$$

$$\Rightarrow$$
 DC = 2QR

$$\Rightarrow$$
 DC = 2 × 5 cm = 10 cm

$$\therefore$$
 AB = DC [Opp. sides of a rectangle]

$$\therefore AB = 10 \text{ cm}$$

- 16. E and F are mid-points of AC and AB respectively.
 - :. Using Mid-point theorem, we have

$$FE = \frac{1}{2}BC$$

and

In \triangle APC, DE is parallel to PC

⇒ Q is mid-point of AP

$$QP = 5 \text{ cm}$$

$$AQ = 5 \text{ cm}$$

$$QF = 5 \text{ cm}$$

Now
$$AP = AQ + QP = 5 \text{ cm} + 5 \text{ cm} = 10 \text{ cm}$$

$$\therefore \frac{QP}{AP} = \frac{5}{10} = \frac{1}{2} \text{ or } QP : AP = 1 : 2$$

$$\Rightarrow$$
 QP: AP = 1:2

In ΔABQ

∵ E is mid-point of AB

(Given)

:. G is mid-point of AQ

[Using converse of Mid-point theorem]

In ΔAQP,

G is mid-point of AQ

[Proved above]

[∵ EF || AD]

 \Rightarrow O is mid-point of PQ

[Using converse of Mid-point theorem]

$$\Rightarrow$$
 OQ = OP or OQ = 6 cm

Now,
$$PQ = PO + OQ = 6 \text{ cm} + 6 \text{ cm} = 12 \text{ cm}$$

Thus,
$$PQ = 12 \text{ cm}$$
.

18. F is mid-point of AB.

...
$$AF = \frac{1}{2}AB = 5 \text{ cm}$$
 ...(1)

E is mid-point AC

:. AE =
$$\frac{1}{2}$$
 AC = 5 cm ...(2)

FD is joining mid-points of AB and BC in \triangle ABC

$$\Rightarrow \qquad \text{FD} = \frac{1}{2} \text{AB} = 5 \text{ cm} \quad ...(3) \left[\because \text{AC} = 10 \text{ cm} \right]$$

Similarly,

$$ED = \frac{1}{2}AB = 5 \text{ cm}$$
 ...(4) [: AB = 10 cm]

From (1), (2), (3) and (4)

$$AF = FD = DE = EA$$

In $\triangle AED$, AE = ED

$$\Rightarrow$$
 $\angle 1 = \angle 2$

Similarly, $\angle 3 = \angle 4$

$$\therefore$$
 $\angle 1 + \angle 4 = \angle 3 + \angle 2$

Therefore, we have a quadrilateral whose all sides are equal and opposite angles are equal.

- :. AFDE is a rhombus.
- \because Diagonals of a rhombus bisect each other at right angles.

In right ΔAOE,

$$(OE)^2 + OA^2 = AE^2$$
 [Using Pythagoras' theorem]

$$\Rightarrow$$
 OA² = AE² – OE² = AE² – $\left(\frac{1}{2}FE\right)^2$

$$\Rightarrow OA^2 = 5^2 - 3^2 \ [\because FE = 6 \text{ cm} \Rightarrow \frac{1}{2} FE = 3 \text{ cm}]$$

$$\Rightarrow$$
 OA = 4 cm

Now,
$$AD = 2(AO) = 2(4 \text{ cm}) = 8 \text{ cm}$$

Thus AD = 8 cm.

19. In ΔOQC and ΔOPA,

 $\angle 1 = \angle 2$

[Vert. opposite angles]

OC = OA

[Diagonals of ||gm are bisected by each other]

Since, OB = OD

(diagonals of a ||gm bisect each other)

and
$$BQ = DP$$
 (: $DP = PQ = QB = \frac{1}{3}BD$)

$$\Rightarrow$$
 OB – BQ = OD – DP

$$\Rightarrow$$
 OQ = OP ...(1)

$$\therefore \qquad \Delta OQC \cong \Delta OPA$$

$$\Rightarrow$$
 $\angle 3 = \angle 4$ [CPCT]

But they form a pair of altitude angles

Also,
$$OQ = OP$$

⇒ O is mid-point of PQ

· O bisects PQ

or AC bisects PQ.

Thus, CQ | AP and AC bisects PQ.

20. ABCD is a quadrilateral such that its diagonals AC and BD bisect each other at right angles, i.e.

[From (1)]

$$AC = BD$$

$$\Rightarrow \frac{1}{2} AC = \frac{1}{2} BD$$

$$\Rightarrow$$
 OA = OB = OC = OD

In ΔAOB and COB,

$$\Rightarrow$$
 $\triangle AOB \cong \triangle COB$

$$\therefore \qquad AB = CB \qquad [CPCT]$$

Similarly, CB = DC, DC = DA and DA = BA

Thus, AB = BC = CD = DA.

. ABCD is a square or a rhombus.

$$\Rightarrow$$
 $\angle 1 = \angle 2$

$$\therefore \qquad \angle 1 + \angle 2 + \angle AOB = 180^{\circ}$$

$$\Rightarrow$$
 $\angle 1 + \angle 2 = 90^{\circ}$

$$\Rightarrow$$
 $\angle 1 = 45^{\circ}$

Similarly, $\angle 3 = 45^{\circ}$

Now
$$\angle 1 + \angle 3 = 45^{\circ} + 45^{\circ} = 90^{\circ}$$

Thus ABCD is a quadrilateral whose sides are equal and one angle is 90°.

\Rightarrow ABCD is a square.

21. D is mid-point of BC and DP \parallel BA.

.. P is mid-point of AC

$$\therefore \qquad PA = PC = \frac{1}{2}AC$$

$$\Rightarrow$$
 CE = PC

$$[\because BE = \frac{1}{2}AC]$$

:. C is mid-point of PE.

In ΔEPD,

C is mid-point of PE and RC || BA or RC || DP

:. R is mid-point of DE.

$$\Rightarrow$$
 DR = RE ...(1)

In $\triangle BFD$ and $\triangle CRD$,

$$\angle 1 = \angle 2$$

BD = CD

[Vert. opposite angles]

$$\angle 4 = \angle 3$$

[D is mid-point of BC]

[Alt. angles, BF || RC]

$$\therefore$$
 $\triangle BFD \cong \triangle CRD$

[By AAS congruency]

$$\Rightarrow$$
 FD = DR

...(2)

From (1) and (2)

$$FD = DR = RE = \frac{1}{3}FE$$

$$\Rightarrow$$
 FD = $\frac{1}{3}$ FE

22. AABC is an isosceles triangle with

$$AB = AC$$

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} AC \qquad \dots (1)$$

F and E are mid-points of AC and BC.

FE =
$$\frac{1}{2}$$
 AB and FE || AB ...(2)

Similarly,

$$DE = \frac{1}{2} AC \text{ and } DE \parallel AC \qquad ...(3)$$

From (2) and (3), we have

$$FE = DE$$
 [From (1)]

 \therefore \triangle EDF is an isosceles triangle.

OR

We have a parallelogram ABCD such that E is mid-point of DC.

In ΔDGC,

B is Mid-point of GC. [By Mid-point theorem (converse)]

i.e.
$$BC = \frac{1}{2}GC$$
 ...(1)

[Opposite sides of ||gm]

and
$$BC = \frac{1}{2}GC$$

[From (1)]

$$\therefore \qquad AD = \frac{1}{2}GC$$

(ii) In ΔDGC, EB is a segment joining mid-points of DC and GC.

$$\therefore \qquad EB = \frac{1}{2}DG$$

$$\Rightarrow$$
 DG = 2EB

Through A, RQ || BC.

Through B, PQ || AC

and through C, $PR \parallel AB$ are drawn such that they meet at P, Q and R.

[Alt. angles, AB || PQ]

[Common]

$$AC = AC$$

[ASA congruency]

$$\Rightarrow \qquad \Delta ABC \cong \Delta CRA$$

$$\Rightarrow \qquad BC = AR$$

...(1)

: .

Adding (1) and (2)

$$2BC = AQ + AR = QR$$

$$\Rightarrow$$
 BC = $\frac{1}{2}$ QR

Thus
$$BC = \frac{1}{2}QR$$

24. We have a parallelogram PQRS such that

Bisector of ∠P is PO and

Bisector of $\angle Q$ is QO.

A line LOM || PQ is also drawn.

(i) Since PQRS is a parallelogram.

$$\Rightarrow$$
 SP || RQ

$$\Rightarrow$$
 $\angle P \parallel MQ$

⇒ LMQP is a parallelogram

$$\Rightarrow$$
 LP = MQ

[Sine opp. sides of a ||gm and equal]

or
$$PL = QM$$

(ii) :: OP is bisector of $\angle P$.

$$\angle OPQ = \angle POL$$

[Alt. angles for PQ \parallel LM] ...(2)

...(3)

From (1) and (2), we have

Now, in ΔOPL,

$$\angle OPL = \angle POL$$

$$\Rightarrow$$
 OL = PL

OR

Similarly, OM = QM

But PL = QM

 \Rightarrow OL = OM

or LO = OM.

We have trapezium ABCD.

E is mid-point of diagonal AC and F is mid-point of BD.

Join CF and produce it to meet AB in P.

In ΔCDF and ΔPBF

:.

$$\angle$$
CFD = \angle PFB [Vert. opposite angles]

$$\angle CDF = \angle PBF$$
 [Alt. angles, DC || AB]

$$DF = FB$$
 [: F is mid-point of BD]

$$\Delta CDF \cong \Delta PBF$$
 [By ASA congruency]

$$\Rightarrow$$
 CD = PB and CF = FP

i.e. E and F are the mid-points of CA and CP in Δ CAP.

:. By Mid-point theorem, we get

EF || AP and EF =
$$\frac{1}{2}$$
 AP

$$\Rightarrow$$
 EF || AB ...(2)

From (1) and (2)

Also,
$$EF = \frac{1}{2}AP$$

$$\Rightarrow \qquad \text{EF} = \frac{1}{2} \left(\text{AB} - \text{PB} \right)$$

$$= \frac{1}{2}(AB - CD) \qquad [\because PB = CD]$$

Hence, we have

EF
$$\parallel$$
 AB \parallel **DC** and **EF** = $\frac{1}{2}$ (**AB** – **CD**).